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Abstract

Rapid developments in neural interface technology are making it possible to record increasingly 

large signal sets of neural activity. Various factors such as asymmetrical information distribution 

and across-channel redundancy may, however, limit the benefit of high-dimensional signal sets, 

and the increased computational complexity may not yield corresponding improvement in system 

performance. High-dimensional system models may also lead to overfitting and lack of 

generalizability. To address these issues, we present a generalized modulation depth measure 

using the state-space framework that quantifies the tuning of a neural signal channel to relevant 

behavioral covariates. For a dynamical system, we develop computationally efficient procedures 
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for estimating modulation depth from multivariate data. We show that this measure can be used to 

rank neural signals and select an optimal channel subset for inclusion in the neural decoding 

algorithm. We present a scheme for choosing the optimal subset based on model order selection 

criteria. We apply this method to neuronal ensemble spike-rate decoding in neural interfaces, 

using our framework to relate motor cortical activity with intended movement kinematics. With 

offline analysis of intracortical motor imagery data obtained from individuals with tetraplegia 

using the BrainGate neural interface, we demonstrate that our variable selection scheme is useful 

for identifying and ranking the most information-rich neural signals. We demonstrate that our 

approach offers several orders of magnitude lower complexity but virtually identical decoding 

performance compared to greedy search and other selection schemes. Our statistical analysis 

shows that the modulation depth of human motor cortical single-unit signals is well characterized 

by the generalized Pareto distribution. Our variable selection scheme has wide applicability in 

problems involving multisensor signal modeling and estimation in biomedical engineering 

systems.

Index Terms

Brain–computer interface (BCI); brain–machine interface (BMI); feature selection; modulation 
depth (MD); neural decoding; neural interface; state-space model; tetraplegia; variable selection

I. Introduction

Neural interfaces, also referred to as brain–machine interfaces (BMI) or brain–computer 

interfaces (BCI), offer the promise of motor function restoration and neurorehabilitaion in 

individuals with limb loss or tetraplegia due to stroke, spinal cord injury, limb amputation, 

ALS, or other motor disorders [1]. A neural interface infers motor intent from neural signals, 

which may consist of single-unit actions potentials (or spikes), multiunit activity (MUA), 

local field potentials (LFP), electrocorticograms, or electroencephalograms (EEG). The 

movement intention may then be converted into action by means of restorative (e.g., 

functional electrical stimulation) or assistive technology (e.g., a computer cursor, robotic 

arm, wheelchair controller, or exoskeleton). Recent clinical studies have demonstrated the 

potential of chronically implanted intracortical neural interface systems for clinical 

rehabilitation of tetraplegia [2]–[4].

Recent advances in neural interface technology have led to the possibility of simultaneously 

recording neural activity from hundreds of channels, where a channel may refer to a single 

unit or an electrode on a microelectrode array. The features, or variables, derived from these 

signals may constitute a much larger space, e.g., each LFP variable comprising power from 

one of several frequency bands in the signal recorded at each electrode. The problem is 

compounded since typical neural decoding algorithms, such as a cascade Weiner filter or a 

point-process filter, use multiple parameters per input variable. A large parameter space can 

severely affect the generalizability of the model due to overfitting. Additionally, model 

calibration and real-time decoding can become computationally prohibitive and 

impracticable. The need for a computationally efficient variable selection scheme becomes 
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even more pronounced when a neural interface employs frequent filter recalibration [5] to 

combat neural signal nonstationarity [6].

To address this issue, signal dimensionality reduction has been a topic of considerable 

interest in neural interface system design. Dimensionality reduction by variable selection, 

also referred to as feature selection or signal subset selection, involves ranking and 

identifying the optimal subset of signals on the basis of their signal-to-noise ratio, 

information content, or other characteristics important from an estimation and detection 

viewpoint [7]. The goal of variable selection is to eliminate low-information channels, 

resulting in improved computational efficiency and generalization capability. The variable 

selection process involves finding the optimal tradeoff between model complexity and 

performance.

A common approach to variable selection involves a linear transformation to an optimal 

basis, such as with principal components analysis (PCA) [8]– [10], independent components 

analysis [11], or factor analysis [12]. Projection-based techniques such as these disconnect 

the resulting abstract features from their underlying neurophysiological meaning, making 

intuitive understanding difficult. Also, since all input channels are used to compute the 

projections by linear combinations, they must all be recorded and preprocessed. 

Furthermore, techniques such as PCA do not take the behavioral correlation into account, so 

the largest principal components may be unrelated to the task conditions [1]. It is, therefore, 

of interest to study selection methods devoid of such transformations, instead operating in 

the original space of the physical channels. Several such variable selection algorithms have 

been explored in the context of neural interfaces with lower complexity than the NP-hard 

exhaustive search method. An example is greedy search or stepwise regression, which 

consists of forward selection [9], [13], [14] or backward elimination (random [15] or 

selective neuron dropping [16], [17]).

