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Crystallization phase diagrams are frequently used to conceptualize the phase

relations and also the processes taking place during the crystallization of

macromolecules. While a great deal of freedom is given in crystallization phase

diagrams owing to a lack of specific knowledge about the actual phase

boundaries and phase equilibria, crucial fundamental features of phase diagrams

can be derived from thermodynamic first principles. Consequently, there are

limits to what can be reasonably displayed in a phase diagram, and imagination

may start to conflict with thermodynamic realities. Here, the commonly used

‘crystallization phase diagrams’ are derived from thermodynamic excess

properties and their limitations and appropriate use is discussed.

1. Introduction

Macromolecular crystallization, as the self-assembly of

complex and irregular molecules into a regular periodic

lattice, is an inherently improbable and complex phenomenon.

Crystallization is in essence the separation of an ordered

crystalline phase from a metastable solution. For this

improbable process to take place, certain conditions (illu-

strated in Fig. 1) must be met.

(i) The protein must be inherently crystallizable. This

primary requirement unique to each protein expresses the

simple fact that when the periodic intermolecular contacts

necessary for self-assembly into a regular lattice cannot be

formed under any circumstances, any protein-rich phases

separating from the protein solution will not be a crystal. An

example of an adverse protein property might be the presence

of large flexible regions that prevent the molecules from

forming the required three-dimensional periodic crystal

contact network.

(ii) Thermodynamic conditions must establish necessary

conditions for crystallization. Formation of a crystal must in

principle be thermodynamically possible. This means that in a

system of a given chemical composition, a stable, protein-rich

phase in the form of a crystal, in equilibrium with its growth

solution, must exist. For the process to occur spontaneously,

the free energy of crystallization, �GC, must be negative. The

above requirement for the existence of a stable equilibrium

phase establishes a necessary – but not sufficient – macro-

scopic condition for crystallization. We rarely know a priori at

which chemical composition or at which temperature of the

system a stable crystal can form, hence the need to screen each

protein construct against a chemically diverse set of crystal-

lization reagents.

(iii) Kinetics determine whether the thermodynamically

possible outcome will actually be realised. Even if the

macroscopic conditions for the formation of a crystal are

ISSN 2053-230X

# 2015 International Union of Crystallography

http://crossmark.crossref.org/dialog/?doi=&domain=pdf&date_stamp=2015-02-28


thermodynamically possible, the kinetic processes leading to

the formation of a stable crystal must be favourable so that the

thermodynamically possible macroscopic scenario can actually

become reality: the enabling microscopic processes take place

under kinetic control.

While condition (i) is an invariable inherent property of each

individual protein construct and is not predictable, conditions

(ii) and (iii) can be discussed in general physicochemical

terms.

1.1. Phases and phase separation

In thermodynamic lingo, a phase is simply a macroscopically

homogeneous state of matter, without any assumptions about

its microscopic nature. In the common scenario of crystal-

lization of proteins from an aqueous solution, thermo-

dynamics dictate that a metastable, supersaturated protein

solution will eventually – even if it takes geological

timeframes – revert towards equilibrium by separating into a

stable saturated protein solution and a protein-rich phase.

What the nature of this protein-rich phase actually is depends

on the phase equilibria in the given chemical system. Preci-

pitates, oils and also crystals all represent possible outcomes

for protein-rich phases. In x3 metastability and super-

saturation in protein solutions will be discussed, and

McPherson (1999) provides a summary of practical means of

achieving supersaturation.

1.2. Kinetic processes

The actual realisation of the possible outcomes of a crys-

tallization experiment depends critically on the controlling

kinetics. Nucleation and crystal growth are dynamic micro-

scopic processes determining the kinetics (see McPherson &

Kuznetsov, 2014), and they are in general much harder to

control and to adjust than macroscopic thermodynamic

conditions, which are defined by easily controllable para-

meters such as the mother liquor (drop) and reservoir

composition and volumes, temperature and pressure. Even

in space, thermodynamic phase equilibria do not change. The

outcome, however, of the experiment in a microgravity

environment (�10�6g) can differ for example as a result of the

practical absence of buoyancy-driven convection (DeLucas et

al., 1989) and the absence of gravity-induced sedimentation

of impurities on the crystal surface (Koszelak et al., 1995). In

addition, kinetic processes are by definition time-dependent;

for example, the speed at which supersaturation is reached

affects nucleation, or slower crystal growth may give better

quality crystals. Thermodynamics is ignorant of such micro-

scopic subtleties.

Very little is known a priori about each specific protein as

far as optimal crystallization conditions are concerned. While

we only can guess where the (extremely narrow) phase fields

of stable crystals may be located (for further details, see x3.9),

we can use the crystallization phase diagrams as a conceptual

aid and an operational playground for imagination when

analysing or designing crystallization experiments. In the

following, we will investigate what these crystallization phase

diagrams actually are, where they originate from and how we

can use them to understand protein crystallization. We will

also realise that not every line casually drawn in a phase

diagram is meaningful or physico-chemically justified.

2. Types of phase diagrams

Phase diagrams in general depict the state of matter under the

variation of certain conditions. They may visualize many

different dependencies, such as simple pressure–volume (P/V)

isotherms or pressure–composition (P/x) diagrams. The phase

diagrams that we commonly encounter in macromolecular

crystallization are temperature–composition (T/x) and

composition–composition (x/x) phase diagrams. They all serve

different purposes and contain different information, but they

are related to each other. Common to them is that they are all

thermodynamic phase diagrams; that is, they inform us about

phase equilibria, but out of principle they cannot provide any

information about the microscopic kinetics leading to these

phase equilibria.

