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Abstract

Numerous studies have established a role for mineralocorticoids in the development of renal 

fibrosis. Originally, the research focus for mineralocorticoid-induced fibrosis was on the collecting 

duct, where “classical” mineralocorticoid receptors (MR) involved with electrolyte transport are 

present. Epithelial cells in this segment can, under selected circumstances, also respond to MR 

activation by initiating pro-fibrotic pathways. More recently, “non-classical” MR have been 

described in kidney cells not associated with electrolyte transport including mesangial cells and 

podocytes within the glomerulus. Activation of MR in these cells appears to lead to glomerular 

sclerosis. Mechanistically, aldosterone induces excess production of reactive oxygen species 

(ROS) and oxidative stress in glomerular cells through activation of NADPH oxidase. In 

mesangial cells, aldosterone also has pro-apoptotic, mitogenic, and pro-fibrogenic effects, all of 

which potentially promote active remodeling and expansion of the mesangium. While 

mitochondrial dysfunction seems to mediate the aldosterone-induced mesangial apoptosis, the 

ROS dependent EGFR transactivation is likely responsible for aldosterone-induced mesangial 

mitosis and proliferation. In podocytes, mitochondrial dysfunction elicited by oxidative stress is an 

early event associated with aldosterone-induced podocyte injury. Both the p38MAPK signaling 

and the redox sensitive glycogen synthase kinase (GSK) 3β pathways are centrally implicated in 

aldosterone-induced podocyte death. Aldosterone-induced GSK3β over-activity could potentially 

cause hyperphosphorylation and over-activation of putative GSK3β substrates, including structural 

components of the mitochondrial permeability transition (MPT) pore, all of which lead to cell 

injury and death. Clinically, proteinuria significantly decreases when aldosterone inhibitors are 

included in the treatment of many glomerular diseases further supporting the view that 

mineralocorticoids are important players in glomerular pathology.
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Emergence and evolution of aldosterone-induced pathophysiology

Hans Selye [1] first noted a connection between aldosterone and the development of tissue 

inflammation over sixty years ago, shortly after the discovery and chemical characterization 

of the mineralocorticoid. Over the ensuing years, renal physiologists tended to set that 

salient observation aside in favor of studies describing renal sodium, potassium, and 

hydrogen ion transport [2]. As techniques advanced, investigators described and 

characterized specific mineralocorticoid receptors (MR), which appeared to be constitutively 

expressed in the distal portions of the mammalian nephron [3–5]. The MR, also known as 

the aldosterone receptor or nuclear receptor subfamily 3, group C, member 2 [6], (NR3C2) 

is a cytosolic receptor with equal affinity for both mineralocorticoids and glucocorticoids 

[7]. Additional factors independent of steroid-receptor binding, including the presence of the 

isoenzymes 11β-Hydroxysteroid Dehydrogenase (11β-HSD) types 1 and 2, appear to 

account for the much of the selectivity seen biologically [8, 9]. In most tissues where it is 

present including liver, fat cells, and vascular smooth muscle, 11β-HSD1 is considered to be 

a bi-directional enzyme [10–12] (a forward NADP dependent dehydrogenase and a reverse 

NADPH dependent reductase) with directionality largely a function of the redox state of the 

cofactor in a specific cell). However, 11β-HSD1 contained in proximal tubules of the kidney 

seems to be an exception, since the enzyme there only functions as a forward running NADP 

dependent dehydrogenase with no reductase activity seen in intact tissue, individual cultured 

cells, or in cell homogenates in the presence of excess NADPH [13, 14]. 11β-HSD2 usually 

co-localizes in cells containing MR (renal distal tubules and collecting ducts) and functions 

physiologically exclusively as a NAD dependent dehydrogenase [15, 16]. In humans, MR is 

encoded by the NR3C2 gene located on chromosome 4q31.1–31.2. When aldosterone bound 

to its receptor, a well-choreographed series of intracellular events occurred beginning with 

translocation of the receptor-ligand to the nucleus, the synthesis of selected new proteins, 

and finally changes in apical tubular epithelial cell membrane allowing for sodium 

reabsorption and potassium and hydrogen ion secretion [2, 17]. A second “non-classical” 

type of MR has been described mostly in non-electrolyte transporting cells [18–20]. This 

receptor binds mineralocorticoids but the biologic response is rapid occurring in seconds to 

minutes rather than hours and nuclear binding or protein synthesis doesn’t appear to be part 

of this process. Activation of protein kinase C and release of intracellular calcium follow 

MR binding in this signaling pathway [20]. These “non-classical” MR do not appear to 

respond to classic MR antagonists like spironolactone and are located in cell membranes. 