Alternatively, information-theoretic metrics such as Shannon mutual information have been 

used for channel ranking [13], [18], [19]. Methods for computing mutual information have 

been presented both for continuous-time neural signals [20] and for spike-trains using point 

process models [21], [22]. Mutual information computation, however, not only requires 

prohibitively large amounts of data, but reduced-complexity approaches that compute 

bounds on mutual information may be highly erroneous due to inaccurate assumptions [23]–

[25]. Furthermore, information-theoretic measures may not necessarily predict filter-based 

decoding performance of a variable subset, especially in neural interface applications. An 

alternative to information-theoretic analysis for channel ranking is decoding analysis [25]. 

Pearson’s correlation coefficient and coefficient of determination are common measures of 

task-related information used for variable selection in decoding analysis. Strictly speaking, 

these are valid only for linear regression or reverse correlation models and not for Bayesian 

or other models. Extensions of such Gaussian regression measures to generalized linear 

models have been presented [26]. Although some of the highest information carrying 

channels are identified consistently irrespective of the ranking method, the differences can 

sometimes be significant [16]. From a complexity viewpoint, such decoding-based measures 

may be unsuitable for practical and real-time systems since they require repeating the 

decoding analysis with each individual channel or subset for the purpose of performance-
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based ranking, increasing the selection algorithm’s computational complexity with the input 

signal dimensionality.

We introduce a highly efficient variable selection scheme based on the state-space 

formulation, which is consistent with commonly used Bayesian decoding techniques such as 

the Kalman filter [27].Within this Gaussian linear dynamical framework, we estimate the 

modulation depth (MD) of a channel as the ratio of its task-dependent response to its 

spontaneous activity and noise. As such, MD can be used to quantify each variable’s relative 

importance to decoding in a neural interface and to identify the optimal variable subset [see 

Fig. 1(a)]. In the next section, we present a mathematical description of the MD estimation 

procedure for state-space models, followed by its application to channel selection in neural 

interfaces for people with tetraplegia.

II. System Model and Methods

We use a state-space model to estimate intended movement kinematics from neural activity 

during performance of a 2-D motor imagery task. We denote the vector time series of 

observations (e.g., single-unit binned spike rates) at time t with m-dimensional vector y(t), 

where m is the number of channels (e.g., single units). Assuming a velocity encoding model 

for primary motor cortical neurons [28], [29], we represent the intended movement velocity 

by the n-dimensional latent variable, x(t), to be estimated from spike-rates y(t) using a state-

space paradigm. We consider the intended velocity in the 2-D Cartesian coordinate system, 

i.e., n = 2 in our case, while m represents the neuronal ensemble size. We estimate the MD 

of each of the m channels as described below.

A. Dynamical System Model

We consider a continuous-time linear time-invariant (LTI) Gaussian dynamical system 

model consisting of a latent multivariate random process, x(t), with Markovian dynamics, 

related to multivariate observations, y(t). We can express this state-space model as

(1)

(2)

where t ∈ ℝ+, x(t) is the n-dimensional state vector, y(t) is the m-dimensional observation 

vector, ω(t) is the n-dimensional process noise vector, ν(t) is the m-dimensional 

measurement noise vector, and F(t) and H(t) are the n × n system matrix and n × m 

observation martix, respectively. The noise processes have mean zero, i.e., ℰ {ω(t)} = ℰ 

{ν(t)} = 0. The noise covariances are ℰ {ω(t)ω′(τ)} = Qcδ(t − τ), ℰ {ν(t)ν′(τ)} = Rcδ(t − τ), 

and ℰ {ω(t)ν′(τ)} = 0, where δ(·) is the Dirac delta function and (·)′ denotes matrix 

transpose. We assume that Qc is a symmetric positive semidefinite matrix and Rc is a 

symmetric positive definite matrix. We assume that the observations are zero mean, i.e., ℰ 

{y(t)} = 0.
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B. Modualtion Depth Estimation

We consider (2) and define Hx(t) as the signal and ν(t) as the noise in our model. We further 

define the MD of a channel as its signal-to-noise ratio (SNR), i.e., the ratio of the signal and 

noise covariances. For our multivariate state-space model, we denote the m × m signal and 

noise covariance matrices by Λs (t) and Λn (t), respectively. Then, the m × m time-varying 

SNR matrix of observations y(t) is

(3)

where the n × n matrix Pc (t) is defined by x(t) ~  (μc (t), Pc (t)).

The definition in (3) extends the notion of SNR of a discrete-time single-input single-output 

state-space model, derived in [30], to that of a continuous-time multiple-input multiple-

output state-space model. The (i, j)th and (j, i)th elements of the symmetric matrix Λs (t) 

represent the signal covariance between ith and jth channels at time t. Similarly, the (i, j)th 

and (j, i)th elements of Λn (t) represent the noise covariance between channels i and j. If 

channels i and j have uncorrelated noise, then R is a diagonal matrix. Then, the (i, j)th 

element of S(t) represents the signal covariance of channels i and j relative to the noise 

covariance of channel j, whereas the (j, i)th element represents the signal covariance of 

channels i and j relative to the noise covariance of channel i. Irrespective of the structure of 

Λs (t) and Λn (t), the ith diagonal element of S(t) represents the SNR of the ith channel at 

time t.