2.1. Temperature–composition diagram example: the lipid
cubic phase

To determine T/x diagrams, mixtures of the components

are prepared and equilibrated at a given temperature and

constant pressure, and the nature and the relative amounts of

phases are established point by point by painstaking experi-

mental labour (often by crystallographic methods in the case

of condensed phases). From the sum of these data, the phase

fields and composition lines in the phase diagram are estab-

lished. Such experimentally determined T/x diagrams can be

quite complex and they are also reasonably accurate and

reliable. Fig. 2(a) of Qiu & Caffrey (2000) shows well the

large number of samples (defined by a specific chemical
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Figure 1
Fundamental factors determining protein crystallization. The protein
properties determine whether the process of crystal formation is in
principle possible; thermodynamics establish the necessary but not
sufficient macroscopic conditions (reagents and temperature) for crystal-
lization, and the kinetics and dynamics of the microscopic processes
determine whether a possible scenario actually becomes reality.



composition and temperature) that need to be analysed to

obtain a complete T/x phase diagram.

The carefully established phase diagram for monoolein [1-

(cis-9-octadecenoyl)-rac-glycerol] and water versus tempera-

ture (Fig. 2) is an excellent example of a specific T/x diagram

that is useful in macromolecular crystallography. Here, the

weight percent (or a similar composition measure, such as the

molar fraction x) of monooolein and water is plotted against

the temperature. This phase diagram informs us where a stable

region (phase field) for the formation of the lipid cubic

(meso)phase (LCP) exists. We consult this diagram and similar

ones to estimate the proper ratio of protein solution to

monoolein for a given temperature when preparing an LCP

for a crystallization experiment (Caffrey & Cherezov, 2009;

Caffrey, 2015). Note that in Fig. 2 the composition is given in

%(w/w); therefore, proper factors must be applied when

converting to volumes (Aherne et al., 2012).

One can also recognize from Fig. 2 that some phase fields

can have a fairly large homogeneity range; for example, the

Pn3m LCP can form at room temperature between about 38

and 43%(w/w) water. The formation of this LCP is therefore

reasonably forgiving as far as hitting the exact compositional

conditions is concerned; protein crystals, in contrast, have

extremely narrow phase fields (x3.9).

2.2. Composition–composition diagrams for protein solutions

In the case of protein crystallization from aqueous solu-

tions, we are in general interested how the system must

develop at a given constant temperature and constant pressure
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Figure 2
Temperature–composition phase diagram of the monoolein–water system. Stable phase fields and two-phase regions are shown in different colours. The
Gibbs phase rule (derived in many standard thermodynamics texts) mandates that in T/x diagrams single-phase fields are always separated from each
other by a two-phase field (white). At 20�C, the practically useful lipid cubic mesophase with Pn3m structure (dark blue) has a homogeneity range
around 38–43%(w/w) water (arrow). The small inset at the top left is the structural formula of monoolein [1-(cis-9-octadecenoyl)-rac-glycerol]. Strictly
speaking, even this useful diagram is not a true thermodynamic equilibrium T/x diagram but rather an ‘operational’ phase diagram, because it also shows
the liquid crystal phase fields extending below about 17�C, where the phases are in fact metastable (i.e. undercooled). The closest approximation to an
actual equilibrium phase diagram of the monoolein–water system is represented by Fig. 2(b) in Qiu & Caffrey (2000). Redrawn with permission from Qiu
& Caffrey (2000).



so that it can, at least in principle, produce crystals. To aid our

understanding, we draw a simple x/x diagram showing the

relationship between protein concentration and precipitant

concentration in an aqueous solution. The principal chemical

components of the system are (i) water, (ii) protein and (iii) a

third pseudo-component, into which we pool all other mother-

liquor (drop) constituents such as buffer, precipitating agent

and various additives under the collective term ‘reagent’. The

relative reagent ratios remain constant for a given system. As

derived in x3.7, such a diagram is in fact the water-rich corner

of an isothermal section of a pseudo-ternary phase body.

Ignoring the water as a third, dependent, component, one

might even call these x/x diagrams ‘pseudo-pseudo-binary’

(Fig. 3).

We use these crystallization diagram frameworks shown in

Fig. 3 to describe an almost unknown specific thermodynamic

situation, and in addition imaginatively decorate this non-

information with kinetic scenarios. We generally do not know

where exactly the solubility lines are, where the phase fields

for stable crystals are located in a given system and what other

phases may or may not exist. Nonetheless, there are certain

fundamental and universal properties that one can at least

theoretically justify and use to extract useful information and

at the same time keep imagination in check. Cautiously used

within their limitations, these ‘operational’ phase diagrams can

be a valuable aid to understanding the crystallization process.

It is important to distinguish when thermodynamic informa-

tion, which is a legitimate part of a thermodynamic phase

diagram, is augmented with ‘operational’ assumptions of

kinetic processes, which are not derivable from macroscopic

thermodynamic equilibria.

3. Thermodynamic foundations of phase diagrams

The reason why we have different forms of matter and states

or phases is non-ideality. An ideal world, devoid of any

interactions, would be a rather boring perfect mixture of

dimensionless and non-interacting particles: the definition of

an ideal gas. Interactions between the atoms and the fact that

they have finite dimensions lead to non-ideality, which is the

origin of everything interesting. It is therefore necessary that

we examine the basis of thermodynamics in non-ideal multi-

component systems by introducing the concept of thermo-

dynamic excess properties, in particular the excess chemical

potential.

3.1. Closed versus open systems

A well-sealed cell in a hanging-drop crystallization experi-

ment will approximate a closed system (the closed cell does

not exchange matter with the outside), but the crystallization

drop itself will be an open system and undergo a change of

composition by acquiring water (or other volatile compo-

nents) and will eventually revert to the defined system equi-

librium, given sufficient time or favourable kinetics. A

crystallization experiment with a leaky tape (or diffusion of

components through plate plastics) will be open to the

environment and will eventually dry out and ultimately be

in equilibrium with the atmosphere of the crystallization

laboratory.

In a crystallization experiment, we are interested in

obtaining stable crystals in equilibrium with their mother

liquor. The key thermodynamic conditions that we need to

understand to appreciate the role of thermodynamics in

biomolecular crystallization are therefore (i) phase stability,

(ii) phase equilibria and (iii) the response of the system to

variation of composition.

To facilitate the derivation of phase diagrams, a minimum

of thermodynamic formalism is needed. General physical

chemistry textbooks (for example, Atkins & DePaula, 2009)

and specific textbooks on phase thermodynamics (for

example, Lupis, 1983) provide complete introductions and

derivations, and Appendix A provides a mini-review limited

to the context necessary to formally derive thermodynamic

phase diagrams of multi-component systems.