Wehling and his colleagues have suggested that an alternative G-protein coupled estrogen 

receptor, GPR30, may be a possible candidate for the “non-classical” MR receptor since it 

can bind aldosterone at physiologic concentrations [21]. Some confusion remains on this 

topic since classical MR antagonists do have an effect against aldosterone in some non-

electrolyte transporting cells, especially cells in the glomerulus [22–25], and aldosterone 

may directly bind to other non-MR cell proteins and induce a biological effect [26].
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MR in glomerular cells: pathogenic role of aldosterone in glomerular 

disease

MR have recently been described in the glomerulus, in mesangial cells [27, 28] and 

podocytes [29, 30], cells not normally associated with electrolyte transport. Whether these 

glomerular MR are expressed constitutively or are induced and what their biologic functions 

are, remains to be established. Prior studies conducted in normal renal tissues did not show 

evidence of MR in glomerular cells [31, 32] but the conflicting results may be related to 

unique characteristics of the antibodies used and/or the conditions specific to the animal 

model studied. In experiments done in our laboratory, conditionally immortalized mouse 

podocytes in culture were treated with adriamycin to induce injury (0.25μg/ml) or an equal 

volume of saline for 48 hours. Employing an anti-MR antibody kindly provided by Dr. 

Celeso Gomez-Sanchez, a Western immunoblot analysis (Figure 1) showed that MR 

expression was barely detectible in podocytes under basal conditions but expression was 

markedly up-regulated at 48 hours in injured cells (unpublished). This observation seems to 

explain the apparent absence of MR in “normal” glomeruli and reports of its presence 

following injury.

There is some suggestion that MR activation is associated with the progression of renal 

disease. Aldosterone can function as a growth factor in cultured collecting duct epithelial 

cells [33], a cell line more traditionally associated with classical MR and electrolyte 

transport. Aldosterone has also been shown to induce proliferation in cultured human 

mesangial cells [34], an effect inhibited by the MR antagonist eplerenone but not the 

glucocorticoid receptor antagonist RU-486 [27, 34]. Mesangial proliferation has also been 

noted in previously adrenalectomized mice infused for one week with aldosterone (8μg/kg/

day) but not with the glucocorticoid corticosterone [24]. Moreover, MR were described in 

podocytes from glomeruli of previously uninephrectomized rats [29], as well as rat models 

of metabolic syndrome [30], and cultured podocytes [30]. Exposure to aldosterone in these 

various models was associated with signs of podocyte injury, most notably a decrease in the 

expression of podocin and nephrin and activation of reactive oxygen species [29]. The 

aldosterone-induced patterns of podocyte injury were all blocked with MR antagonists. 

Thus, MR activation, when it occurs in the injured glomerulus, appears to be clearly a 

pathological and not a physiological event.

The glomerular changes above mentioned are consistent with the previously described 

connection between aldosterone and inflammation; specifically the role aldosterone may 

play in advancing renal injury. Greene and colleagues were among the first to link 

aldosterone to disease progression in an animal model of pre-existing renal injury [35]. 

Others expanded those findings showing that aldosterone exposure enhanced the expression 

of a number of pro-inflammatory and pro-fibrotic cytokines in the kidney including PAI-1, 

NFκB, and CTGF [22, 36, 37]. Two fundamental questions rose from these studies: first, 

although it exacerbates pre-existing injury, could aldosterone also induce pro-inflammatory 

and pro-fibrotic pathways in the kidney in the absence of prior injury and/or hypertension 

and second, which renal cells might be the initial targets?
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Experiments done in our laboratories combined with studies from other investigators 

demonstrate that mineralocorticoids like aldosterone or DOCA can, under selected 

laboratory conditions such as prior adrenalectomy with aldosterone replacement [24], cell 

culture [22, 24], or prior unilateral nephrectomy [38], induce fibrotic changes in renal tissues 

without evidence of prior tissue injury or systemic hypertension [24, 36]. Endogenously 

generated compounds such as progesterone [39] as well as 11-dehydro-glucocorticoid end 

products generated by renal 11β-HSD (both 11β-HSD1 contained in proximal tubules and 

