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Abstract

In high-throughput studies, an important objective is to identify gene-environment interactions 

associated with disease outcomes and phenotypes. Many commonly adopted methods assume 

specific parametric or semiparametric models, which may be subject to model mis-specification. 

In addition, they usually use significance level as the criterion for selecting important interactions. 

In this study, we adopt the rank-based estimation, which is much less sensitive to model 

specification than some of the existing methods and includes several commonly encountered data 

and models as special cases. Penalization is adopted for the identification of gene-environment 

interactions. It achieves simultaneous estimation and identification and does not rely on 

significance level. For computation feasibility, a smoothed rank estimation is further proposed. 

Simulation shows that under certain scenarios, for example with contaminated or heavy-tailed 

data, the proposed method can significantly outperform the existing alternatives with more 

accurate identification. We analyze a lung cancer prognosis study with gene expression 

measurements under the AFT (accelerated failure time) model. The proposed method identifies 

interactions different from those using the alternatives. Some of the identified genes have 

important implications.
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Introduction

High-throughput profiling has fundamentally changed the paradigm of research and practice 

of multiple diseases. Multiple types of genetic, epigenetic, genomic, and proteomic 

measurements have been generated. To avoid confusion, we use the generic terminology 

“gene”, which matches the gene expression data analyzed in this article but note that the 

Contact: Shuangge Ma, 60 College ST, New Haven, CT 06520, shuangge.ma@yale.edu; Tel: 1-203-785-3119; Fax: 1-203-785-6912. 

HHS Public Access
Author manuscript
Genet Epidemiol. Author manuscript; available in PMC 2015 April 01.

Published in final edited form as:
Genet Epidemiol. 2014 April ; 38(3): 220–230. doi:10.1002/gepi.21795.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



proposed method is also applicable to other types of genetic and genomic measurements. 

For complex diseases such as cancer and diabetes, the risk and progression are associated 

with the combined effects of genes, clinical and environmental risk factors, and their G × E 

(gene-environment) interactions. For the identification of important interactions, there are 

multiple families of approaches, including for example the joint approach and stratification 

approach. For comprehensive discussions, we refer to Hunter [2005], North and Martin 

[2008], Thomas [2010] and others. In this article, we focus on the statistical modeling 

approach, where interactions are described using the products of variables in statistical 

models. In general with high-dimensional measurements on genes, there are two types of 

analyses [Witten and Tibshirani 2010]. The first conducts marginal analysis and analyzes 

one gene at a time, and the other describes the joint effects of all genes in a single model. 

The proposed method conducts marginal analysis, which is still more popular than the joint 

analysis in G × E interaction studies.

Denote Y as a disease outcome or phenotype. It can be a continuous marker, categorical 

disease status, or survival time. Denote Z = (Z1, …, Zp) as the p genes and X = (X1, …, Xq) 

as the q clinical/environmental risk factors. Assume n iid observations. The most popular 

statistical modeling approach proceeds as follows. (1) For k = 1, …, p, fit a parametric or 

semiparametric model . For example with a 

binary Y, ϕ can be the logistic model. αkl’s, γk, and βkl’s are the unknown regression 

coefficients. As usually q ≪ n, for each k, this step can be carried out using standard 

techniques and software. Denote pkl as the p-value of β̂
kl, the estimate of βkl. (2) With {pkl: k 

= 1, …, p, l = 1, …, q}, conduct multiple comparison adjustment. Approaches such as the 

FDR (false discovery rate) can be applied to identify significant interactions. Multiple 

existing approaches belong to this category [Hunter 2005; Thomas 2010]. Different 

approaches may have minor differences in terms of statistical models, hypothesis testing 

methods, and multiple comparison adjustment techniques.

The above approach has the following limitations. With p genes, it is likely that some of the 

p models are mis-specified. Although in principle it is possible to conduct model 

diagnostics, to the best of our knowledge, there is no study actually examining the validity 

of all p regression models. There are a few robust methods. A popular one is the multifactor 

dimensionality reduction (MDR) [Moore et al. 2006], which provides a powerful approach 

to detect nonlinear interactions among discrete attributes that are predictive for discrete 

outcomes. However, it cannot be directly adapted to continuous outcomes or discrete 

outcomes associated with continuous attributes. Other robust methods may share a similar 

limitation of restricted applicability. In addition, most of the existing methods use 

significance level to identify interactions. For some estimates, for example the rank estimate 

proposed in this study, computing the p-values can be computationally tedious. Moreover, as 

shown in our simulation study, the significance based methods may have less satisfactory 

performance.