3.2. Introduction to stability, metastability and phase
equilibria

The simplest case of an ideal versus a real system (an ideal

versus a real gas) allows the introduction of the important

concept of conditions for phase stability, as well as instability

and metastability.

In the most simple physical situation corresponding to (1),

the internal energy U of a fixed amount n of ideal gas at a

constant temperature T is simply given by the product of the

energy-conjugated pair of variables pressure P and volume V

UT;n ¼ PV or PT;n ¼ const � ð1=VÞ: ð1Þ

The intensive variable P is therefore inversely proportional

to the extensive variable V (see xA1 for definitions). The
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Figure 3
Framework and components of a crystallization phase diagram. The
‘crystallization phase diagram’ is a useful operational framework for
visualizing processes during crystallization. It is derived from the water-
rich corner of an isothermal section of a pseudo-ternary phase body
water–protein–reagent. As such, the thermodynamic information it can
contain is at the same time fundamentally defined but limited in scope,
and is rarely specifically known with any certainty. Kinetics and temporal
development are not part of the phase diagram, but can, with caution, be
visualized in the context of the thermodynamic phase diagram.



pressure–volume phase diagram of an ideal gas at a given

temperature is then described according to (1) by a hyperbolic

function (inset at the top right in Fig. 4).

3.2.1. Conditions for phase stability. As the inset at the top

right in Fig. 4 shows, at any point on the P/V isotherm the

tangent has a negative slope, i.e. at constant temperature the

pressure in a given amount of ideal gas always and invariably

decreases when the volume increases. The opposite effect,

namely that the volume of matter increases when the pressure

is raised, clearly never happens and is physically impossible.

Therefore,

@P

@V

� �
T;n

< 0 ð2Þ

is an invariable thermodynamic condition for (material) phase

stability. In the case of crystallization, we will have to extend

these conditions and introduce compositional phase stability

in multi-component systems (x3.5).

3.2.2. Nonideality. Real atoms have dimensions and

interact with each other, and such a simplified van der Waals

gas can be described by

P ¼
nRT

V � n � b
� a �

n

V

� �2

; ð3Þ

where a is an interaction constant increasing the pressure and

b a measure for finite particle volume. R is the gas constant.

3.2.3. Virial coefficients and particle interaction. Non-

ideality of a system can also be accounted for by an expansion

of virial coefficients. It is obvious that some form of attractive

interactions between protein molecules is necessary for self-

assembly into a crystal, but the intermolecular interaction

should not be too strong (leading perhaps to rapid formation

of precipitates) and also not too weak (insufficient inter-

molecular interaction). Such a favourable range of inter-

actions is indeed observed as a ‘crystallization window’ by

analysing the second viral coefficient B2 by means of light

scattering (Wilson & DeLucas, 2014; Wilson, 2003). However,

as a thermodynamic measure, the range of B2 reflects a

necessary thermodynamic condition, but cannot inform us

with certainty about the actual outcome of the experiment.

3.2.4. Instability. The graph of a real gas isotherm from (3)

is shown in the left part of Fig. 4. What immediately becomes

obvious is that owing to (3) now being third-order in V, the

graph has acquired an inflection point flanked by two extrema

E1 and E2. If we follow the curve, we realise that the function

inside the two extrema does violate our condition for phase

stability (2): any state between E1 and E2 violating the stability

criterion (@P/@V) < 0 will therefore spontaneously and

invariably decompose into equilibrium phases � defined by

PE�V1 (liquid) and � defined by PE�V2 (gas) in relative

amounts determined by the initial composition and the lever

rule. This process is called spontaneous decomposition. In the

case of the real gas, state V1 represents the end point of the

single-phase liquid state � (almost incompressible, small

volume) and state V2 represents the end point of a single-

phase gas �. The same situation of spontaneous formation of

two phases is true for unstable protein solutions as derived in

x3.4.

3.2.5. Equilibrium conditions. At the equilibrium pressure

PE, states between V1 and V2 can only be in equilibrium if both

phases have the same internal energy U. It follows that the

phases must be present in relative amounts following the lever

rule corresponding to the location of the initial state on the

two-phase coexistence line (Fig. 4).

3.2.6. Metastability. The most interesting parts of Fig. 4

are the branches of the blue curve between V1 and E1 and E2

and V2. They are not yet violating the stability criterion (2)

because it still holds that (@P/@V)T,n < 0, but at the same time
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Figure 4
Ideal versus real states and non-ideality induced metastability. Top panel:
the top right portion of this P/V phase diagram shows the hyperbolic PV
isotherm (green) for an ideal gas. The slope of the graph is always
negative, with the first derivative (dP/dV) < 0 being a requirement for
physical phase stability. Non-ideality gives rise to the blue PV isotherm
for a van der Waals gas. States located on the red branch E1E2 of the
isotherm are unstable and will spontaneously decompose into a two-
phase mixture (gas � plus liquid �). In a real gas scenario, V1 represents
the boiling point and V2 the dew point. Metastable supercooled vapour
can exist between V2 and E2, and superheated liquid between V1 and E1,
but both metastable phases will eventually (time and/or kinetics
permitting) also decompose into a stable two-phase liquid–gas mixture.
The bottom panel shows how the ratio of the amounts of the liquid phase
and the gas phase coexisting at the equilibrium pressure PE is derived by
the lever rule as n1/n2.



the blue branches do not represent an equilibrium state. Such

a system can exist until perturbed, and it is metastable. For

macromolecular crystallization, the interesting part is if and

how (by which pathway) a system represented by a meta-

stable, supersaturated solution can return to the equilibrium

of a stable protein-rich phase coexisting with saturated protein

solution. To understand the phase relations, we need to

accomplish two important expansions: (i) to make the

fundamental equations of state depend on some practically

manageable natural variables which we can hold constant

while we vary the composition of our system and (ii) to

introduce chemical composition into our equations of state.