11β-HSD2 in distal tubules and the collecting duct) naturally inhibit the electrolyte transport 

pathways as well as the pro-fibrotic effects induced by aldosterone [24, 40–42]. Thus, under 

“normal physiologic conditions”, both of aldosterone’s biologic effects are limited. Only 

when these naturally occurring endogenous aldosterone antagonists are not present or 

significantly diminished because of decreased renal 11β-HSD isoform activity after injury or 

disease [43] does one begin to see the full effects of the mineralocorticoid in the kidney [24] 

and elsewhere [44]. At first glance, renal epithelial cells that contain constitutive MR and 

conduct electrolyte transport in the distal nephron are also sensitive to pro-fibrotic effects of 

aldosterone [36]. However, there is increasing evidence for aldosterone activated MR 

causing pathologic changes in glomerular mesangial cells and podocytes as discussed 

earlier.

Molecular mechanisms underlying the pathogenic roles of aldosterone in 

glomerular disease

Reactive oxygen species (ROS) play a key role in the progression of renal injury. 

Aldosterone increases ROS production possibly through the activation of NADPH oxidase. 

Activated MR mediates the translocation of the cytosolic components of p47 phagocytic 

oxidase (phox) and p67phox to the cell membrane [45]. Subsequently, ROS overproduction 

elicits oxidative stress and triggers redox sensitive cell signaling cascades that mediate 

mitochondrial dysfunction, cellular apoptosis, inflammatory response and fibrogenesis. 

These aldosterone induced inflammatory, fibrotic, and apoptotic pathways appear 

specifically activated in the response to injury in both glomerular mesangial cells and 

podocytes as described below.

A. Mechanism of aldosterone induced mesangial injury

In cultured human mesangial cells, aldosterone exposure induced both apoptotic and 

mitogenic effects (Figure 2). Aldosterone promoted mesangial cell apoptosis in a dose- and 

time-dependent manner. Spironolactone, an MR antagonist, inhibited aldosterone-induced 

mesangial cell apoptosis, inferring that an activated MR mediated the pro-apoptotic effect. 

Similarly, antioxidants and free radical scavengers partially attenuated pro-apoaptotic effects 

of aldosterone, consistent with the involement of ROS. Aldosterone also enhanced 

dephosphorylation of BAD, a protein, which when dephosphorylated, is linked to apoptosis 

and mitochondrial dysfunction in mesangial cells. Moreover, aldosterone-infused rats 

showed enhanced urinary albumin excretion rate and marked mesangial changes including 

both mesangial proliferation and mesangial apoptosis [46]. How aldosterone induces 

mesangial mitosis and proliferation remains largely unknown. There is evidence that 

aldosterone-induced mesangial cell proliferation may be mediated by epithelial growth 
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factor receptor (EGFR) transactivation, because pre-treatment with the EGFR antagonist 

AG1478 blocked mesangial cell proliferation following aldostoreone exposure [27]. 

Moreover, the aldosterone-induced transactivation of EGFR is contingent on the oxidative 

stress. Pre-treatment with the antioxidant N-acetyl-L-cysteine, catalase, superoxide 

dismutase (SOD), mitochondrial respiratory chain complex I inhibitor rotenone, or NADPH 

oxidase inhibitors apocynin, and diphenylene iodonium significantly attenuated the 

aldosterone elicited EGFR transactivation and mesangial cell proliferation. Furthermore, the 

mitogenic effect of aldosterone was found to be mediated by the Ras/c-Raf/MEK/ERK 

pathway, an “off/on switch” comprised of extracellular-signal-regulated kinases, and 

PI3K/Akt/mTOR/p70S6K1, an EGF activated signaling pathway downstream from the EGF 

receptor [27] (Figure 2).

