
Loss of JUNB/AP-1 promotes invasive prostate cancer
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Prostate cancer is a frequent cause of male death in the Western world. Relatively few genetic alterations have been identified,
likely owing to disease heterogeneity. Here, we show that the transcription factor JUNB/AP-1 limits prostate cancer progression.
JUNB expression is increased in low-grade prostate cancer compared with normal human prostate, but downregulated in high-
grade samples and further decreased in all metastatic samples. To model the hypothesis that this downregulation is functionally
significant, we genetically inactivated Junb in the prostate epithelium of mice. When combined with Pten (phosphatase and tensin
homologue) loss, double-mutant mice were prone to invasive cancer development. Importantly, invasive tumours also developed
when Junb and Pten were inactivated in a small cell population of the adult anterior prostate by topical Cre recombinase delivery.
The resulting tumours displayed strong histological similarity with human prostate cancer. Loss of JunB expression led to
increased proliferation and decreased senescence, likely owing to decreased p16Ink4a and p21CIP1 in epithelial cells. Furthermore,
the tumour stroma was altered with increased osteopontin and S100 calcium-binding protein A8/9 expression, which correlated
with poor prognoses in patients. These data demonstrate that JUNB/AP-1 cooperates with PTEN signalling as barriers to invasive
prostate cancer, whose concomitant genetic or epigenetic suppression induce malignant progression.
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The incidence of prostate cancer is increasing in the Western
world and patients with invasive disease have poor
prognosis.1 Serum prostate-specific antigen (PSA) is used
as a biomarker for cancer detection, but has shown limited
predictive value for progression.2 Thus, there is an urgent
need for improvements in both diagnosis and therapy.
Presumably due to disease heterogeneity, very few genes
have been identified that control progression of benign
neoplasia to invasive prostate cancer. The use of mouse
models has revealed that key genes and pathways like
phosphatase and tensin homologue/protein kinase B (PTEN/
AKT), TRP53 and transforming growth factor beta/Smad are
crucial for prostate cancer.3–6

The Activating Protein 1 (AP-1) transcription factor and its
upstream kinases have been implicated in prostate cancer
initiation/progression.7–11 c-Jun or c-Fos overexpression
increased proliferation and invasiveness of prostate cancer
cell lines and c-Fos, c-Jun and phosphorylated-c-Jun are
increased in prostate cancer samples.8,10 In contrast,
although the c-JunN-terminal kinase (JNK) signalling pathway
is a functional target of PTEN,11 JNK ablation in mouse
prostate epithelium leads to invasive prostate cancer, when
combined with Pten loss.9 These studies indicate that
although AP-1 members are implicated in prostate cancer,
their functions might be stage- and context-specific.
JunB is a close homologue of c-Jun with tumour-

suppressive function in the myeloid lineage,12 which was

proposed to be functionally relevant in human prostate cancer
progression.13 Here, we show that JunB is downregulated in
high-grade human prostate cancer. Moreover, using geneti-
cally modified mouse models, we demonstrate that although
the loss of Junb in the prostate epithelium does not affect
prostate homeostasis, combined loss of Junb andPten even in
a limited number of adult cells, leads to early-onset and
invasive prostate cancer. Finally, we describe how JunB
prevents the progression of invasive Pten-deficient prostate
neoplasia by affecting both the tumour cells and the stroma.

Results

Decreased JUNB levels in prostate cancer progression.
Prostate sections from prostatectomy samples were stained
for JUNB expression by immunohistochemistry (IHC). As
seen in Figure 1a, areas with normal prostate epithelia
displayed low or undetectable JUNB, whereas areas with
low-grade prostate cancer showed strong staining. Remark-
ably, and consistent with a previous report,13 JUNB was
almost undetectable in the areas where the tumour had
progressed to high grade (Figure 1a).
Next, JUNB mRNA expression was compared at different

stages of prostate cancer using publicly available data
sets.14–16 Strikingly, metastatic prostate cancer samples
displayed significantly decreased JUNB mRNA expression
in three independent data sets, when compared with primary
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tumours (Figure 1b). Interestingly, decreased c-JUN and
c-FOS mRNA expression was also observed, whereas no
consistent changes were noted for JUND, FRA1 and FRA2
across the three data sets (Supplementary Figure 1).
Collectively, these data indicate that JUNB is downregulated,
both at the mRNA and protein level, in aggressive prostate
cancer.