In this article, we analyze high-throughput data and search for important gene-environment 

interactions. A statistical modeling approach is adopted, which detects interactions by 

conducting estimation with βkl’s. A new method is developed to overcome some limitations 
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of the existing methods. Specifically, we assume a general semiparametric transformation 

model, which makes much weaker model assumptions and hence can be less sensitive to 

model mis-specification. Correspondingly, a rank-based estimation approach is proposed. 

This modeling and estimation framework can accommodate continuous, categorical, and 

censored survival data and includes many commonly adopted models as special cases. We 

propose using penalization for estimation. In general, for data with a small to moderate 

sample size, penalization can lead to more reliable estimates. More importantly, for the 

present problem, penalization can identify important interactions along with estimation, 

without relying on the significance level. Thus it provides an alternative strategy for 

identifying interactions. For computational feasibility, a smoothed penalized rank estimation 

is developed. Simulation study and data analysis are conducted to examine performance of 

the proposed method.

Robust Modeling and Rank Estimation

Semiparametric transformation model

We use notations similar to those in the above section. For gene k(= 1, …, p), consider the 

model

(1)

where Wk = (X, Zk, ZkX)′, αk = (αk1, …, αkq)′ is the unknown coefficient vector for clinical 

and environmental factors, γk is the main gene effect, βk = (βk1, …, βkq)′ corresponds to G × 

E interactions, and . Model (1) is a semiparametric transformation model 

where the form of the transformation function gk is left unspecified, making the model 

assumptions much weaker than the existing ones. For identifiability, it is assumed that gk is 

monotone (without loss of generality, monotone increasing). Under the approach described 

in the Introduction section, different genes usually have the same ϕ. Here different genes are 

allowed to have different transformation functions, making this model much more flexible.

For a continuous outcome, model (1) includes  as a special case. When 

gk(t) = t and gk(t) = log(t), this model reduces to the additive and multiplicative error 

models, respectively. When gk(t) takes the form of a power function and εk follows a normal 

distribution, we obtain the Box-Cox transformation model. For categorical data, model (1) 

includes many commonly adopted generalized linear models, for example the logistic model 

and probit model for binary data and Poisson model for count data. For survival data, model 

(1) accommodates transformation models (which include the Cox model, accelerated failure 

time (AFT) model, exponential and other parametric models, etc) and the additive risk 

model. Thus model (1) indeed has broad applications.

Rank estimation

In principle, it is possible to build estimating equations and simultaneously estimate gk and 

θk. However, nonparametric estimation of gk can be computationally expensive. A small 
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scale simulation to be presented below also shows that it may lead to inferior results. For the 

identification of important interactions, only θk is of interest. In this study, we adopt the 

rank-based estimation [Han 1987; Khan and Tamer 2007], which can avoid estimating gk.

With n iid subjects, use the subscripts i and j to denote the ith and jth subjects, respectively. 

For gene k(= 1, …, p), consider the estimate θ̂
k = argmaxθk O(θk), with the objective 

function O(·) defined as follows. (a) When Y is continuous,

(2)

where I(·) is the indicator function. (b) When Y is categorical, first consider a binary 

outcome. Denote D and H as the index sets for diseased (Y = 1) and healthy (Y = 0) subjects 

with sizes nD and nH, respectively. Then

(3)

O(θk) is the empirical AUC (area under curve) under the ROC (receiver operating 

characteristics) framework [Pepe 2004]. With multi-category data, the construction of rank 

estimates may follow Pepe [2004] and followup studies. (c) When Y is a right-censored 

survival outcome, denote C as the censoring time. One observes (V = min(Y, C), Δ = I(Y ≤ 

C)), where Δ is the event indicator. Here

(4)

which is closely connected with the integrated time-dependent AUC [Li and Ma 2011]. 

Under more complex censoring patterns (for example interval censoring), it is also possible 

to develop rank estimation [Li and Ma 2011]. However, such data are rarely encountered in 

genomic data analysis and hence not further discussed.

