Open Access COSO

©The Korean Society of Plant Pathology

Development of PCR and TaqMan PCR Assays to Detect *Pseudomonas coronafaciens*, a Causal Agent of Halo Blight of Oats

Ji-Hye An¹, Young-Hee Noh¹, Yong-Eon Kim¹, Hyok-In Lee² and Jae-Soon Cha^{1*}

¹Department of Plant Medicine, Chungbuk National University, Cheongju 361-763, Korea ²Animal and Plant Quarantine Agency, Anyang 430-016, Korea

(Received on September 24, 2014; Revised on February 7, 2015; Accepted on February 7, 2015)

Pseudomonas coronafaciens causes halo blight on oats and is a plant quarantine bacterium in many countries, including the Republic of Korea. Using of the certificated seed is important for control of the disease. Since effective detection method of *P. coronafaciens* is not available yet, PCR and TaqMan PCR assays for specific detection of *P. coronafaciens* were developed in this study. PCR primers were designed from the draft genome sequence of P. coronafaciens LMG 5060 which was obtained by the next-generation sequencing in this study. The PCR primer set Pc-12-F/Pc-12-R specifically amplified 498 bp from the 13 strains of P. coronafaciens isolated in the seven different countries (Canada, Japan, United Kingdom, Zimbabwe, Kenya, Germany, and New Zealand) and the nested primer set Pc-12-ne-F/Pc-12-ne-R specifically amplified 298 bp from those strains. The target-size PCR product was not amplified from the non-target bacteria with the PCR and nested primer sets. TaqMan PCR with Pc-12-ne-F/Pc-12-ne-R and a TaqMan probe, Pc-taqman, which were designed inside of the nested PCR amplicon, generated Ct values which in a dose-dependent manner to the amount of the target DNA and the Ct values of all the P. coronafaciens strains were above the threshold Ct value for positive detection. The TaqMan PCR generated positive Ct values from the seed extracts of the artificially inoculated oat seeds above 10 cfu/ml inoculation level. PCR and TaqMan PCR assays developed in this study will be useful tools to detect and identify the plant quarantine pathogen, P. coronafaciens.

Keywords : detection, halo blight, oat, PCR, TaqMan PCR

*Corresponding author.

Phone) +82-43-261-2554, FAX) +82-43-271-4414 E-mail) jscha@cbnu.ac.kr Halo blight, an important disease of the oats is caused by *Pseudomonas coronafaciens* (Elliott, 1920; Young et al., 1978) and occurs in relatively cool and moist climates leading to substantial economic losses (Marten et al., 1984). It produces light green, oval spots on the leaves of the plant with dark water-soaked centers (Marten et al., 1984; Harder and Haber, 1992; Wallwork, 1992). *P. coronafaciens* survives on plant debris, soil and seeds (Martens et al., 1984). One of the effective control measures of the disease is prevention of pathogen transfer to the other plants using of the certificated seed (Collins, 2010). Also, *P. coronafaciens* is a plant quarantine bacterium in many countries, including the republic of Korea. For the certificated seed program and plant quarantine, the specific and effective detection method must be available.

Various tests can be used to detect the seed-borne pathogens, such as plating on selective media, ELISA, seedling grow-out tests, PCR, real-time PCR and DNA microarrays (Walcott, 2003). Among these techniques, plating on selective media and seedling grow-out tests are laborious and time-consuming and the PCR assay is more sensitive and time-saving than ELISA (Cho et al., 2010). In particular, the TaqMan PCR assay, which detects microorganisms quantitatively with a TaqMan probe, has been shown to be successful in detection and identification of seed-borne pathogens (Bella et al., 2008; Schena et al., 2004; Finetti-Sialer and Ciancio, 2005). For *P. coronafaciens*, however, effective detection method from oat seeds is not available. Any PCR assay for the specific detection of *P. coronafaciens* has not been published yet.

In this study highly specific PCR and TaqMan PCR assays for detection of *P. coronafaciens* have been developed. For development of the *P. coronafaciens* - specific PCR assays, information for the unique nucleotide sequence of *P. coronafaciens* must be available. Since there are not many gene sequences of *P. coronafaciens* available in the GenBank, in the present study, next-generation sequencing analysis was used to obtain a whole draft genome

An et al.

sequence of *P. coronafaciens*. From the genome sequence, PCR primers were designed for the PCR and TaqMan PCR assays which were specific for the *P. coronafaciens*.