The fundamental equation of state so faithfully introduced

in freshman physical chemistry in energy form as a sum of

energy-conjugated products of paired extensive and intensive

variables Ei and Ii,

UðS;VÞ ¼
P

i

EiIi ¼ TS� PV; ð4Þ

or in its differential form,

dUðS;VÞ ¼
P

i

Ei dIi ¼ T dS� P dV; ð5Þ

is inconvenient for condensed matter: we neither have an

‘entropometer’ in the laboratory nor do we know how to keep

the extensive variable S constant with an ‘entropostat’, and

most condensed systems (including protein solutions) expand

or contract upon temperature change, making it impossible to

keep V constant.

3.3. Legendre transformation: dependence on intensive
variables

A most useful consequence of the equation of state being a

homogeneous function (Appendix A) is the fact that we can

readily transform (4), the fundamental equation in energy

form U(S, V), by two successive Legendre transformations

(xA3) into the Gibbs (free) energy G(P, T). In differential

form,

dGðP;TÞ ¼ V dP� S dT: ð6Þ

The Gibbs (free) energy G is extremely useful to describe

thermodynamic systems as it depends only on the easily

controllable intensive variables T and P. The moment that

we can keep T and P constant, which is easily accomplished

experimentally, the Gibbs energy of a system solely depends

on its composition. This is exactly what we need to know in

order to establish a phase diagram, provided that we can we

account for the dependence of the Gibbs energy on chemical

composition.

3.4. Introduction of the material composition into the
equation of state

The introduction of the material composition into the

equation of state is, at least formally, quite straightforward.

The chemical potential � (xA2) and the amount n of species

i in the system again form an energy-conjugated intensive–

extensive product, the chemical energy, again in differential

form

dGðP;T; niÞ ¼ V dP� S dT þ
PN
i¼1

�i dni: ð7Þ

This function dG(P, T, ni) is definitely something that we can

work with as experimental scientists, because we can easily

keep T and P constant (i.e. dP and dT are zero), and then the

state of our system depends only on its chemical composition,

dGP;TðniÞ ¼
PN
i¼1

�i dni: ð8Þ

3.5. Reaction of a system to compositional change: the
chemical potential

Applying the Legendre transformation to the fundamental

equations, we derive in xA3 the definition for the chemical

potential of component i as its partial molar Gibbs energy,

�i ¼
@G

@ni

� �
P;T;nj 6¼i

: ð9Þ

In practice, mean (average) molar properties of a system are

easier to measure than the individual partial molar properties.

Changing from the number of species n to the molar fraction,

xi ¼ ni=
PN
i¼1

ni ð10Þ

allows the expression of (8) in terms of the mean molar Gibbs

energy GP;TðxiÞ. Applying Legendre’s tangent representation
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Figure 5
Partial molar Gibbs energy or chemical potential versus composition: the
G=x diagram. Deviations from ideality lead to excess partial molar
properties, which are the origin of the metastability and instability of
multi-component systems. The red branch of the curve violates the
stability criterion, and such a state must spontaneously decompose into
equilibrium phases � and � in amounts corresponding to the lever rule.
The blue branches B1S1 and S2B2 represent metastable states which, given
enough time and/or favourable kinetics, will also return to equilibrium
with phases � and � in amounts corresponding to the lever rule.



(27) to G we obtain the relation between the partial molar

Gibbs energy (chemical potential) and the mean molar Gibbs

energy G in an N-component system,

�i ¼ G�
PN�1

i¼1

xi

@G

@xi

� �
P;T;xj 6¼i

: ð11Þ

If we plot for a binary (two-component) system the mean

molar Gibbs energy GP;T as a function of the molar fraction x2

(x1 = 1 � x2), we would obtain in the ideal case a linear

relationship; that is, a line connecting G0
1 and G0

2, the mean

molar Gibbs energies of the pure components (Fig. 5).

3.5.1. Again: non-ideality. In real systems, non-ideality does

lead to so-called excess partial molar properties. For example,

negative excess partial volumes mean that a volume contrac-

tion of the system occurs during mixing, as is in fact observed

and measureable, for example, in water–ethanol mixtures.

Similar deviations from the ideal linear model owing to the

interaction of system components occur for the chemical

potential � and we can define the chemical excess potential

��ex as

��ex
¼
PN�1

i¼1

xiðGi � �
0
i Þ; ð12Þ

where �i
0 is the chemical potential of pure component i.

Although only in rare cases is the excess chemical potential in

fact measureable, it will interesting to see how the presence of

these excess properties leads to the much sought-after x/x

crystallization diagrams (x3.5).

3.5.2. Again: equilibrium. Let us now examine the simple

case of a non-ideal, two-component system. Equilibrium

conditions demand that the chemical potential of each

component i of each phase is the same. For two phases � and �
in equilibrium,

��i ¼ �
�
i for all components i: ð13Þ

Using the relation (11) between mean molar and partial molar

Gibbs energy and the equilibrium condition (13), we obtain

for a two-component system

G�
@G

@x1

� �
x1

� ��
¼ G�

@G

@x2

� �
x2

� ��
; ð14Þ

which means (i) that two phases in equilibrium have to have

the same slope in the G=x diagram and (ii) that the intercept is

the chemical potential of the component i in phase � and �,

respectively, as illustrated in Fig. 5.

3.5.3. Again: metastability. Legendre transformation of the

general stability conditions from internal energy U to Gibbs

energy G yields

@2G

@x2
i

� �
P;T

> 0; ð15Þ
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Figure 6
Constructing the T/x diagram. The complete T/x diagram of a simple two-component system with a miscibility gap is obtained by projecting binodal
equilibrium points and the spinodal decomposition points from each G=x isotherm onto corresponding isotherms of a temperature–composition (T/x)
diagram. The blue solubility line delineates the phase boundary of the single solution phase region. The left boundary phases are rich in component 2 and
the right boundary phases are rich in component 1. In thermodynamic equilibrium, the region between the solubility lines is a two-phase mixture of the
two boundary phases in ratios according to the lever rule. A metastable phase region exists between the binodal coexistence line (or solubility line; blue)
and the spinodal decomposition line (red). In the red instability region, instantaneous spinodal decomposition into the corresponding boundary phases
must take place.



which simply states that the second derivative or the curvature

of G=x, that is the change of the first derivative, always has to

be positive. Inspecting the G=x diagram in Fig. 5, we recall the

same scenario as in the P/V isotherm (Fig. 4): we can recognize

metastable states between B1 and S1 and between S2 and B2

because they comply only with the stability condition (15) and

not with the equilibrium condition (14). States between S1 and

S2 again are absolutely unstable and spontaneous spinodal

decomposition must occur into a phase rich in component 1

(�) and one with less of component 1 (�). Note that this

scenario is valid for all kinds of phases: at no point have we

made any assumption about the nature of the phases formed.