In the above rank-based objective functions, θk is only identifiable up to a constant. Without 

loss of generality, we assume that |αk1| = 1, k = 1, …, p. With a slight abuse of notations, we 

still use θk to denote the remaining coefficients (αk2, …, αkq, γk, βk1, …, βkq)′. Although 

there are some minor differences, the objective functions in (2), (3), and (4) all belong to the 

MRC (maximum rank correlation) framework. Their asymptotic behaviors can be 

established following Han [1987] and Sherman [1993], and computationally they can be 

solved using similar algorithms.

Penalized Identification of G × E Interactions

For the identification of important G×E interactions, we propose the following penalization 

method. For gene k = 1, …, p, compute
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(5)

where ρ(·) is the penalty function. Interactions (and main effects) corresponding to the 

nonzero components of θk̂’s will be identified as associated with response. In this study, we 

consider the MCP penalty [Zhang 2010], where  and 

. λ > 0 is the tuning parameter, and γ > 1 is the regularization 

parameter. Many other penalties can be used to replace MCP, including for example the 

Lasso family, bridge, SCAD, and others. Studies under simpler data and model settings 

suggest that MCP can outperform Lasso and several other penalties and have similar 

performance as bridge, SCAD, and others. As the main goal is not to compare different 

penalties, we focus on the MCP and will not further discuss the other penalties.

O(θk) is not differentiable. Straightforwardly maximizing O(θk) is an NP-hard problem. A 

few computationally effective methods have been proposed including the tree-based method 

and the more recent forward selection method in Li et al. [2011]. However, the high 

dimensionality of genes and more importantly MCP penalization make computation in this 

study nontrivial. To tackle the computation problem, we adopt the approximation proposed 

in Ma and Huang [2005]. Specifically,  in O(θk) is approximated with 

, where  is the sigmoid function. We denote the 

smoothed approximation of O(θk) as Os(θk). The smoothed counterpart of (5) is proposed as

(6)

and referred to as the smoothed penalized rank estimate (SPRE). Performance of the 

approximation and hence the estimate depend on σn. The asymptotic behavior of σn has been 

studied in Ma and Huang [2005]. Numerical studies in Ma and Huang [2005] and followup 

studies show that, as long as σn is small, the smoothed rank estimate is not very sensitive to 

its value. In our numerical study, we set  and find satisfactory results. In practice, 

one may need to experiment with a sequence of σn values and find one that is small enough 

(so that the estimate does not change significantly when it gets smaller) but not too small (so 

that the approximation is still stable).

Penalization is imposed. Here it serves two purposes. First, it achieves the identification of 

important interactions along with estimation. There is no need to further compute the 

significance level. Using the results in Sherman [1993], we can establish the asymptotic 

behaviors of θk̂. In our numerical study, we demonstrate that it is possible to compute a p-

value for the rank estimate. However, it can be computationally expensive especially when 

the number of genes or environmental factors is large or the sample size is moderate to low 

(so that the asymptotic results are not sensible, and computationally expensive methods such 

as bootstrap have to be adopted). Second, in general, with a small to moderate sample size, 

penalization can lead to more stable estimates. In the proposed penalized estimation, the 

tuning parameter λl’s do not depend on k. Thus, the same degree of penalization is imposed 
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on all genes, leading to a fair comparison. For a gene, the first q − 1 λl’s correspond to the 

effects of clinical/environmental risk factors. Our main goal is to select important 

interactions and gene effects. As the clinical/environmental risk factors are usually pre-

selected as important and have a low dimensionality, in this study, the first q −1 effects are 

not subject to penalization, and we set λl = 0 for l = 1, …, q − 1. In practice, when it is 

suspected that there may be “noisy” clinical/environmental factors, prescreening or 

penalization can be conducted. All interactions and main effect will be subject to the same 

amount of penalty, that is, λq = … = λ2q. Following Liu et al. [2013], the penalty can be 

revised to respect the “main effect, interaction” hierarchy. Such an extension is of less 

interest under the present setup and will not be pursued.

Under low-dimensional settings, Song and Ma [2010] studies penalized rank estimation. The 

present data settings are much more complicated, and the MCP penalty is adopted, which 

may outperform the Lasso penalties in Song and Ma [2010]. Liu et al. [2013] identifies 

important interactions using penalization. However, that study assumes specific data 

generating models, which are subject to mis-specification.