Aldosterone also demonstrated a pro-fibrotic effect in mesangial cells in addition to its pro-

apoptotic and pro-mitotic effects. Mineralocorticoids promote extracellular matrix 

production in a variety of cell types containing both classical and non-classical MR, 

including cardiac myocytes, vascular smooth muscle cells, renal tubular cells, and mesangial 

cells [47]. In cultured rat mesangial cells, aldosterone (10−7~10−6M) rapidly (0~24 hours) 

induces mRNA and protein expression of CTGF, an early response pro-fibrotic growth 

factor, in a time- and concentration-dependent manner [48]. Surprisingly, MR antagonists, 

spironolactone (10−6M), canrenoate (10−5M), and eplerenone (10−5M), did not override this 

rapid CTGF induction [48], possibly suggesting an involvement of “non-classical” MR or an 

MR independent mechanism for this rapid effect. However, RU-486, a selective inhibitor of 

glucocorticoid receptors (GR), prevented aldosterone (10−7M)-induced CTGF expression, 

indicating that the aldosterone-mediated regulation of CTGF likely is conveyed through GR. 

GR nuclear translocation after acute aldosterone exposure further corroborated this 

observation [48]. In support of this point of view, Terada et al [22] demonstrated also in rat 

mesangial cells that aldosterone was able to induce CTGF expression at a lower 

concentration (10−8M) and that the MR antagonist eplerenone at 10−6M failed to completely 

block the effect. In contrast, any late effects (after 24 to 48 hours) of aldosterone exposure 

on CTGF and extracellular matrix overproduction is dependent on MR activation and may 

involve the pro-fibrotic Smad2-associated TGF-β1 pathway in mesangial cells [49]. The co-

involvement of both MR and GR in a biologic response has been previously described in 

mineralocorticoid mediated sodium transport [50]. These late effects may also be influenced 

by factors over and above MR activation and nuclear transcriptional regulation, since other 

types of indirect regulation may also contribute to the response (Figure 2). Indeed, the 

increased expression of cardiac CTGF by aldosterone can be abolished in the heart tissue of 

SGK1 knockout mice [51]. This is important since SGK, is an enzyme, which is specifically 

induced by mineralocorticoids following MR binding and an up-regulation in its expression 

is associated with an increase in the long term expression of CTGF and activation of the 

TGF-β1 pathway.

B. Mechanism of aldosterone induced podocyte injury

An aldosterone infusion study provided direct evidence supporting the pathologic role of 

aldosterone in podocyte injury [25]. Following 14 days of aldosterone infusion (90 ng/day), 

mice excreted abundant urinary F2-isoprostane, a specific marker of renal oxidative stress. 
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This dose of aldosterone likely produced high but probably biologically achievable blood 

levels although no values were reported in this study. Kidney sections from the aldosterone-

infused mice also showed increased ROS generation in renal glomeruli. This was associated 

with evident podocyte injury in aldosterone-infused mice as indicated by diminished 

glomerular expression of nephrin and podocin, a 12-fold increase in urinary protein 

excretion, and ultrastuctural lesions in podocyte foot processes. Mechanistically, 

mitochondrial dysfunction seems to play an important role in aldosterone induced podocyte 

injury as evident by reduced mitochondrial membrane potential, reduced ATP levels, and a 

reduced mitochondrial DNA copy number were noted in aldosterone-treated podocytes 

found in the glomeruli of aldosterone-infused mice. Decreased expression of mitochondrial 

transcription factor A and PPARγ are likely to be responsible for aldosterone induced 

mitochondria dysfunction in podocytes and a PPARγ agonist or overexpression of 

mitochondrial transcription factor A significantly decreased the mitochondrial dysfunction 

and podocyte injury induced by aldosterone [52].

Podocyte depletion is a fundamental pathogenic mechanism that drives the development and 

progression of proteinuria and progressive glomerular sclerosis. Accumulating evidence is 

consistent with the view that aldosterone is a pro-apoptotic factor in podocytes as it is in 

other cells (Figure 3). In cultured rat podocytes, apoptosis could be induced in a dose and 

time dependent fashion [53]. The p38 MAPK signaling pathway seems to be responsible, at 

least in part, for the pro-apoptotic effect of aldosterone because inhibition of p38 MAPK by 

a small molecule inhibitor suppressed podocyte apoptosis. Moreover, the aldosterone 

induced podocyte death was also associated with an over-activity of glycogen synthase 

kinase (GSK)3β, which is a well-conserved, ubiquitously expressed serine/threonine protein 

kinase involved in multiple pathophysiological processes extending well beyond glycogen 

metabolism to cell death, embryo development and tissue injury, repair and regeneration. 