JunB loss promotes invasive prostate cancer in mice
lacking Pten. We next analyzed JunB expression in the
PtenΔP (Ptenflox/flox; PSA:CreT/+) mouse model, where condi-
tional inactivation of Pten is achieved by selective expression
of Cre recombinase in the prostate epithelium.5,17 Consistent
with our observations in human samples, IHC and mRNA
expression revealed low to absent JunB in wild-type prostate
and strong expression in prostatic intraepithelial neoplasia
(PIN), which are low-grade neoplasia occurring in PtenΔP

mutants (Figure 2a and Supplementary Figure 2a).
We next generated JunBΔPmice, with specific inactivation of

Junb in the prostate epithelium (JunBflox/flox; PSA:CreT/+).
JunBΔP mutant mice were viable and fertile and no histological
alterationswere observed in the prostate up to 9months of age
(Figure 2b), indicating that JunB is dispensable for prostate
development and homeostasis.
To address the functional relevance of JunB in prostate

cancer, JunB and Pten mutants were inter-crossed
(JunBflox/flox; Ptenflox/flox; PSA:CreT/+). The resulting JunBΔP;
PtenΔP double mutants developed prostate cancer as early as
8 weeks of age (Figure 2c). In addition, nearly 50% of double
mutant mice showed invasive prostate cancer at 12 weeks of
age, which was not observed in PtenΔP single mutants

(Figure 2d and Supplementary Figure 2b). Interestingly,
although c-Jun expression was also increased in PIN from
PtenΔP mice (Supplementary Figure 2c), c-JunΔP; PtenΔP

(c-Junflox/flox; Ptenflox/flox; PSA:CreT/+) mice developed PIN
with a similar latency as PtenΔP mice, and no invasive prostate
cancer was observed (Supplementary Figure 2b). IHC
confirmed the specific loss of c-Jun expression in prostate
epithelium (Supplementary Figure 2c). These data indicate
that JunB, but not c-Jun, prevents invasive prostate cancer in
mice lacking Pten.
We, therefore, decided to focus our attention on investigat-

ing the function of JunB in prostate cancer. In-depth analyses
revealed loss of basal cells and disrupted basal membranes in
the invasive JunBΔP; PtenΔP double-mutant tumours, which is
characteristic of human prostate cancer (Figure 2e and
Supplementary Figures 2d and e). IHC confirmed that JunB
was similarly decreased in the prostate epithelium of invasive
and noninvasive tumours, whereas stromal and immune cells
remained JunB positive (Figure 2f). Molecular analyses
revealed unaltered phosphorylation of AKT, extracellular
signal-regulated kinase (ERK), p65 and comparable AP-1
and Smad4 gene expression between JunBΔP; PtenΔP and
PtenΔP tumours (Supplementary Figures 2f and h). Interest-
ingly, JNK phosphorylation appeared decreased in double-
mutant tumours (Figure 2g), consistent with the reported
function of JNK in invasive prostate cancer.9 These data
indicate that JunB has an important role in the invasive
progression of prostate neoplasia caused by Pten loss.

JunB loss leads to increased proliferation and decreased
senescence. JunB has been shown to affect proliferation
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Figure 1 JUNB expression is decreased in high-grade and metastatic prostate cancer. (a) Tissue sections from prostatectomy samples were stained with an antibody to
JUNB (brown). Representative area of low- and high-grade prostate cancer is shown from the same prostatectomy sample. Red box indicates the area of the high magnification.
Arrowheads mark basal cells and dotted black line marks the border between high-grade cancer and the stoma. N (normal epithelia), T (tumour) and S (stoma); n= 8. (b) JUNB
expression from tumour and metastasis samples are shown from the data generated by16 23 tumour and 9 metastasis samples,14 64 tumour samples and 24 metastasis samples
and15 62 tumour and 9 metastasis samples. Data were analyzed using Nextbio. P-values are indicated for each analysis
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and senescence,18,19 two cellular processes relevant to
prostate cancer. JunBΔP; PtenΔP double-mutant tumours
had significantly more Ki67-positive proliferating cells in the
noninvasive areas, when compared with PtenΔP tumours
(Figure 3a,Supplementary Figure 3a) and this increase was
maintained in the invasive areas (Figure 3b).
Transient-amplifying cells (TACs) area subset of basal cells