Computation

With fixed λl and γ, optimization in (6) can be solved using the coordinate descent 

algorithm, which proceeds as follows. For each k: (a) Initialize θk. Sensible initial values 

include component wise zero and the unpenalized estimate. (b) For l = 1, …, 2q, optimize 

(6) with respect to θkl (the lth component of θk), with θkm(m ≠ l) fixed at its current value 

θk̃m. (c) Repeat Step (b) until convergence. In our numerical study, we use the ℓ2-norm of 

the difference between two consecutive estimates less than 0.001 as the convergence 

criterion. Convergence is achieved for all simulated and real data, usually within 20 

iterations.

Consider optimization with respect to θkl in Step (b). Denote R(θkl) as the terms in (6) that 

involve θkl. Denote θ̃
k = (θ̃k1, …, θ̃

k,2q). To simplify the optimization in (6), we propose 

using a local linear approximation of the penalty. More specifically, we approximate ρ(θkl; 

λl) with . Let Ȯs(θkl|θk,−l) and Ös(θkl|θk,−l) be the first and second partial 

derivatives of Os at θkl. Here θk,−l is θk with the lth element removed. Overall, we 

approximate R(θkl) at θ̃kl by the following function

(7)

Below we show the derivatives of Os for right censored survival data. Results for other types 

of data can be derived in a very similar manner. Let  and 

. Simple calculation shows that for each θkl (l = 1, …, 2q),
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and

Since  is upper-bounded by ξ = 0.1, maximizing R(θkl) is 

equivalent to maximizing its minorization

and the solution is

where , bkl = akθ̃kl − Ȯs(θ̃k|θ̃
k,−l), and 

.

In the overall objective function, Os is continuously differentiable and regular in the sense of 

Tseng [2001]. The MCP penalty is separable. Thus, the above algorithm converges to a 

coordinate-wise maximum of Os, which is also a stationary point.

Parameter path—Parameter path provides a way of visualizing the estimates as a function 

of tuning. We analyze one simulated dataset with a continuous response under the linear 

regression model with Error 2. The number of genes is p = 1000, and the correlation 

structure is AR(0.8). More detailed settings are described in the next section. When the 

number of clinical/environmental risk factors is not too large and the sample size is not too 

small, as in our simulation, we recommend using the unpenalized estimates as the initial 

values. This type of “warm starts” allows for more stable estimates and faster convergence. 

In Figure 1 (Appendix), we show the parameter paths for a gene with a nonzero main effect 

and two important interactions. In Figure 2 (Appendix), we show those for a gene with no 

important main effect or interaction. The parameter paths overall look “similar” to other 

penalized estimates. A nonzero effect may enter the model earlier under a larger λl, and 
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more important effects (with larger coefficients) may enter earlier. The intuition is that many 

penalization methods including the proposed one are closely related to thresholding. This 

can be partly seen from the above coordinate descent algorithm. With a high level of 

thresholding (large penalty), important effects may enter the model, while less important 

ones may not. Thus by examining the parameter paths (whether an effect, main or 

interaction, enters early or late), we may draw conclusions on the relative importance of 

effects. More definitive conclusions on performance of the proposed method will be drawn 

based on larger scale simulations in the next section.

Tuning parameter—The MCP penalty involves two tunings, λ and γ. For γ, Zhang [2010] 

and Breheny and Huang [2011] suggest examining a small number of values (in particular 

including 1.8, 3, 6, and 10) or fixing its value. In our numerical study, we find that the 

performance is not very sensitive to γ and set γ = 6. In practice, one may need to experiment 

with multiple γ values, examine the sensitivity of estimate, and select using data-dependent 

methods. The value of λ plays a more important role: with a smaller λ, more interactions 

will be identified. Following Tibshirani [2009] and others, it is possible to determine the 

value of λ data-dependently, using for example cross validation. In Figure 1 and 2 

(Appendix), we also plot the λ values selected using 2-fold cross validation. However, it 

should be noted that with high-dimensional data, the selection of optimal tuning is still an 

ongoing effort especially in marginal analysis, and it can be more sensible and “safer” to 

examine performance under a sequence of tunings as opposed to one fixed value 

[Meinshausen and Buhlmann 2010; Liu 2013b]. In our simulation and data analysis, we start 

with the smallest λ value under which all gene effects (main and interaction) are zero. We 

then gradually reduce λ. At each λ value, we examine the set of identified interactions. In 

simulation, as the set of true positives is known, we are able to compute the true/false 

positive rates. With a sequence of λ values, as a comprehensive measure, we are able to 

compute the AUC (area under curve) under the ROC (receiver operating characteristics) 

framework for binary data and time-integrated AUC for censored survival data. The same 

discussions and evaluation approach are applicable to penalty functions other than MCP. In 

addition, for the alternative methods described in the next section (and many of the existing 

G×E interaction analysis methods), we can vary the cutoffs and compute (time-integrated) 

AUC in a similar manner.