For the homogeneous LTI differential equation ẋ(t) = Fx(t), the fundamental solution matrix 

is Φ(t) such that ẋ(t) = Φ(t)x(0), where the state-transition matrix Φ(t, τ) = Φ(t)Φ−1 (τ) 

represents the system’s transition to the state at time t from the state at time τ and Φ(t, 0) = 

Φ(t). For the dynamical system in (1), the state transition matrix Φ(t, τ) = eF(t−τ) only 

depends on the time difference t − τ. The solution to the nonhomogeneous differential 

equation (1) is

(4)

(5)

The covariance matrix of x(t) in (4) is given by [31]

(6)

C. Model Discretization

We can discretize the system model in (5) by sampling at tk = kΔt = tk−1 + Δt for k = 1, …, 

K, so that
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(7)

We define the state-transition matrix Φ = eFΔt, so the equivalent discrete-time system can be 

represented by

(8)

(9)

where k ∈ ℤ+, ℰ {w[k]} = ℰ {v[k]} = 0, ℰ {w[k]w′[l]} = Qdδ[k, l], ℰ {v[k]v′[l]} = Rdδ[k, l], 

and δ[·, ·] is the Kronecker delta function. The state x[k] is a Gaussian random variable 

initialized with x[0] ~  (μd[0], Pd[0]).

From the power series expansion for a matrix exponential

(10)

We can write the covariance of x[k + 1] in (8) as [30]

(11)

The equivalent discrete-time SNR can be written by discretizing (3) and substituting the 

discrete-time covariances, so that

(12)

Note that for the above continuous-time and discrete-time system models to be equivalent, 

we use the approximation Qd ≈ QcΔt andRd ≈ Rc/Δt, neglecting (Δt2) terms [32], [33]. 

Under this condition, the continuous- and discrete-time covariance matrices are equal, i.e., 

Pc(t) = Pd[k] [34].

Next, we consider certain classes of linear dynamical systems that occur frequently in 

practice and that admit special forms for MD estimation.

D. Steady-State System

On differentiating (6), using the relation Φ̇(t, t0) = FΦ(t, t0), and solving, we obtain [31]

(13)

For a stable LTI continuous-time system at steady state, we can write (13) as limt→∞ Ṗc(t) = 

0 [27], [30]. Thus, the steady-state covariance, P̄
c = limt→∞ Pc(t), is given by the 

continuous-time algebraic Lyapunov equation

(14)
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If λi(F) + λj (F) ≠ 0 ∀ i, j ∈ {1, …, n}, where λi(F) denotes an eigenvalue of F, the solution 

to the above equation is given by [34]

(15)

Similarly, let us consider the discrete-time covariance in (11). The system is stable if |λi(Φ)| 

< 1 ∀ i ∈ {1, …, n}, where λi(Φ) denotes an eigenvalue of Φ. For a stable LTI system, the 

steady-state covariance, limk→∞ Pd[k] = P̄
d, can be obtained from (11) and expressed in 

terms of the discrete-time algebraic Lyapunov equation or Stein equation

(16)

If λi(Φ)λj (Φ) ≠ 1 ∀ i, j ∈ {1, …, n}, the solution to the above equation is given by [34]

(17)

We can solve (15) and (17) numerically using, for example, the Schur method [35].

The steady-state SNR, S̄ = limk→∞ S[k], can therefore be expressed in terms of discrete-

time system parameters as

(18)

E. Time-Variant System

The expression in (12) gives the instantaneous SNR of the observations at the kth time-step. 

It can be used to estimate the SNR of a time-varying or nonstationary system. Then, we 

express the state transition matrix as Φ[k + 1, k], the observation matrix as H[k], and the 

process noise covariance matrix as Qd[k]. The time-varying state covariance of a state-space 

system propagates as [30]

(19)

By recursive expansion of the above equation and using the property 

, we can write

(20)

If the process noise is wide-sense stationary, then Qd [k] = Qd, and the above equation 

simplifies to

(21)
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The above expressions provides an estimate of the state covariance at time k in terms of the 

initial state covariance and the process noise covariance.

F. Trajectory SNR Estimation

So far, we have considered SNR estimation for two classes of linear dynamical systems: the 

instantaneous SNR S[k] for a time-varying system, and the steady-state SNR S̄ for a time-

invariant and stable sytem. These quantities provide measures of instantaneous information 

flow between the two multivariate stochastic processes under consideration, namely x[k] and 

y[k]. Following the nomenclature used in recent work on mutual information estimation for 

point process data [36], we refer to this measure as the marginal SNR. We now consider the 

alternate problem of information flow between the entire trajectories of the random 

processes, as opposed to the instantaneous (marginal) measure. To rephrase, the trajectory 

SNR is a measure of the SNR conditioned on the entire set of observations for k = 1, …, K. 