3.6. The next step: constructing the T/x diagrams

Fig. 5 contains a single G=x isotherm, but we can (at least on

paper) determine further isotherms at different temperatures.

Our simple example system depicted in Fig. 5 shows a misci-

bility gap in a two-component system at a given temperature

T1 below the critical temperature. With increasing tempera-

ture, the mutual solubility of the components increases while

the system approaches a more ideal state, until at the critical

isotherm the system remains single phase over the entire

composition range. We can project the binodal equilibrium

points and the spinodal decomposition points of each G=x

isotherm onto the corresponding temperature levels and

obtain the complete T/x phase diagram, in which metastable

and unstable regions are easily recognized (Fig. 6).

In the final step, we need to transfer the information

contained in the T/x diagram into our desired crystallization

phase diagrams.

3.7. From T/x to isothermal sections: pseudo-ternary
composition diagrams

The systems that we have treated so far are general two-

component systems. As outlined in x2.2, a crystallization

diagram describes a system with at least three components:

water W, protein P and a reagent pseudo-component R that

includes everything else from buffer via precipitants to addi-

tives etc. The system we are dealing with is therefore actually

pseudo-ternary, and phase relations can be presented in a

ternary phase body with axes T, W, P and R. An isothermal

section then is a phase triangle, with the pure components W,

P and R located at the three corners. The sum or ‘stack’ of all

isothermal sections forms the ternary body shown in Fig. 7(a).

3.7.1. Constructing the crystallization phase diagram.

We realise that the ‘walls’ of the ternary body are actually

(pseudo-) binary T/x diagrams. If we project our simple binary

mixture T/x diagram constructed in Fig. 6 onto the corre-

sponding wall of the ternary body, we obtain a solubility point

and an instability point on the selected isothermal section

(Fig. 7b). Focusing now on the water-rich corner and only the

water-rich sections of a set of appropriate pseudo-binary T/x

diagrams, we can construct the entire water-rich part of the

isothermal section W, P, R (Fig. 7c). Such a scenario is not

unrealistic, because in general and at best we can determine

solubility lines for the protein in this region, but the rest of the

phase relations are neither easily accessible by experiment nor

crucial in our situation of crystallization from an aqueous,

water-rich, solution. For example, the line R–P would corre-

spond to a mixture of solid protein with solid precipitate,

representing at best the extreme but otherwise uninformative

case of a completely dried-out crystallization drop as the end

point in a failed vapour-diffusion experiment open to the

laboratory environment.

3.8. From ternary section to rectangular phase diagram

In practice, we are not interested in the regions of almost

pure solid protein nor are we interested in any water-poor/

solid reagent mixtures. Our focus of interest lies in the water-

rich corner of the isothermal pseudo-ternary sections. One
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Figure 7
The ternary phase body T/(W, R, P). (a) The horizontal isothermal sections through the ternary body are the basis for the pseudo-ternary phase diagrams
that we are actually interested in. (b) The ‘walls’ of the ternary body are simply the corresponding T/x diagrams that we have already constructed in x3.5
from the set of G=x diagrams. (c) Given a set of corresponding pseudo-binary T/x sections and focusing on the water-rich region, the interesting part of
the complete isothermal section can be constructed. In general, not much is known experimentally and with certainty past the solubility lines in the case
of protein solutions. Areas in the right-hand region of the isothermal section are unknown and of limited practical interest.



therefore zooms in to a ‘orthogonalized’ rectangular presen-

tation (often preferred in chemical engineering when one

component, such as the water in our case, is in excess) of this

partial water-rich close-up area of the isothermal section to

obtain our phase diagram as previously sketched in Fig. 3 and

now filled with the information that we could derive from

thermodynamic first principles. The path to the final crystal-

lization phase diagram is visualized in Fig. 8.

3.8.1. Solubility line. The most likely experimentally

accessible feature in the phase diagram is the solubility line,

which determines the maximum equilibrium protein concen-

tration [P]max at any given reagent concentration [R]. Such

lines have been determined for lysozyme, catalase and other

model systems; for reviews, see, for example, McPherson,

(1982), Ducruix & Giegé (1999) and Asherie (2004). The

solubility line derived for the diagram in Fig. 8 is in fact

qualitatively presenting the solubility line for a protein in

a polyethylene glycol (PEG) solution. The solubility S of a

protein in PEG generally follows a logarithmic law (see figures

in McPherson, 1982; Rupp, 2009),

logðSRÞ ¼ logðS0Þ � k½R�; ð16Þ

and when plotted linearly the logarithmic curve approximates

the solubility line drawn in Fig. 8. The situation is considerably

more complex for salt solutions, where salting-in effects can

occur and the solubility lines can exhibit a maximum. Fig. 3-14
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Figure 8
Final gestation of the crystallization phase diagram. The crystallization phase diagram can be directly derived as the water-rich corner of a pseudo-
ternary isothermal section of a ternary phase body. The lack of knowledge and detail of the water-poor regions is indicated by the question mark in the
phase triangle. The gradient fill of the metastable solution indicates its increasing degree of supersaturation.