Simulation

As specific examples, we consider continuous and right censored survival responses. In 

particular, we consider the following three scenarios: (a) a continuous response under a 

linear regression model; (b) a survival response under the accelerated failure time (AFT) 

model, where ; and (c) a survival response under the 

transformation model with the transformation function other than log. Here 

, with g(t) = t3, t5, t, and t1/3. For all three models, we consider three 

different error distributions: (a) Error 1 has a standard normal distribution. (b) Error 2 has a 

0.7N(0, 1) + 0.3Cauchy(0, 1) distribution. That is, it is partly contaminated. And (c) Error 3 

has a t-distribution with one degree of freedom. This distribution has a long tail. For each 

subject, we simulate five normally distributed clinical and environmental risk factors. The 

Shi et al. Page 8

Genet Epidemiol. Author manuscript; available in PMC 2015 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



expressions of p = 500 or 1000 genes are simulated from a multivariate normal distribution. 

Two correlation structures are considered here. The first is the auto-regressive correlation 

where the correlation between genes j and k is ρjk = ρ|j−k| with ρ = 0.2 and 0.8, corresponding 

to weak and strong correlations, respectively. We also consider two banded correlation 

scenarios. Under the first scenario, ρjk = 0.33 if |j − k| = 1, and ρjk = 0 otherwise. Under the 

second scenario, ρjk = 0.6 if |j − k| = 1, ρjk = 0.33 if |j − k| = 2, and ρjk = 0 otherwise. There 

are a total of 2500 or 5000 G×E interactions. Seven main effects, three from environmental 

risk factors and four from genes, and twenty interactions have nonzero coefficients and are 

associated with the response. The coefficient of the first main effect is set as 1, and the rest 

nonzero coefficients are generated from Unif[0.2, 0.8]. For the two survival scenarios, we 

generate the censoring times independently. The censoring distributions are adjusted so that 

the censoring rates are about 20%.

We analyze the simulated data using the proposed SPRE. In addition, we also conduct 

benchmark analyses. In the first set of analysis, we take the commonly-adopted model-based 

goodness-of-fit measures and employ the same penalization as with SPRE. Specifically, for 

the continuous response, we consider penalized least squares (PeLS, Table 1). For the 

survival response under the AFT model, we consider penalized AFT (PeAFT, Table 2). For 

more details on penalized estimation under the AFT model, we refer to Huang and Ma 

[2010]. For the survival response under the transformation model, we consider penalized 

Cox (PeCOX, Table 3), where the goodness-of-fit measure is the log partial likelihood 

function. In the second set of analysis, we adopt the rank estimation. The marginal p-value, 

which is the most popular ranking statistic, is used to rank and select important interactions. 

This approach is referred to as “Sig” (for significance) in Table 1–3.

Simulation first suggests that the proposed method is computationally feasible. Under fixed 

tunings, for one gene, the analysis takes 0.46 seconds on a regular desktop computer. For the 

continuous response (Table 1), when the errors have a normal distribution, the significance 

based method has the best performance. For example when p = 500 under the AR(0.2) 

correlation structure, the AUC values are 0.911 (PeLS), 0.928 (Sig) and 0.826 (SPRE). This 

result is as expected. Using classic likelihood theories, one can prove that the least squares 

estimation with normal error and so the significance based method are the most efficient. 

The PeLS is slightly worse because of the shrinkage caused by penalization. The proposed 

method is robust. As with other robust methods, it can be less efficient. The loss of 

efficiency can be clearly seen from Table 1 under Error 1. However, when the errors are 

contaminated or have a long tail, the proposed method can significantly outperform the 

alternatives. For example when p = 500 under the second banded correlation structure and 

Error 3, the AUC values are 0.632 (PeLS), 0.650 (Sig), and 0.793 (SPRE). Under the second 

simulation scenario, although the model has a similar form as the linear regression model for 

continuous data, right censoring leads to significantly different estimation and inference 

procedures [Huang and Ma 2010]. Observations made in Table 2 are similar to those in 

Table 1. In Table 3, we observe that SPRE has the largest AUC under all simulation 

scenarios. For example with p = 500, g(t) = t3, and Error 1, the AUC values are 0.647 

(PeCOX), 0.566 (Sig), and 0.721 (SPRE), respectively. In addition, PeCOX outperforms 

Sig, which may also justify the use of penalization.
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The proposed method avoids estimating gk’s. We conduct a small scale simulation and 

compare the proposed method against the following alternative. For gene k, gk is estimated 

using the nonparametric method for single index models provided in R package np. 