This formulation is useful for SNR estimation by offline, batch processing of data for a 

time-varying system.

Given the time-varying observation matrix H[k] and state-transition matrix Φ[k], and 

assuming the noise processes w[k] and v[k] are zero mean and stationary with covariance 

matrices Qd and Rd, respectively, we can obtain the m × m trajectory SNR matrix as

(22)

where ℋ = [H[1], …, H[K]] is an m × nK block matrix and

(23)

is an nK × nK block matrix. Here, Pd[i, j] denotes the covariance between x[i] and x[j] for i, 

j ∈ {1, …, K}, i ≠ j, defined as [30]

(24)

G. Colored Measurement Noise

We consider the case that the multivariate measurement noise v[k] in our state-space model 

(9) is a colored noise process. We assume that v[k] is zero mean and stationary. According 

to Wold’s decomposition theorem, we can represent v[k] as an m-dimensional vector 

autoregressive process of order p, i.e., VAR(p), given by

(25)
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where ζ[k] is an m-dimensional zero-mean white noise process with covariance ℰ {ζ[i]ζ′[j]} 

= Wδ[i, j], and ψi is an m × m VAR coefficient matrix. We can express the above VAR(p) 

process in VAR(1) companion form as

(26)

where [k] is the mp × 1 vector

(27)

Z[k] is the mp × 1 whitened noise vector

(28)

with covariance ℰ {Z[i]Z′[j]} = diag {Wδ[i, j], 0}, Ψ is the mp × mp VAR(p) coefficient 

matrix

(29)

and Im denotes the m × m identity matrix.

With this formulation, we can augment the state-space with [k] so that the augmented state 

vector has dimensions (n + m) × 1 and is given by [k] = [x′[k], ′[k]]′ [33]. The SNR 

estimation methodology described earlier can then be applied directly. It should be noted 

that when using this state augmentation approach for noise whitening, the parameter space 

can increase substantially if the measurement noise is modeled as a high-order VAR 

process, which may result in overfitting. The optimal VAR model order, p, can be estimated 

using standard statistical methods based on the Akaike Information Criterion or Bayesian 

Information Criterion (BIC).

H. Uncorrelated State Vector

We now consider the special case that the n states, represented by the random n-dimensional 

vector x[k] at discrete time k, are mutually uncorrelated. Practically, this situation may occur 

in neural interface systems when, for example, the decoder’s state vector has three 

components representing intended movement velocity in 3-D Cartesian space. Then, we 

have Φ = diag {ϕ1,1 …, ϕn,n} and Qd = diag {q1,1 …, qn,n}. The steady-state covariance of 

the state, given by (17), simplifies to

(30)

where we have used the formula for the Neumann series expansion for a convergent 

geometric series, and the fact that λi(ΦΦ′) = λi(Φ)λi(Φ), and therefore |λi(ΦΦ′)| < 1 so that 

ΦΦ′ is stable. We can write (30) as
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(31)

The diagonal elements in P̄
d then correspond to the covariances of a set of n mutually 

independent first-order autoregressive processes each with autoregression coefficient ϕi,i and 

white noise variance qi,i for i = 1, …, n. For this asymptotically stable system with a 

diagonal state-transition matrix, the steady-state SNR in (18) can be obtained as

(32)

When Rd is also diagonal, the SNR of the ith channel is given by the ith diagonal element of 

S̄ for i = 1, …, m, i.e.,

(33)

Note that if the state vector consists, for example, of position, velocity, and acceleration in 

Cartesian space, the condition of independence is violated due to coupling between the 

states, which is reflected in the nonzero off-diagonal entries of Φ [33].

The SNR expressions (12) and (32) include the sampling interval, Δt, since the quantities on 

the right-hand side correspond to the discrete-time system representation. We now show that 

if the SNR estimate is converted to the original continuous-time representation, Δt factors 

out of the SNR equation. To demonstrate this, we transform the discrete-time variables in 

(32) into the corresponding continuous-time variables by substituting Φ = I + FΔt, Qd = 

QcΔt, and Rd = Rc/Δt, neglecting higher order terms (Δt2), so that

(34)

The variables in the above expression correspond to the continuous-time system model. The 

above expression shows that the SNR is consistent when derived using equivalence relations 

for continuous- and discrete-time systems.

III. Results

In our neural interface system model, the 2-D state vector x[k] consisted of the horizontal 

and vertical components of computer cursor movement velocity at discrete time k. We 

aggregated single-unit spikes (action potentials) within nonoverlapping time-bins of width 

Δt = 50 ms to obtain binned spike-rates, y[k], which we centered at 0 by mean subtraction. 