from which prostate cancer is thought to originate and in
human samples, JUNB was suggested to maintain TAC
senescence.13 Although the number of TACs was not different
between PtenΔP and noninvasive JunBΔP; PtenΔP tumours
(Supplementary Figures 3b and c), the double-mutant

tumours displayed weaker senescence-associated beta-
galactosidase activity (Figure 3c). Furthermore, IHC revealed
decreased p16Ink4a immune reactivity in JunBΔP; PtenΔP

tumours, particularly in invasive areas (Figure 3d). Decreased
p16Ink4a, but also p21CIP1, was confirmed by western blot
analyses (Figure 3e).
Decreased p21CIP1 expression between primary and meta-

static prostate cancer was also observed in publicly available
human patient data sets (Supplementary Figure 3f). Further-
more, p21CIP1 and JUNB expressions positively correlated,
suggesting an interaction between these two genes and
prostate cancer progression (Figure 3f). Collectively, these
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data indicate that, both in mouse models and in patients, loss
of JunB likely affects the proliferation and senescence of the
neoplastic prostatic epithelium by decreasing p16Ink4a and
p21CIP1 expressions.

JunB loss in prostate epithelium affects the surrounding
stroma. Enhanced expression of the calcium-binding
proteins S100 calcium-binding protein A8 and A9 (S100A8
and S100A9) was observed in human prostate cancer,20

and Jun/AP-1 controls the S100a8/S100a9 expression in
mouse epidermis.21,22 Increased expression of S100A8 and
S100A9 was detected by western blot and IHC in JunBΔP;
PtenΔP tumours, while mRNA expression was unchanged
(Figure 4a and c). The S100A8- and S100A9-positive cells
appeared to be non-epithelial and IHC co-staining with F4/80
indicated that most positive cells were of the monocyte/
macrophage lineage (Figure 4b, Supplementary Figure 4a).
Surprisingly, pStat3 or Il-1b and Ccl2 expressions were not
different between JunBΔP; PtenΔP and PtenΔP tumours
(Supplementary Figure 4b).
Osteopontin (SPP1) is a part of the prognostic signature for

human prostate cancer4 and is modulated by AP-1 in several
tissues, such as the lung and liver.23,24 Consistent with the
increased invasiveness, Spp1 mRNA was increased in
JunBΔP; PtenΔP tumours (Figure 4d). Interestingly, IHC
analyses indicated that SPP1 was increased in invasive and
noninvasive double-mutant tumours mainly in the stroma

(Figure 4e). Furthermore, expression of S100A8, S100A9 and
SPP1 was increased in human metastatic prostate cancer
samples and inversely correlated with JUNB was increased
(Figure 4f). These data indicate that the loss of JunB in Pten-
deficient prostate epithelium leads to increased S100A8,
S100A9 and SPP1 in the stroma through a non-cell-
autonomous mechanism.

Targeting JunB and Pten in a limited cell number leads to
invasive prostate cancer. We took advantage of an
orthotopic viral Cre delivery approach25 to assess the genetic
interactions between Pten and JunB in a clonal expansion
model. Adeno-Cre was injected in the anterior prostate of
6-week-old Ptenflox/flox or JunBflox/flox; Ptenflox/flox mice and the
resulting somatic mutants (PtenΔAd and JunBΔAd; PtenΔAd)
were analyzed 30 weeks later for tumour formation. Macro-
scopic lesions could be identified in the injected lobe of a
subset of mutants (Figure 5a). Microscopic analysis revealed
that although ~50% of injected mice had formed lesions,
lesion incidence was not related to the genotype. However,
morphometric analysis indicated that JunBΔAd; PtenΔAd