GSK3β is a redox sensitive signaling transducer situated at the nexus of multiple pathways 

influencing apoptotic cell death, cytoskeletal remodeling, control over development, insulin 

signaling, canonical wingless signaling, the NFκB pathway and more. More recently, 

GSK3β was found to regulate mitochondrial permeability transition and mitochondrial 

dysfunction in both excitable cells and non-excitable cells like kidney cells [54–56]. Thus, it 

is conceivable that ROS overproduction and oxidative stress elicited by aldosterone in 

podocytes induces GSK3β over-activity and subsequently enhance the phosphorylation and 

activation of GSK3β targeted substrates including structural components of mitochondrial 

permeability transition pore, like cyclophilin F and VDAC [54]. This effect will ultimately 

reduce the threshold of MPT in podocytes, promote mitochondrial dysfunction, and 

potentiate podocyte death (Figure 3).

Therapeutic targeting of aldosterone

A. Currently available aldosterone antagonists

There are 5 aldosterone antagonists that are commercially available, including 

spironolactone, eplerenone, canrenone, prorenone and mexrenone, which share a similar 

core molecular structure and antagonize the action of aldosterone at the level of MR. In 

current clinical practice, spironolatone and eplerenone are the two most common 
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aldosterone antagonists that are being used. They have been commonly used in clinical 

settings as potassium sparing agents especially when added to other diuretics. They also 

have been used to attenuate cardiac fibrosis associated with aldosterone in patients with 

chronic congestive heart failure [57]. For research purposes, aldosterone antagonists are 

often used to differentiate between MR and GR actions. Spironolactone and its metabolite 

canrenoate bind with high affinity to the MR, but also may interact with other steroid 

receptors especially androgen receptors [58]. Interaction with androgen receptors has been 

used to account for the feminization, gynecomastia, impotence, low sex drive and reduction 

of size of male genitalia observed when these drugs are used therapeutically. However, there 

may be an alternative explanation for these side effects. It appears that MR are present in 

testicular cells and blocking MR activation in those cells suppresses testosterone production 

[59]. Eplerenone, although less potent as antagonist at the MR, is more specific and does not 

appear to interact with other steroid receptors as much. Compared to spironolactone, 

eplerenone is said to have a lower incidence of sexual side effects but given the new 

information on MR in the testes, its side effects may turn out to be not that different [57]. 

Other potential side effects of aldosterone antagonists including hyperkalaemia, 

hypotension, dizziness, altered renal function, and increased creatinine concentration are 

common to all these agents. Canrenone, a major active metabolite of spironolactone, has 

been used as a diuretic in Europe. However, prorenone and mexrenone are novel aldosterone 

antagonists and are currently under intensive pre-clinical investigations.

Glucocorticoid metabolites (11-dehydrocorticosterone and 11-dehydrocortisol, which is 

cortisone) generated endogenously by the forward reactions of the isoenzymes 11β-HSD1 

and 11β-HSD2 also potently suppress both electrolyte transport [40, 42] and the pro-

inflammatory/pro-fibrotic actions of aldosterone [24, 44]. These otherwise “inactive” 

metabolites block the actions of aldosterone in the kidney and in cultured renal epithelial 

cells where the metabolites cannot be enzymatically transformed back to the parent 

glucocorticoid, corticosterone or cortisol. 11-dehydrocorticosterone and cortisone appear to 

exert their effect on the transfer of the activated MR to the cell nucleus [41] and are less 

likely to function as competitive inhibitors for MR like spironolactone and related agents. 

Derivatives of these metabolites may eventually become available as pharmacological 

aldosterone antagonists.

In addition to the above steroidal MR antagonists, a next-generation non-steroidal MR 

antagonist, Finerenone or BAY94-8862, appears to have better selectivity for the MR when 

compared to spironolactone and eplerenone [60]. In a recent phase 2 clinical trial, this novel 

antagonist decreased levels of B-type natriuretic peptide as much as spironolactone in 

patients with chronic heart failure and kidney disease and did so without increasing serum 

potassium concentrations [61].