Since this system exhibits short-term stability and convergence [27], we assumed time-

invariant state-space system matrices {Φ, H, Qd, Rd}. Using the Neural Spike Train 

Analysis Toolbox (nSTAT) [37], we obtained maximum-likelihood estimates of the system 

parameters as part of filter calibration with training data. We used the expectation-

maximization (EM) algorithm for state-space parameter estimation, which we initialized 

with ordinary least squares (OLS) parameter estimates obtained using the procedure 
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described in [27]. As a result of OLS-based parameter initialization, the EM algorithm 

consistently converged in under five iterations. We estimated the steady-state SNR matrix S̄, 

and the MD si = [S̄]i,i for channels i = 1, …, m, using (18). To prevent numerical errors, we 

set the constraint S̄ ≥ 0.

This clinical study was conducted under an Investigational Device Exemption and 

Massachusetts General Hospital IRB approval. Neural data were recorded using the 

BrainGate1 neural interface from clinical trial participant S3, who had tetraplegia and 

anarthria resulting from a brainstem stroke that occurred nine years prior to her enrollment 

in the trial. A 96-channel microelectode array was surgically implanted chronically in the 

motor cortex in the area of arm representation. The data presented in this paper were 

recorded in separate research sessions conducted on five consecutive days, from Day 999 to 

Day 1003 postimplant. A center-out-back motor task with four radial targets was developed 

in which the participant observed and imagined controlling a computer cursor moving on a 

2-D screen [see Fig. 1(b)]. A single target, selected pseudorandomly, was highlighted, the 

computer-controlled cursor moved toward the target and then back to the home position with 

a Gaussian velocity profile. This constituted one trial, and this process was repeated 36 

times within four blocks for a total of about 6 min in each session. This motor imagery task 

was performed under the open-loop condition, i.e., the participant was not given control over 

cursor movement during this epoch. The cursor position and wideband neural activity were 

recorded throughout the task duration. The neural data were bandpass filtered (500 Hz–5 

kHz) and spike-sorted to identify putative single units. For decoding analysis, these data 

were used to calibrate a steady-state Kalman filter [27] and estimate the imagined movement 

velocity of the cursor using leave-one-out cross validation.

We investigated the MD characteristics of an ensemble of single units. Unless otherwise 

specified, the representative results presented below are from the session conducted on day 

1003 postimplant. The neural data from the session consisted of the spiking activity of m = 

39 putative single units isolated by spike-sorting. We estimated the MD of each of the 39 

channels and found its magnitude to be highly asymmetrical across channels [see Fig. 2(a)]. 

The MD of the best (most strongly modulated) channel (s = 3.8) was nearly twice as high as 

that of the next best channel (s = 2.0). We estimated the MD distribution skewness as 3.5 

(unbiased estimate, bootstrap).

We defined the preferred direction of the ith channel in the 2-D Cartesian space as θ̄i = tan−1 

(hi,2/hi,1). The preferred directions of the channels appeared to be distributed approximately 

uniformly in the [0, 360°) range when the MDs [radial lengths in Fig. 2(a)] were 

disregarded. MD, however, is instrumental in informing us that only a small number of 

channels are principally relevant for decoding, and the preferred-direction spread of those 

high MD channels is of key importance. The preferred directions of three best channels were 

estimated as 330°, 290°, and 100°, respectively. Although the preferred directions of the 

most strongly modulated channels did not form an orthogonal basis in 2-D Cartesian space, 

they were not clustered together. This result suggests that for this task, a small number of 

Color versions of one or more of the figures in this paper are available online at http://ieeexplore.ieee.org.

Malik et al. Page 11

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2015 March 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://ieeexplore.ieee.org


channels, with large MD and substantial spread in preferred direction, may be adequate for 

representing movement kinematics in this 2-D space.

We studied the increase in total MD with increasing ensemble size by analyzing the 

cumulative MD curve [see Fig. 2(b)], obtained by adding successive values of MD sorted in 

descending order. As the MD distribution is highly nonuniform, the increase in ensemble 

size follows the law of diminishing returns. We found 2, 12, and 18 channels to yield 50%, 

90%, and 95%, respectively, of the total MD obtained with all 39 channels.

To address the problem of optimal subset selection for decoding in a neural interface, we 

studied the effect of ensemble size on decoding performance. When only the most strongly 

modulated channel was used for decoding, the decoded trajectory was restricted to a 

unidimensional axis [see representative trial in Fig. 3(a)]. This 150–330° axis was defined 

by the preferred direction of the corresponding channel [see Fig. 2(a)]. When the two best 

channels were used for decoding, the trajectory estimate spanned both spatial dimensions. 

The trajectory estimate improved with more channels but the improvement associated with 

an increase in selected subset size rapidly saturated. For the trajectory estimate in Fig. 3(a) 

obtained by decoding open-loop motor imagery data, the neural activity remarkably reflects 

the outward movement, reversal of direction, and inward movement phases along the correct 

axis even in the absence of feedback control.