Specifically, the functions npindexbw and npindex are used. The same penalty as with the 

proposed method is imposed for selection. We consider the scenario with a continuous 

response under the transformation model and Error 1. The nonparametric method is 

computationally expensive. For each gene, its computer time is about 7.72 times that of the 

proposed method. To reduce computational burden, we consider only five environmental 

factors and ten genes. Summary statistics in Table 5 (Appendix) clearly shows the 

superiority of the proposed method.

Analysis of a Lung Cancer Prognosis Study

Lung cancer is the leading causes of cancer death for both men and women in the United 

States. Gene profiling studies have been extensively conducted, searching for markers 

associated with prognosis. The progression of lung cancer is a complex process, involving 

the contributions of multiple clinical and environmental risk factors, genetic mutations and 

defects, and their interactions. Individual lung cancer profiling studies have small sample 

sizes and may lead to unreliable results. To increase sample size, following Xie et al. [2011], 

we collect and analyze three independent datasets. The UM (University of Michigan Cancer 

Center) dataset has a total of 175 patients, among whom 102 died during follow-up. The 

median follow-up was 53 months. The HLM (Moffitt Cancer Center) dataset had a total of 

79 patients, among whom 60 died during follow-up. The median follow-up was 39 months. 

The CAN/DF (Dana-Farber Cancer Institute) dataset has a total of 82 patients, among whom 

35 died during follow-up. The median follow-up was 51 months. We refer to Xie et al. 

[2011] and references therein for more detailed information.

A total of 22,283 probe sets were profiled in all three datasets. Gene expression 

normalization is first conducted for each dataset separately. To improve comparability, 

across-datasets normalization is also conducted. To reduce computational cost, and as genes 

with higher variations are often of more interest, the probe sets are ranked using their 

variations, and the top 2,500 are screened out for downstream analysis. For the expression of 

each gene in each dataset, the mean is normalized to zero, and the variance is normalized to 

one. The following demographic and clinical factors are analyzed: age (centered to mean 

zero and rescaled to variance one), gender (male is used as reference), smoke (current/

former or never; never is used as reference), chemo (chemotherapy treatment), and stage. 

They include the most commonly measured prognostic factors.

We apply the proposed SPRE and provide the results in Table 4. For each gene, the 

regression coefficient of age’s main effect is set as −1.0 (we have experimented with 1 and 

found that −1 leads to an overall larger objective function). As described above, with the 

proposed method, the number of identified important main effects and interactions depends 

on the tuning parameter. The results in Table 4 correspond to one specific tuning value 

which leads to 30 identified genetic effects (main and interaction combined). Results under 

other tunings are available from the authors.
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Most of the identified interactions are between genes and smoking status. There are also a 

few interactions with age and stage. There is one interaction with gender, but no interaction 

with chemotherapy. In our literature search, we find very few lung cancer studies on G×E 

interactions. Thus we cannot definitively say whether the identified interactions are 

meaningful or not. However there are more results on the functionalities of genes, which 

may provide some insights into the identified effects. The most interesting finding is perhaps 

SFRP1 (Secreted frizzled related protein 1). SFRP1 is an antagonist of the transmembrane 

frizzled receptor, a component of the Wnt signaling pathway, and has been suggested to be a 

candidate tumor suppressor in several human malignancies including lung cancer. Fukui et 

al. [2005] demonstrates that the SFRP1 gene is frequently downregulated by promoter 

hypermethylation and suppresses tumor growth activity of lung cancer cells. Other 

interesting findings include genes that play important roles in the regulation of cell growth, 

differentiation, and migration. Gene IGFBP1 encodes a protein which is a member of the 

insulin-like growth factor binding protein family, and binds both insulin-like growth factors 

and circulates in the plasma, which promotes cell migration. Its important role in lung 

cancer has been suggested by Chang et al. [2002] and Lee et al. [2002]. Gene AHSG has 

several important functionalities, including endocytosis, brain development, and formation 

of bone tissue. It encodes the serum glycoprotein AHSG blocks, whose levels are 

significantly altered in serum from patients with squamous cell carcinoma of the lung 