B. Aldosterone synthase inhibitors

Inhibition of aldosterone synthase is currently being investigated as a novel approach for the 

treatment of hypertension, heart failure, and renal disorders [62]. Inactivation of the 

enzymatic activity of aldosterone synthase reduced aldosterone concentrations in plasma and 

tissues and obliterated MR-dependent and independent effects in cardiac vascular and renal 
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target organs [62]. In patients with primary aldosteronism, inhibition of aldosterone synthase 

reduced plasma and urinary aldosterone concentrations by 70~80%, rapidly corrected 

hypokalaemia, decreased blood pressure, and mildly increased plasma renin activity. The 

current, orally delivered, LCl699 has been found to be less specific to aldosterone synthase 

[62]. The second-generation aldosterone synthase inhibitors with higher selectivity to 

aldosterone synthase are under development. Nevertheless, the magnitude of the aldosterone 

synthase inhibition that is necessary to neutralize aldosterone in a biologically significant 

way is still unknown. Moreover, the accumulation of the mineralocorticoid 11-

deoxycorticosterone during aldosterone synthase inhibition may act as a substitute for 

aldosterone.

Clinical implications

While there is ample evidence for improvement in pathology and/or function after treatment 

with aldosterone antagonists in various animal models of kidney disease [63, 64], data in 

human renal disease are limited. Most human clinical trials have been conducted in patients 

with renal disease already being treated with either an angiotensin II receptor blocker (ARB) 

or angiotensin converting enzyme (ACE) inhibitor. Aldosterone inhibition is most often an 

additional treatment not a separate treatment arm of its own. Despite that limitation, there is 

evidence favoring an additional benefit from using aldosterone inhibitors in patients with 

various forms of renal disease. Bianchi and colleagues [65] treated 83 patients with chronic 

kidney disease adding spironolactone 25 mg daily to either an ACE inhibitor or ARB. When 

compared to controls treated only with ACE inhibitor or ARB, patients given spironolactone 

demonstrated a marked decrease in proteinuria (2.1 versus 0.89 grams/gram creatinine) and 

a decreased monthly rate of decline in estimated glomerular filtration rate after one year. 

Another study, involving 221 patients with chronic kidney disease, demonstrated a similar 

fall in proteinuria after 16 weeks when spironolactone was added to ACE inhibitor or ARB 

[66]. There was no obvious effect on renal function reported in this last study however. In 

another controlled clinical trial, Mehdi and associates [67] treated 81 patients with evidence 

of diabetic nephropathy already maintained on lisinopril with the addition of either losartan 

or spironolactone over a period of 48 weeks. The group treated with spironolactone 

demonstrated a 34% drop in proteinuria compared to only 16.8% with the addition of 

losartan. There was no additional beneficial effect of spironolactone on renal function 

observed during this study. In a small observational study involving children with Alport’s 

syndrome, a genetically inherited disorder affecting the structure of the glomerular basement 

membrane and clinically characterized by hematuria, proteinuria and kidney dysfunction, 

Giani et al [68] described a similar decline in proteinuria as well as urinary TGF-β1 levels 

when spironolactone was added to therapy with an ACE inhibitor after 6 months of 

treatment. Thus, clinical trials seem to support the laboratory findings of aldosterone 

activated MR being a player in glomerular disease. A decrease in proteinuria is being 

considered as a surrogate maker for disease progression in these clinical studies, which may 

or may not be the case. All the trials thus far have been over too short a time period to 

clearly show an effect on renal function. Nevertheless, the addition of an MR antagonist 

may prove to be a useful additional aid in the treatment of renal diseases including those of 

glomerular origin.
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ABBREVIATIONS

11β-HSD 11β-hydroxysteroid dehydrogenase

BAD Bcl-2-associated death promoter

CTGF connective tissue growth factor

EGF epidermal growth factor

EGFR epidermal growth factor receptor

GR glucocorticoid receptors

GSK3β glycogen synthase kinase 3β

MPT mitochondrial permeability transition

MR mineralocorticoid receptors

NADPH nicotinamide adenine dinucleotide phosphate (reduced)