We compared the velocity estimates obtained with a single (most strongly modulated) 

channel, five of the most strongly modulated channels, and all 39 channels [see Fig. 3(b)]. In 

trials where the cursor movement axis was closer to the preferred direction of the strongest 

channel, the single-channel decoder provided reasonable velocity estimates [see Trials 1 and 

4 in Fig. 3(b)]. The reason was that the horizontal projection of the encoding vector of that 

channel [shown in Fig. 2(a)] provided significant movement information. On the other hand, 

the single-channel decoder performed poorly in trials with movement along the vertical axis 

(Trials 2 and 3), orthogonal to the dominant component of the encoding vector for that 

channel, as expected. With five channels, the decoded velocity was qualitatively 

indistinguishable from that obtained with the entire ensemble.

To characterize quantitatively the relation between MD and decoding performance of a 

given channel, we analyzed the vector field correlation between true (computer-controlled) 

and decoded 2-D cursor velocity. We used each channel individually to calibrate the filter 

and decode under cross validation, and computed the correlation [see Fig. 4(a)]. To obtain 

chance-level correlation, we generated surrogate data by bootstrapped phase randomization. 

The most strongly modulated channels provided significantly larger decoding correlation 

than weakly modulated channels. The single-channel correlation appeared to follow an 

exponential relationship with MD for a few channels in the high MD regime, but did not 

have a significant relationship in the low MD regime. This result shows that channel ranks 

are not independent of the evaluation criteria, in this case correlation and MD, as also 

reported in [16].

To study the implications of channel ranks on decoding performance, we compared the true 

and decoded state correlation obtained with a subset of channels selected on the basis of MD 
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and of individual channel correlation [see Fig. 4(b)]. The strongest modulated channel alone 

provided a correlation of over 0.5, and the correlation exceeded 90% of its limiting value of 

0.7 with five highest MD channels (see Table I). We also evaluated the decoding correlation 

achieved with greedy selection and random selection to obtain upper and lower bounds on 

performance, respectively. Decoding performance of channel subsets chosen by correlation 

and MD ranking performed almost identically despite differences in the individual channel 

ranks noted above. The decoding performance of these two schemes was nearly as good as 

that of greedy selection but substantially better than random selection; this difference 

reduced as the selected subset size increased. We investigated the optimal model order in 

terms of the tradeoff between decoding accuracy and model complexity using the BIC. The 

addition of each channel contributed three parameters to our 2-D velocity decoding model 

according to (2), namely a row to H and a main diagonal element to R. Based on BIC, the 

optimal subset size was 12 channels [see Fig. 4(c)], which matches the number of channels 

that contribute 90% of the total MD [see Fig. 2(b)]. The nonsmooth and nonmonotonic BIC 

curve reflects the fact that the relative improvement in decoding performance on increasing 

the neural channel subset size is highly irregular when the subset size is small; increasing the 

subset from 1 to 2 channels does not reduce the estimation error as much as it increases the 

parameter space, and so on.

We investigated the phenomenon of loss of the most informative channels and the decoder 

sensitivity to such loss. This situation may occur in practice due to relative micromovements 

of the recording array and single units [6].We found that decoding performance deteriorates 

progressively as the highest MD channels are removed from the decoder, as expected, but 

the detrimental effect on decoding correlation is particularly dramatic when the number of 

high-information channels dropped is small (see Fig. 5). This result shows that although a 

small number (say m = 5) of the highest modulated channels are sufficient to obtain accurate 

decoding (see Fig. 3), the system is fairly resilient to the loss of highly modulated channels 

and suffers only a small loss in decoding performance that could be easily compensated 

under feedback control.

MD estimation has substantially lower algorithmic complexity than ranking based on 

decoding correlation, greedy search, or exhaustive search, all of which involve multiple 

iterations of decoding analysis with the entire dataset. As a practical measure of complexity, 

we compared the time taken to perform subset selection using various schemes on our 

computing platform (Desktop PC with 2XQuadCore Intel Xeon 3.2-GHz processor, 24-GB 

RAM, Windows 8.1 operating system, running MATLAB software). We did not consider 

exhaustive search in this analysis due to its prohibitive complexity, so greedy search was the 

most complex scheme in our analysis and served as the performance benchmark. Decoding 

correlation-based selection had an order of magnitude lower complexity than greedy search 

while MD based selection was seven orders of magnitude lower (see Table I). The 

complexity of the MD scheme was within two orders of magnitude of that of random 

selection, the simplest approach possible. Thus, MD offers vastly reduced computational 

complexity than other schemes with only a small cost in performance and thus offers a 

superior selection mechanism.
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In order to verify that our analysis of MD characteristics was generalizable across sessions, 

we analyzed the MD distribution in each of the five sessions. The observation of a long-