lesions were significantly larger than PtenΔAd lesions
(Figure 5b). Furthermore, histological analysis revealed that
half of the JunBΔAd; PtenΔAd tumours were invasive, whereas
none of the PtenΔAd PIN had progressed (Figure 5c and d).
Increased proliferation was also apparent in JunBΔAd;
PtenΔAd lesions by Ki67 IHC (Figure 5e). IHC confirmed that
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the JunB expression was abolished in JunBΔAd; PtenΔAd

tumours and all lesions stained positive for phospho-AKT
regardless of the genotype (Figure 5f,Supplementary Figure 5a).
The invasive JunBΔAd; PtenΔAd lesions were lacking basal
cells, consistent with the observations in the genetic
inactivation model. In addition, areas with invasive basal
cells and TACs were identified (Supplementary Figure 5b).

IHC showed reduced p16Ink4a in JunBΔAd; PtenΔAd tumours
when compared with PtenΔAd lesions, whereas SPP1,
S100A8 and S100A9 expressions were increased in the
stroma (Supplementary Figure 6). Overall, these results show
that the combined loss of JunB and Pten in a subset of adult
prostate epithelial cells is sufficient to promote invasive
cancer.
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Discussion

Dysregulation of the PTEN/AKT pathway is the most frequent
event in prostate cancer26 and it is, therefore, important to
identify the cofactors modulating prostate cancer progression
in the context of altered PTEN/AKT signalling. Mouse models
with specific loss of Pten in combination with other genes have
unravelled prostate cancer modulators, such as TRP53,
SMAD4 and JNK.4,6,9,3,27–29 We show here that JunB limits
tumour progression of Pten-deficient prostate neoplasia as the
loss of Junb, even in few cells, is sufficient to promote
invasiveness.

In human samples, JUNB protein and mRNA expression
wasdecreased in advancedandmetastatic disease. Interestingly,
we additionally observed that JUNB was upregulated in
human but also in mouse prostate low-grade hyperplasia,
when compared with normal prostate epithelium. This
suggests that JunB could have a dual function, promoting
the development of benign lesions and limiting subsequent
invasion. However, inactivating JunB in the prostate by two
independent approaches revealed that JunB is dispensable
for PIN development, at least in the context of Pten loss, as the
incidence of prostate tumours was not altered upon additional
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inactivation of Junb. In addition, although the combined
inactivation of Pten and JunB elicited invasive prostate cancer,
JunB was found dispensable for prostate development and no
tumours developed in single Junb-deficient mice.
Intriguingly, our bioinformatic analyses of human

prostate cancer data sets revealed decreased c-Jun
mRNA in metastatic samples. Increased c-Jun protein and
phosphorylated-c-Jun is documented in prostate cancer
samples and is associated with worse patient outcome.8,10

This would indicate that, unlike JunB, the regulation of c-Jun
expression in human prostate cancer is largely post transcrip-
tional and rather supports an oncogenic function for c-Jun.
c-Jun was also increased in PtenΔP PIN samples. In addition,
no significant differences in tumorigenesis were observed,
when c-Jun was inactivated in PtenΔP mice and no invasive
prostate cancer was observed up to 6months of age. Although
we cannot exclude subtle and minor differences given the
number of mice examined, c-Jun appears dispensable for the
development of low-grade neoplasia in PtenΔP mutants.
Prostate cancer is proposed to arise from a single clone

from which sub-clones can emerge.30–32 We took advantage
of an orthotopic adenovirus-based, Cre delivery approach25 to
model the human scenario. Targeting few epithelial cells in the
prostate was sufficient to trigger invasive prostate cancer,
when both Junb and Pten were inactivated. Thus, two
independent ablation methods led to the same result
and increased the invasiveness of Pten-deficient prostate
epithelial cells. It should be noted that pathological examina-
tion of the lungs and lymph nodes did not reveal metastatic
cells in any of the mutant mice, possibly owing to the relatively
short observation period.
Loss of Junb resulted in increased proliferation of