NFκB nuclear factor κB

p38 MAPK p38 mitogen activated protein kinase

PAI-1 plasminogen activator inhibitor-1

PI3K/Akt/mTOR/
p70S6K1

phosphatidylinositol 3-kinase/Akt/mammalian target of 

rapamycin/p70S6K1- a pathway down stream from EGF 

activation

PPARγ peroxisome proliferator-activated receptor γ

Ras/c-Raf/MEK/ERK “off on switch” extracellular-signal-regulated kinases

ROS reactive oxygen species

SGK-1 serum and glucocorticoid-induced kinase-1

SOD superoxide dismutase

TGF-β1 transforming growth factor β1

VDAC voltage dependent anion channel
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Figure 1. De novo expression of mineralocorticoid receptors (MR) in glomerular podocytes
Conditionally immortalized mouse podocytes were cultured under permissive condition at 

33°C or induced to differentiate at 37°C. Podocytes were treated with adriamycin (ADR - 

0.25μg/ml) or saline for 48 hours before the cells were prepared for Western immunoblot 

analysis for MR using an anti-MR antibody kindly provided by Dr. Celso Gomez-Sanchez. 

MR expression was barely detected in podocytes under basal conditions but was markedly 

amplified after 48 hours of ADR-induced injury.
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Figure 2. Aldosterone is centrally implicated in the pathogenesis of mesangial injuries in 
glomerular disease
Mechanistically, aldosterone likely via the non-classic mineralocorticoid receptor (MR) 

induces reactive oxygen species (ROS) overproduction and oxidative stress in glomerular 

cells possibly by activating nicotinamide adenine dinucleotide phosphate (NADPH). In 

glomerular mesangial cells, aldosterone has both proapoptotic and mitogenic effects in 

addition to a profibrogenic activity and thereby potentially promotes active remodeling and 

expansion of glomerular mesangium. While mitochondria dysfunction seems to mediate the 

aldosterone induced mesangial cell death, the ROS dependent epithelial growth factor 
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receptor (EGFR) transactivation together with the ensuing PI3K/Akt/p70(S6K) and 

Ras/MEK/ERK pathways is likely responsible for aldosterone induced mesangial mitosis 

and proliferation. The profibrogenic activity of aldosterone might involve a glucocorticoid 

receptor (GR) dependent as well as an MR/serum-and glucocorticoid-induced protein kinase 

(SGK)1 responsive mechanism, which amplifies connective tissue growth factor (CTGF) 

expression and results in overproduction of extracellular matrix. Collectively, all these 

mechanisms eventually lead to mesangial injury characterized by mesangial cell lysis and 

proliferation as well as mesangial matrix expansion and remodeling.
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Figure 3. Schematic diagram depicting the mechanisms underlying the pathogenic role of 
aldosterone in podocyte injury
In glomerular podocytes, mitochnodrial dysfunction elicited by oxidative stress is an early 

event associated with aldosterone-induced podocytopathy likely via the non-classic 

mineralocorticoid receptor (MR). Both the p38MAPK signaling and the redox sensitive 

glycogen synthase kinase (GSK) 3β pathways are centrally implicated in aldosterone-

induced podocyte injury. On one hand, activation of p38MAPK could induce podocyte 

apoptotic death via triggering the caspase death pathway. On the other hand, aldosterone-

induced overactivity of the redox sensitive GSK3β could potentially cause 

hyperphosphorylation and overactivation of putative GSK3β substrates, including structural 

components of the mitochondrial permeability transition (MPT) pore. This accounts for the 
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sensitized MPT, mitochondria dysfunction and potentiated podocyte death, resulting in 

podocytopenia. In addition, GSK3β overactivity is also a culprit for the disruption of both 

actin and microtubule cytoskeleton integrity and lead to podocyte shrinkage and foot process 

effacement, eventually culminating in proteinuria and progressive glomerular sclerosis.

Other abbreviations: MAPK, Mitogen-activated protein kinase; NADPH, Nicotinamide 

adenine dinucleotide phosphate ROS, reactive oxygen species.

Brem and Gong Page 18

Clin Sci (Lond). Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