tailed distribution was consistent across sessions [see Fig. 6(a)]. A small number of outliers, 

i.e., channels with MD several times higher than the median MD, were observed in each 

session. We characterized the statistical properties of the MD by estimating the best-fit 

distribution. For this analysis, we pooled together the MD data from all five sessions and 

estimated the probability distribution from the normalized histogram. Since the MD 

distribution was highly asymmetric, we used Doane’s formula to compute the optimal 

number of histogram bins. We investigated a number of candidate probability distributions 

to obtain accurate statistical description of the data. We obtained maximum-likelihood 

parameter estimates for each candidate distribution and conducted the Anderson–Darling 

test with the null hypothesis that the data were sampled from the estimated distribution. Of 

the distributions that passed the test with the null hypothesis at the 5%significance level, we 

found that the generalized Pareto distribution provided the best fit (p = 0.714), followed by 

the Weibull distribution (p = 0.074). The alternative hypothesis was found to be true for the 

lognormal, exponential, extreme value, Gaussian, and several other distributions (p < 10−6). 

Based on these results, we conclude that the generalized Pareto distribution provides the 

most accurate statistical characterization of MD with maximum likelihood estimates of 

shape parameter k = 0.93 [0.64, 1.22] and scale parameter σ = 0.06 [0.04, 0.08] (mean and 

95% confidence intervals). This is illustrated by the close agreement of the generalized 

Pareto probability density with the data [see Fig. 6(b)]. The Pareto distribution, originally 

formulated to describe unequal distribution of wealth among individuals, is widely used for 

modeling asymmetric, peaky data in many applications. In our analysis, the significant 

positive value of parameter k reflects heavy-tailed behavior, i.e., the presence of a small 

number of highly modulated channels. We also analyzed MD statistics for each session 

individually and found the generalized Pareto distribution to provide the best fit to the data 

in each of the five sessions, followed by the Weibull distribution, confirming our earlier 

observations.

IV. Discussion

We have presented a simple and efficient method for estimating the MD of a channel in a 

multivariate state-space system. This definition of MD is an extension of the notion of a 

single-input single-output state-space system’s SNR [30] to a multivariate system. It is 

analogous to dimensionless SNR and is consistent across sensorimotor tasks, behavioral 

state variables, neural signals, and sample rates, due to which it can be used for comparative 

analysis of a variety of system configurations and experimental conditions. MD can be used 

as a metric to rank channels and select the optimal subset in a neural interface system. It can 

be used to analyze and compare the information content and decoding potential of multiple 

neural signal modalities, such as binned spike-rates and LFP, and also signals recorded from 

different areas in the brain. The total MD summed across the ensemble could be used in 

conjunction with a pre-specified threshold to determine whether the information quality is 

poor and filter recalibration should be initiated.

Most of the computational procedures required to estimate MD are performed as part of the 

standard Kalman filter calibration process and therefore incur little additional computational 
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cost. The only additional computation required to obtain the SNR matrix, S, consists of 

relatively simple matrix operations, i.e., matrix multiplications involving the measurement 

noise covariance matrix that usually has a diagonal structure. Compared to alternative 

approaches for computing channel modulation measures and ranks, such as those involving 

neural decoding with correlation-based greedy subset selection, our method has substantially 

lower computational complexity. It is, therefore, highly suited to real-time neural decoding 

and high-throughput offline analyses with high-dimensional state or observation vectors or 

large number of temporal samples. The low computational cost makes repeated estimation 

of MD possible as may be required during online real-time decoding for performance 

monitoring or closed-loop recalibration [5]. In a nonstationary setting, the time-varying form 

of the system SNR and MD can provide an instantaneous measure of signal quality.

MD estimation may be useful in a wide range of systems neuroscience applications beyond 

movement-related neural interfaces. It is widely applicable to analyses of neural systems 

involving a set of behavioral correlates and multichannel recordings. Our framework can be 

applied directly, for example, to an experiment measuring sensory response of a primary 

visual cortex neuron to a visual stimulus, and the MD then quantifies the response evoked in 

that neuron by the stimulus applied, leading to a tuning curve estimate for that neuron. 

Repeating this analysis across a neuronal ensemble can help in comparative analysis of 

neuronal tuning properties. This approach can be applied to any neuroscience experiment in 

which the underlying system can be expressed in the form of a state-space model, 

comprising both intracortical (spike-rate, multiunit threshold crossing rate, analog MUA, or 

LFP), epicortical (elecrtrocorticogram), or epicranial (EEG or functional magnetic resonance 

imaging) neural signals.

Our state-space formalism can be modified to incorporate a temporal lead or lag between the 

latent state and the neural activity. Motor cortical single-unit spike signals typically lead 

movement by about 100 ms in able-bodied monkeys [38] and are more variable in humans 

with paralysis [29], and similarly LFP beta rhythm leads movement due to its encoding of 

movement onset information [39]. Such temporal effects can be analyzed through the 

covariance structure of model residuals or the likelihood function, and the optimal lags can 

be included in the observation equation on a per-channel basis, after which MD can be 

estimated in the usual manner.