Pten-deficient prostate cells and this increase was indepen-
dent of invasiveness. Decreased expression of the cell cycle
inhibitors p21CIP1 and p16Ink4a was consistently observed in
JunB/Pten-deficient tumours, and p21CIP1 and JUNB expres-
sions correlated in human samples. Increased proliferation
was accompanied by a decrease in cellular senescence, a
process that opposes cancer progression upon Pten loss.33

Thus, Junb can be added to the limited list of genes, such as
Trp53,6 Jnk 9 andSmad4,4 which allow bypassing senescence
and promoting tumourigenesis in Pten-deficient PIN.
Although inactivation of the Ink4a/Arf locus, encoding both

p16Ink4a and p19Arf, leads to accelerated PIN development in
Pten+/− mice,34 combined deletion of Pten and p19Arf in
prostate epithelium does not accelerate prostate cancer.35

This indicates that p16Ink4a is the relevant gene in the Ink4a/Arf
locus for Pten-associated prostate cancer. In vitro experiments
using primary human TACs suggested that JUNB maintains
TAC senescence by increasing p16Ink4a mRNA,13 consistent
with the modulation of proliferation, senescence and p16Ink4a

transcription by JunB inmouse fibroblasts.19,36 How the lack of
JunB leads to decreased p16Ink4a and p21CIP1 proteins in
JunB/Pten-deficient lesions in vivo with no apparent effect on
mRNA remains to be determined. Differences in JunB-
mediated transcriptional regulation between the distinct cell
types, as already documented for p16Ink4a and cyclind1 in
hematopoietic cells,37 could explain this discrepancy. It is also
possible that changes in other transcriptional regulators and/
or signalling pathways counterbalance the direct effect of JunB

on p16Ink4a transcription in prostate epithelial cells, while
promoting post-transcriptional effects. One pathway could
involve JNK, as phospho-JNK was decreased in JunB/Pten-
deficient lesions and JNK deficiency leads to comparable
changes in the proliferation and senescence in Pten-deficient
PIN.9

Interestingly, although loss of JunB expression did not alter
the number of infiltrating immune cells, in particular F4/80-
positive cells (data not shown), the loss of JUNB led to
increased SPP1 and S100A8/A9 expressions in the stroma,
particularly in monocytes/macrophages. As SPP1 and
S100A8/A9 are associated with aggressive prostate cancer
with poor prognosis,4,20 themechanistic basis of the cross-talk
between the tumour and stroma in this model warrants further
investigations. Likewise, although AKT signalling has been
shown to modulate JunB/AP-1 expression and activity
in vitro,38 studying the mechanism by which JunB/AP-1 is
downregulated in human patient samples through genetic/
epigenetic or environmental cues should be at centre stage for
future experiments.
In conclusion, our mouse genetic data establish JunB as a

novel gate keeper for prostate cancer progression in the
context of pten loss. As PTEN and its downstream pathway
are commonly lost or dysfunctional in human prostate cancer,
our findings are likely of relevance for the development of
diagnostic and therapeutic strategies.

Materials and Methods
Human samples. Prostate samples originate from prostatectomy. Four
samples from well-differentiated samples with a Gleason score of 5–6 and four
samples from advanced adenocarcinoma with Gleason 8–9 and perineural invasion
were used for the study.

Mice and treatments. Junbflox/flox, c-Junflox/flox, Ptenflox/flox and PSA:Cre mice
have been previously described.5,17,39,40 Mice were maintained on a mixed
C57Bl6x129sv background. Mice were killed at 8–12 weeks and age-matched
littermates were used. Ptenflox/flox or Junbflox/flox;Ptenflox/flox mice were injected with
108 pfu Adeno-Cre (Iowa University) virus in 25 μl PBS at 6 weeks of age.25

Analysis for lesions 30 days later showed none to three small focal areas of pAKT-
positive cells (data not shown). All experiments were stopped 30 weeks after virus
injection and the prostate, lymph nodes and lungs were harvested for analysis.