[Dowling et al. 2012]. Swallow et al. [2004] also suggests that AHSG may play an 

important role in tumor progression. AGR2 is a proto-oncogene that may play a role in cell 

migration, cell differentiation, and cell growth. Pizzi et al. [2012] shows its overexpression 

in lung adenocarcinoma. IL 8 acts as a promoter of human non-small cell lung cancer 

(NSCLC) tumor growth through its angiogenic properties [Kunkel et al. 1991]. We have 

also identified several genes that have been implicated in the development and progression 

of several other cancers. For example, it has been reported that low ANXA10 expression is 

associated with disease aggressiveness in bladder cancer [Munksgaard et al. 2011]. The 

protein encodes by CXCL5 belongs to the CXC chemokine family, which plays a paramount 

role in tumor progression [Raman et al. 2007; Speetjens et al. 2008]. FAM134B has been 

associated with Wilms tumor. Considering the interconnections among different cancer 

types, it may be of interest to study their functions in lung cancer.

We have also applied the alternative methods. Results using PeAFT (Table 6), PeCOX 

(Table 7), and Sig (Table 8) are provided in Appendix. For these three methods, the number 

and set of identified interactions also depend on tunings. We only provide results for a 

specific tuning value, and more extensive results are available from the authors. We can see 

that different methods identify significantly different sets of main effects and interactions. 

We have also examined “longer lists” of identified effects and reached the same conclusion. 

With our limited knowledge on the genetic effects, it is hard to say whether the SPRE 

identified interactions are more sensible. The simulation results and biological implications 

described above may partly support SPRE.

Discussion

In the literature, there are a large number of statistical methods for detecting gene-

environment interactions. However, most of them assume specific models and rely on the 
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notion of significance level for ranking the relative importance of effects. Advancing from 

the existing studies, we adopt a robust approach which does not assume a specific model 

form. The proposed modeling framework and rank estimation include quite a few commonly 

encountered data and model settings as special cases. To facilitate computation, a smooth 

approximation is introduced. Different from the existing methods, the proposed SPRE uses 

penalization as a way of estimation and, more importantly, for identifying important 

interactions. The proposed method has roots in the MRC estimation and penalized marker 

selection. However, this study is among the first to apply such techniques in high-throughput 

G×E interaction studies. In simulation, we show that under certain scenarios, the proposed 

method can significantly outperform the model-based penalization method and the 

commonly used significance-level based method. In the analysis of a lung cancer prognosis 

study, the proposed method identifies interactions (and main effects) different from the 

alternatives. Some of the identified genes have been shown to have important implications.

The proposed method has limitations. Computationally, it is more expensive than the 

existing methods. This is the price paid for robustness and penalization. However, as the 

analysis can be conducted in a highly parallel manner, the computational cost is in fact 

acceptable. The significance level based methods can be coupled with multiple comparison 

adjustment methods such as the FDR and Bonferroni. With the proposed method, the notion 

of significance is not directly relevant. Most of the existing penalization methods examine 

results under a specific tuning parameter value. In principle, we can follow Tibshirani 

[2009] and use, for example, cross validation to determine such a tuning value, as shown in 

Figure 1 and 2. However, we believe it is more sensible to examine a sequence of tuning 

parameter values. Under such an approach, effects entering earlier (under larger tunings) are 

deemed as more important. In simulation, we have examined a total of 72 different settings. 

The proposed method is potentially applicable to a large number of data and model settings, 

but it is impossible to examine all of them in one study. In Table 1 under Error 1, the 

proposed SPRE is less competitive. This is not surprising. Under such a simulation setting, 

we can prove that the model-based method is more efficient than the robust method. Under 

other settings, the superiority of the proposed method is obvious. In data analysis, the 

proposed method identifies a different set of important interactions. More bioinformatics 

and biological analyses are needed to fully comprehend the identified interactions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Parameter paths for a gene with important interactions. The vertical line corresponds to λ 

selected using 2-fold cross validation.
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Figure 2. 
Parameter paths for a gene without important interaction. The vertical line corresponds to λ 

selected using 2-fold cross validation.
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