The channel-wise MD computation does not take into account cross-channel covariance, 

which may be substantial for certain signals. For example, LFPs recorded intracortically 

using a microelectrode array may exhibit significant spatial correlation in the lower 

frequency bands due to the proximity of the electrodes [40]. The same challenge is 

encountered with various other measures of neural modulation and ranking, such as 

correlation and coefficient of determination. In the case of highly correlated signals, one 

possible solution could be to first reduce signal dimensionality by projection to an 

orthogonal basis, and then compute the MDs of the resulting set of features.
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V. Conclusion

We have presented a framework for estimating the MD of observation variables in a 

multivariate state-space model for neural interfaces and other applications. This MD 

estimator is closely related to the Kalman filtering paradigm and is suitable for channel 

ranking in a multichannel neural system. In contrast with greedy selection and information-

theoretic measures, our state-space MD estimation scheme has high computational 

efficiency and thus provides a method for real-time variable subset selection useful for 

closed-loop decoder operation. Due to these characteristics, our MD estimation and ranking 

scheme is highly suitable for both offline neuroscience analyses and online real-time 

decoding in neural interfaces. This approach will enable optimal signal subset selection and 

real-time performance monitoring in future neural interfaces with large signal spaces.
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Fig. 1. 
Schematic representation of variable selection scheme and behavioral task design for neural 

recordings. (a) Decoder in a neural interface with optimal variable subset selection based on 

MD ranking. (b) Open-loop center-out-back task for recording neural activity under motor 

imagery, with four peripheral targets and a computer-controlled cursor. Bounding rectangle 

represents the computer screen, and scale bar is in units of visual angle.
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Fig. 2. 
MD of human motor cortical single-unit spike rates. (a) Distribution of MD (radial length) 

and preferred direction (angle) of 39 individual channels (single units) recorded in one 

research session. (b) Cumulative MD as a function of optimal subset size. Blue, red, and 

green dashed lines: number of channels required to achieve at least 50%, 90%, and 95% of 

total MD, respectively.
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Fig. 3. 
Decoding using optimal channel subset. (a)Open-loop center-out-back task with rightward 

peripheral target (gray circle). Blue line: computer cursor trajectory from home position 

outward to target and back; red line: cursor trajectory estimated by decoding neural activity 

of the m best channels ranked by MD; black rectangle: computer screen location and 

dimensions; scale bar in units of visual angle. (b) Decoding of the system’s hidden state 

(imagined cursor velocity) from neural activity using m best channels. The trials, each of 12 
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s duration, start with target onset at time 0. Blue arrow: direction of selected target relative 

to home position.
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Fig. 4. 
Effect of neural channel MD on decoding performance. (a) Relation of MD to open-loop 

decoding correlation of true computer cursor velocity with velocity estimate obtained by 

decoding each neural channel individually. Shaded region: 95% CI of chance-level decoding 

correlation. (b) Improvement in decoding correlation with increasing channel subset size 

chosen using the specified scheme. (c) Normalized BIC as a function of channel subset size 

chosen by MD. Red circle: optimal subset size with lowest BIC.
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Fig. 5. 
Effect of dropping some of the highest modulated channels on decoding performance. (a) 

Decrease in total MD (top) and open-loop decoding correlation between true and estimated 

cursor velocity (bottom) when the specified number of the best channels are removed from 

the neural decoder. Shaded region: 95% CI of chance-level decoding correlation. (b) Open-

loop center-out-back cursor trajectories decoded from m channels with the lowest MD. Blue 

lines: computer cursor trajectory; red lines: imagined velocity decoded from neural channel 

subset; black rectangle: computer screen.
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Fig. 6. 
Statistical characterization of single-unit MD. (a) Distribution of MD of various channels in 

each of five research sessions. Red line: median; box: interquartile range [q1, q3]; whiskers: 

extreme points that are not outliers and lie within the range q3 ± 1.5 (q3 − q1); red circles: 

outliers. (b) (Left) Histogram of MD data from five research sessions, along with the scaled 

best-fit generalized Pareto probability density function. (Right) Cumulative distribution 

function of MD data and best-fit generalized Pareto distribution.

Malik et al. Page 27

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2015 March 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Malik et al. Page 28

TABLE I

Comparison of Execution Time and Decoding Correlation (Using Selected Five of the Available 39 Channels) 

of Various Selection Schemes on a Standard Personal Computer

Selection Scheme Execution Time, mean±s.e. (s) Correlation

Greedy search 1.8 × 103 ± 7.2 0.69

Decoding correlation 1.2 × 102 ± 3.8 × 10−1 0.67

MD 4.7 × 10−4 ± 1.4 × 10−5 0.65

Random selection 5.8 × 10−6 ± 9.4 × 10−8 0.35
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