Figure 9
Location of crystal phase fields. (a) Assuming a crystal with 50% solvent content at 25% PEG, the crystal contains 50% protein, 12.5% PEG and 37.5%
water. The phase point can be located in the phase diagram as follows. All concentrations with a fixed absolute amount of a component P are on lines
parallel to the opposite side (WR). Lines indicating a fixed ratio of W:R lead towards the remaining component (P). The intersection of these two lines is
the sought-after phase point (or field, if any homogeneity range exists) of the crystal. The sum of the three fractions xi is constrained to one. (b) In
equilibrium, i.e. the end point of the crystallization experiment, the crystal will coexist in equilibrium with saturated protein solution with concentration
[W, P, R] as defined by the corresponding coexistence line originating from the solubility line. (c) In this panel, the equilibrium information is combined
with the existence region of the metastable supersaturated phase (green). If only a single component such as water is removed in a vapour-diffusion
experiment, the initial ratio of P:R remains constant and therefore the path which the experiment takes leads away from the water corner. The arrows
indicate only the direction of the pathways in a vapour-diffusion experiment (described in detail in Fig. 10). Note that the actual experimental path must
invariably end at the red spinodal decomposition line. Outside of the grey two-phase field indicating saturated solution–protein crystal equilibria,
spontaneously formed mixtures of the corresponding boundary phases exist. We can see that the actual experimental workspace will be very compressed
towards the water corner; note the unusually protein high solubility in this particular example.



in Rupp (2009) illustrate such a scenario, although with the

caveats discussed in x5 and a somewhat improbable spinodal

decomposition line.

3.9. The location of the protein crystal phase fields

Given that we have now established the pseudo-ternary

isothermal section as our area of operation, we can ask where

the phase fields of protein crystals would be located. Let us

assume that we are dealing with a typical average crystal of

50% solvent content and that the mother liquor that it grew

from contained 25% PEG. Given that the protein specific

density is about 1.35 g cm�3 or 1350 mg ml�1 (Quillin &

Matthews, 2000), the protein concentration in this crystal

would be around 600–700 mg ml�1. This is very, very far from

the solubility limit for normal proteins, which is in the range

from a few to several tens of milligrams per millilitre1. We

realise that such phase fields must lie very far away towards

the distant protein-rich corner in the ternary phase diagram in

Fig. 9.

Nonetheless, if the situation was as clear-cut and simple as

depicted in Fig. 9 and kinetics did not matter, we would always

succeed in obtaining a crystal once we had the right chemical

composition of our system and a stable crystal and its phase

field exist. We also do not have to precisely hit the crystal

phase field starting from the water corner in a vapour-

diffusion experiment; if this were the case, the drop-ratio

variation would be an incredibly dominant factor in each

crystallization trial, and we would have to ‘experimentally

extrapolate’ from a very small accessible area far off in the

water corner to a tiny phase field with very little homogeneity,

and this phase field is hidden deep in the protein-rich,

unknown part of the phase diagram. Such an ‘experimental

extrapolation’ would be almost certain to fail. Drop-ratio

variation is certainly a useful parameter for optimization

(McPherson & Cudney, 2014), but many protein crystals,

regardless of their actual solvent content, grow fine from 1:1

protein:precipitant drops.

Tie lines (lines of coexistence) between protein solution and

crystal extend in principle from each point on the solubility

line to the crystal (Fig. 9b). This is a necessity because during

crystal formation the solution slowly depletes in protein [recall

that we form a protein-rich phase (600–700 mg ml�1) out of a

very dilute protein solution of a few milligrams per millilitre]

and the composition of the solution returning to equilibrium

changes accordingly. x4 discusses a simple example of a

vapour-diffusion experiment in greater detail.

Nonetheless, because the path (coexistence lines) towards

the crystal changes during protein depletion, any unknown

phase that lies in between the current solution and the crystal

phase field may intercept an emerging coexistence line. All of

a sudden, despite promising initial crystals, we may obtain only

precipitate. The reverse can also be true, and while we initially

find only precipitate, crystals may form later. If the crystal is

more stable than the precipitate, it may grow in size while the

other protein-rich precipitate phase disappears. Note that this

is simply a matter of phase stability, and is not the same as

Ostwald ripening (Ostwald, 1897; small crystals disappearing

with the gain of larger crystals of the same sort growing

larger), which requires the introduction of surface energy into

our state equations as a kinetic phenomenon, and the presence

of diffusion for it to take place. The introduction of plausible

kinetic scenarios as far as they are necessary for the utilization

of the phase diagram as a conceptual tool is discussed in the

following section.

4. A basic vapour-diffusion experiment process
visualized in a crystallization phase diagram

4.1. Some knowns . . .

Fig. 10 shows a typical instance of an operational crystal-

lization phase diagram. It is intended to describe a hanging-

drop vapour-diffusion crystallization experiment. Firstly, let us

examine what we do know from thermodynamics: (i) given a

protein:precipitant drop ratio of 1:1 the starting point S of the

experiment is clearly defined, and (ii) when solely water is

removed from the drop by vapour diffusion into the reservoir,

the solution will proceed from S away from the water corner.

We also know the end result: (iii) given a practically infinite-

size reservoir, the precipitant concentration in the drop in

equilibrium will be c. We also know that (iv) a metastable zone

will exist and that (v) with increasing supersaturation the

probability for spontaneous nucleation increases. This is just

another way to express increasing thermodynamic instability.

While we do not know how and when nucleation occurs, the

level of supersaturation clearly can never exceed the experi-

mental limit defined by the reservoir precipitant concentration

c. Once nucleation occurs, the solution will deplete in protein

while the crystal grows. This depletion happens along the tie

line towards the protein corner, because predominantly P
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Figure 10
The classical case of vapour diffusion. The diagram represents the
simplest possible scenario of a vapour-diffusion experiment. A detailed
discussion of the figure is provided in x4.

1 The hardy perennial of physicochemical investigations, lysozyme, is actually
not a good model for such contemplations because it can be supersaturated to
extreme levels of several hundred milligrams per millilitre, almost corre-
sponding to the concentration of the protein in its crystals.



disappears from the solution. This line is almost (but only

almost) a vertical line in the rectangular diagram, as we are

looking just at the very water-rich corner of the ‘orthogona-

lized’ phase triangle. At the end of the process, the crystal,

whose phase field actually is far off the diagram, is in equili-

brium with saturated solution at the intersection of the tie line

from c to P and the solubility line (point 4). That we draw the

large crystals there is simply an aid to visualization (it looks

like that in the drop); it is not their true location in the ther-

modynamic phase diagram. The phase field for a crystal is far

remote, as Fig. 9 illustrates.