Immunohistochemistry. Tissues were fixed in 4% PFA and embedded in
paraffin. Haematoxylin and eosin staining was performed according to the standard
procedures. Antigen retrieval was performed in a pressure cooker using citrate
buffer at pH6. The following antibodies were used for IHC: JunB (CS3753), pAKT
(CS4060), Ki67 (Dako, Barcelona, Spain; SP1 (rabbit) or TEC-3 (rat)), CK5
(PRB-160P, Covance, Madrid, Spain), CK8 (Troma1, Developmental Studies
Hybridoma Bank (DSHB), University of Iowa, Iowa City, IA, USA), p16 (SC-1661),
S100A9 (SC-8115), SPP1 (R&D Systems, Madrid, Spain; AF808), smooth muscle
actin (SMA, Sigma A2547, Madrid, Spain) and F4/80 (Biolegend, Madrid, Spain).
The appropriate secondary antibodies coupled with FITC455, AlexaFluorF594 or
HRP were used for fluorescence or coupled with a chromogenic staining.
Counterstaining was performed using DAPI or haematoxylin.

Senescence. Tissues were washed through a sucrose gradient and frozen in
OCT. Eight-micron sections were cut and dried at 37 °C for 1 h before being washed
with PBS for three times. Tissues were fixed for 10 min and incubated overnight with
the staining solution (CS9860) at 37 °C, according to the manufacturer’s
instructions.

Protein isolation and western blots. Tissues were disrupted using a
Precellys 24 device (Bertin, Lyon, France) in RIPA buffer containing a protease
inhibitor cocktail (Sigma), 0.1 mM Na3VO4, 40 mM B-glycerophosphate,
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40 mM NaPPi, 1 mM NaF. Approximately 50 μg of protein per sample were loaded
for western blot analysis and loading was eventually adjusted using actin (Sigma,
A-2066) and vinculin (Sigma, V-9131). The membranes were blocked with 2.5%
BSA in TBS-T before being incubated with the primary antibody. The following
antibodies were used: pJNK (CS9251), c-Jun (CS9165), JNK (CS9252), pAKT
(CS4060), AKT (CS9272) pErk1/2 (CS9101), p-p65 (CS3031) p65 (SC-372), p16
(SC-1207), p21 (BD556430), pStat3 (CS3131), Stat3 (CS9132), S100A8 (R&D
Systems, AF3059) and S100A9 (R&D Systems, AF2065). Appropriate HRP-linked
secondary antibodies were purchased from Amersham and DAKO.

Quantitative reverse transcription PCR. RNA was isolated with Trizol
(Sigma) and complementary DNA synthesized with Ready-To-Go-You-Prime-First-
Strand Beads (GE Healthcare, Madrid, Spain), using 1 μg of DNAse-pretreated total
RNA and random hexamers. Quantitative PCR was performed using GoTaq qPCR
Master Mix (Promega, Madrid, Spain) and an Eppendorf fluorescence thermocycler.
The comparative cycle threshold method was used for quantification. Expression
levels were normalized using at least one housekeeping gene (actin, gapdh). Primer
sequences are available upon request.

Data mining. Prostate bioset from Chandran et al.,14 Lapointe et al.15 and
LaTulippe et al.

16

were analysis in NextBio. Chandran et al.14 has 64 tumour
samples and 24 metastasis samples. LaTulippe et al.16 has 23 tumour and 9
metastasis samples. Lapointe et al.15 (2004) has 62 tumour and 9 lymph node
metastasis samples. Gene expressions from primary prostate cancer were
compared with metastatic-derived prostate cancer. P-values were generated by
NextBio analysis base on Student’s t-test. Published array data analyses were used
to generated box-plot and correlations analysis.

Statistical analyses. All experiments were performed at least three times and
data in bar graphs represent mean±S.D. of the indicated sample numbers.
Statistical analysis was performed using non-directional two-tailed Student’s t-test.
*Po0.05 was considered as significant.

Ethical study approval. Paraffin sections of prostate tissues originating from
prostatectomy were provided by the CNIO tumour bank in accordance with the
ethical guidelines of the Helsinki Declaration. Mouse handling and experimentation
was done in accordance with local and institutional guidelines and regulations.
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