4.2. . . . and many unknowns

It goes without saying that the described scenario is over-

simplified, and nucleation can occur at different levels of

supersaturation, multiple protein-rich phase fields can and will

exist, and the pathways can be considerably more complex

than the minimalistic situation depicted here. For example, a

transiently forming phase can itself be metastable, or during

the development of the system towards equilibrium another

protein-rich phase or crystal may become more stable. There

is nothing that this diagram can tell us about the actual time

line of the development of the system. Very important infor-

mation affecting the experimental outcome, such as the

dynamics and the formation of pre-nucleation assemblies as

demonstrated by time-dependent DLS experiments (Meyer et

al., 2012), are absent in such a phase diagram.

5. Summary: the use and limitations of crystallization
phase diagrams

The exact thermodynamic derivation of the isothermal W–P–

R phase diagram section allows a few fundamental principles

to be stated that apply irrespective of the details and the degree

of knowledge about a specific system. One needs to keep in

mind that the derivation presented here introduced only the

absolute minimum complexity necessary for a multi-compo-

nent system to exhibit distinct phase separation. The reality of

a macromolecular crystallization experiment is almost always

significantly more complex. Unfortunately, very little is known

a priori and with certainty in our complex real systems.

(i) The almost trivial first statement is that the system

obviously must be non-ideal. Non-ideality is the basis for

excess partial molar properties, and in multi-component

systems of sufficient non-ideality the phenomena of meta-

stability, supersaturation and compositional instability will

occur. The exact location of these regions can in principle be

experimentally determined; however, in the case of macro-

molecular crystallization only few model systems have been

examined in such detail.

(ii) The most likely experimental accessible feature in the

phase diagram is the solubility line, which determines the

maximum equilibrium protein concentration [P]max at any

given reagent concentration [R]. The commonly plotted

curved solubility line approximates a logarithmic law as is

typical for PEGs. The situation is considerably more complex

for salt solutions, where salting-in effects occur and the solu-

bility lines exhibit a maximum.

(iii) When solutions exceed the respective solubility limit,

the system may remain single phase, but is now supersaturated

and metastable. With increasing supersaturation, the prob-

ability of spontaneous nucleation in the system increases, upon

which it will return to equilibrium. The nucleation is prob-

ability a kinetic property, and amongst other parameters

depends on the degree of supersaturation (Garcı́a-Ruiz, 2003).

(iv) At a certain point the supersaturation approaches the

spinodal decomposition line, whereupon the system sponta-

neously separates into a protein-rich phase and saturated

protein solution. As at this level of supersaturation, the

process must happen instantaneously; the formation of

ordered material such as crystals is almost impossible. For

some model proteins such as lysozyme, extreme and atypical

supersaturation of several 100 mg ml�1 have been established,

but in general the supersaturation limit for protein solutions is

significantly lower.

(v) The ‘thermodynamically legal’ playground in this type of

diagram is the metastable state between the solubility line and

the decomposition line. The position of the latter is in general

unknown, but it can be expected that in typical cases it is not

too far from the solubility line, which should be considered

when drawing such lines. Thermodynamically, there is no

justification to subdivide the metastable region into a ‘meta-

stable’ and a ‘labile’ zone by drawing any hard lines. While

the intention is (presumably) to indicate increasing probability

of nucleation and thus of phase separation as a result of

increasing instability, there is no thermodynamic justification

for a dividing line suggestive of distinctly different phases. The

term ‘more metastable’ may intuitively express this fact but is

not part of the thermodynamic vocabulary. The system simply

becomes more supersaturated and more unstable. Even the

dashed lines drawn for example in the diagrams in Rupp

(2009) should be avoided in favour of a gradient fill (Figs. 8

and 10) or a similar continuous transition.

(vi) Crystals must be located in stable phase fields in

equilibrium with the solubility line. A priori, it is in general

unknown (1) whether such phase fields exist in a given

chemical system and (2) where (at what ratio of W, P and R)

these phase fields are located in the case that they do exist. We

are trying to screen for (1) by varying the chemical composi-

tion of [R] and within a given compositional system (2) for

variation of parameters affecting the kinetic behaviour or the

pathway through the diagram.

(vii) Thermodynamics notwithstanding, the equilibrium

states that we desire cannot be reached if the kinetics are

unfavourable. The degree of supersaturation is one of the

few thermodynamic parameters that can be clearly linked

to higher nucleation probability (Garcı́a-Ruiz, 2003). Micro-

seeding (Bergfors, 2003; D’Arcy et al., 2007, 2014), for

example, exploits the effect that more sparse nucleation can be

induced at lower supersaturation, where slower growth may

lead to fewer and better crystals. The role of kinetics and

the underlying dynamic microscopic phenomena and transient

phases (Meyer et al., 2012) in determining the path and the
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practical outcome of a crystallization experiment can hardly

be overemphasized.

(viii) Temperature changes bring us into a different

isothermal section. A small temperature change may or may

not vary the phase equilibria dramatically. Solubility may

either decrease or increase with temperature changes. In

contrast, owing to their dependency on kT, kinetic effects

generally slow down at lower temperature.

6. Conclusions

Crystallization phase diagrams are a valuable aid for visua-

lizing the possible phase relations and pathways through

the crystallization maze. Their origin in the thermodynamics

of non-ideal multi-component systems with miscibility gaps

establishes limits as to which features can be drawn in such

diagrams that are fundamentally correct (but not necessarily

known) and where, in the spirit of parsimony, creativity should

be restrained. To quote Confucius from his Analects, ca. 500

BC:

When you know a thing, to hold that you know it; and when you

do not know a thing, to allow that you do not know it – this is

knowledge.

APPENDIX A
Mini-review of thermodynamics

A1. Fundamental equations

A1.1. Fundamental equation. In its most general form, a

thermodynamic state � of a macroscopic system is defined by

the sum of products of energy-conjugated pairs of intensive

variables I and extensive variables E,

� ¼
P

i

EiIi: ð17Þ

Extensive variables depend on the amount of matter involved

(for example, volume V, entropy S and amount of species ni),

while intensive variables such as pressure P, temperature T

or chemical potential �i do not change as a function of the

amount of material involved. From an experimental point of

view, thermodynamic functions that depend on easy-to-

control intensive variables are the most useful.

The reaction of the system to change is described by the

perfect (complete) differential of (17) as a differential

fundamental equation

d� ¼
P

i

Ei dIi: ð18Þ

A1.2. Homogeneity of the fundamental equation. An

important property of the thermodynamic fundamental

equations is that they are scale-invariant homogeneous func-

tions of degree k = 1, i.e.

�ð�E1; �E2 . . .�EiÞ ¼ �
k�ðE1;E2 . . . EiÞ; ð19Þ

for which Euler’s homogenous function theorem holds that

d�ðEiÞ ¼
PN
i¼1

@�

@Ei

� �
Ej 6¼i

dEi: ð20Þ

The homogeneity condition (19) is necessary for the applica-

tion of Legendre transforms in x3.3, and relation (20) is used in

x3.5 when we establish the chemical potential as the property

determining the phase relations in a multi-component system.

A2. The chemical potential

The chemical potential � and the amount n of species i

in the system again form an energy-conjugated intensive–

extensive product: the chemical energy (the definition of � is

formally derived via equations 25 and 26).

It follows from (17) that

UðS;V; niÞ ¼
P

i

EiIi ¼ TS� PV þ
PN
i¼1

�ini ð21Þ

or in differential form,

dUðS;V; niÞ ¼
P

i

Ei dIi ¼ T dS� P dV þ
PN
i¼1

�i dni: ð22Þ

As used in x3.5, the deviations from the simple, ideal linear

relationship between the chemical potential and the number

of particles are fundamental for phase formation in non-ideal

systems. The question is how to make (21) and (22) useful to

derive crystallization phase diagrams.

A2.1. Definition of the chemical potential. The fact that the

fundamental equation of state in energy form U is homo-

geneous leads via (20) to the relation

dUðEiÞ ¼
PN
i¼1

@U

@Ei

� �
Ej 6¼i

dEi: ð23Þ

Therefore, for the variables S, V and ni in a multi-component

system,

dUðS;V; n1...NÞ ¼
@U

@S

� �
V;n

dS�
@U

@V

� �
T;n

dV

þ
PN
i¼1

@U

@ni

� �
S;V;nj 6¼i

dni: ð24Þ

Comparing the last term in (24) with that in (22), we can

establish a relation between the chemical potential and the

compositional change in the system,

PN
i¼1

@U

@ni

� �
S;V

dni ¼
PN
i¼1

�i dni; ð25Þ

from which the definition of the chemical potential follows:

@U

@ni

� �
S;V;nj6¼i

¼ �i: ð26Þ

Unfortunately, this is not yet a practically useful relation.

What is needed is a thermodynamic equation of state that does

not depend on hard-to-control extensive variables.
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A3. Legendre transformation

A most useful consequence of the equation of state being

a homogeneous function is the fact that we can apply a

Legendre transformation �. In principle, � replaces a given

function � with the envelope of its tangents:

� ¼ ’�
Pn

i

xi

@’

@xi

� �
: ð27Þ

Formally, � is a bijective transformation which allows us to

substitute one of the less useful extensive variables by its –

from an experimental point of view more useful – conjugated

intensive variable without loss of information:

�½�0ðEi;Ej; nÞ� ! �1ðIi;Ej; nÞ: ð28Þ

We wish to eliminate the impractical entropy first, and trans-

form

�½UðS;V; nÞ� ! AðT;V; nÞ: ð29Þ

This first Legendre transform is the Helmholtz energy A. It is

useful in statistical thermodynamics of gases, but not for our

purpose, as it still depends on the extensive and, in condensed

matter, hard-to-control extensive variable V.

A3.1. The second Legendre transformation of U(S, V, n)
leads to the Gibbs energy G(P, T, n). The second Legendre

transformation of the fundamental equation in energy form

U(S, V, n) is extremely useful as it yields the Gibbs (free)

energy G(P, T, n), which depends only on the easily control-

lable intensive variables T and P and the chemical composi-

tion defined by n. The moment that one can keep T and P

constant, which is easily accomplished, the Gibbs energy of

the system solely depends on its composition, which is exactly

what we need to obtain a phase diagram:

�½AðT;V; nÞ� ! GðP;T; nÞ: ð30Þ

A handy tool to remember the Legendre transforms of the

thermodynamic fundamental equations and its partial deri-

vatives and Maxwell relations is the SUV–VAT diagram or the

thermodynamic (Gibbs) square (Fig. 11).

We can directly read from the Gibbs square that G is a

function of (T, P) and, for example, that (@G/@T)P = �S or

(dG)P = �SdT. Reading the diagram, we can therefore

immediately write down the entire equation of state for G,

dGðP;T; niÞ ¼ V dP� S dT þ
PN
i¼1

�i dni: ð31Þ

dG(P, T, ni) is definitely something that we can work with as

experimental scientists, because we can easily keep T and P

constant, and the state of our system then depends only on

its composition. Under transformation, the definition of the

chemical potential as function of G then becomes, in analogy

to (26),

�i ¼
@G

@ni

� �
P;T;nj 6¼i

; ð32Þ

which is the partial molar Gibbs energy of component i.

The transformation from partial to mean molar properties via

the Legendre tangent representation (27) is provided in the

main section x3.5. When drawing G=x diagrams, note that

lim
xi!1
ð@G=@xiÞ =1.
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Figure 11
The thermodynamic square: one of the most useful mnemonics in
thermodynamics. In the centre of each side is the thermodynamic
function, indicated in bold, flanked by its variables. Starting from U, A
and H are the first Legendre transforms in T and P, respectively, and G is
the second transform in both P and in T. The derivatives of the functions
are obtained by following the arrows. An opposite direction indicates a
negative sign.
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