Materials and Methods

Bacterial strains and cultures. Strains of *P. coronafaciens* isolated in Canada, Japan, United Kingdom, Zimbabwe, Kenya, Germany and New Zealand were obtained from LMG (Belgian Coordinated Collection of Microorganisms, Laboratory of Microbiology, University of Gent, Belgium) and from KACC (Korean Agricultural Culture Collection, Rural Develpoment Administration, the Republic of Korea). For the non-target bacteria, strains related to *P. coronafaciens* in genus *Pseudomonas* or the representative strains of common plant pathogenic bacteria in genus *Acidovorax, Pectobacterium, Ralstonia, Rhodococcus, Xanthomonas*, and *Clavibacter* were collected from the various culture collections (Table 1). The bacteria were routinely grown in nutrient agar media containing 8 g of

Table 1. List of *Pseudomonas coronafaciens* strains, the non-target bacterial strains of *Pseudomonas* spp. and other plant-pathogenic bacterial strains used in this study

Strain ^{ab}		Host ^c	Origin ^c	Year ^c
Acidovorax				
avenae subsp. avenae	NCPPB 1011	Zea mays	USA	1958
Clavibacter				
michiganensis subsp. incidiosus	NCPPB 1020	Medicago sativa	Canada	nk
michiganensis subsp. michiganensis	NCPPB 1064	Lycopersicon esculentum	Italy	1961
michiganensis subsp. sepedonicus	NCPPB 2137	Solanum tuberosum	Canada	nk
Pectobacterium				
carotovorum subsp. carotovorum	NCPPB 312	Solanum tuberosum	Denmark	nk
Pseudomonas				
coronafacines	KACC 12133	nk	nk	nk
	KACC 13262	nk	nk	nk
	LMG 2170	Bromus sp.	Canada	1962
	LMG 2330	nk	nk	1966
	LMG 5030	Lolium multiflorum	Japan	1967
	LMG 5060 ^b	Avena sativa	United Kingdom	1958
	LMG 5061	Secale cereale	Canada	1962
	LMG 5081	Avena sativa	Zimbabwe	1971
	LMG 5380	Avena sativa	Kenya	1970
	LMG 5449	Avena sativa	Germany	1959
	LMG 5452	Avena sativa	New Zealand	1969
	LMG 5536	Avena sativa	United Kingdom	1965
	LMG 13190	Avena sativa	nk	nk
savastanoi pv. glycinea	NCPPB 1134	Glycine javanica	Zimbabwe	1961
savastanoi pv. phaseolicola	KACC 10575	Phaseolus vulgaris	Poland	nk
savastanoi pv. savastanoi	NCPPB 639	Olea europaea	Yugoslavia	nk
syringae pv. actinidiae	KACC 10582	Actinidia chinensis	Rep. of Korea	1999
<i>syringae</i> pv. <i>antirrhini</i>	ICMP 4303	Antirrhinum majus	United Kingdom	1965
syringae pv. aptata	DSM 50252	Beta vulgaris	nk	nk
syringae pv. atrofaciens	LMG 5095	Triticum aestivum	New Zealand	1968
syringae pv. berberidis	NCPPB 2724	Berberis sp.	New Zealand	1972
syringae pv. ciccaronei	NCPPB 2355	Ceratonia siliqua	nk	1969
<i>syringae</i> pv. <i>delphinii</i>	ICMP 529	Delphinium sp.	New Zealand	1957
<i>syringae</i> pv. <i>dysoxyli</i>	ICMP 545	Dysoxylum spectabile	New Zealand	1949
syringae pv. eriobotryae	NCPPB 2331	Eriobotrya japonica	United Kingdom	1970
syringae pv. helianthi	NCPPB 1229	Helianthus annuus	Zambia	1962

Table 1. Continued

Strain ^{ab}		Host ^c	Origin ^c	Year ^c
syringae pv. japonica	ICMP 6305	Hordeum vulgare	Japan	1951
syringae pv. lachrymans	ATCC 11965	Cucumis sativus	nk	nk
<i>syringae</i> pv. <i>lapsa</i>	ATCC 10859	Triticum aestivum	nk	1978
syringae pv. maculicola	ICMP 3935	Brassica oleracea	New Zealand	1965
<i>syringae</i> pv. <i>mellea</i>	ICMP 5711	Nicotiana tabacum	Japan	1968
<i>syringae</i> pv. <i>mori</i>	ICMP 4331	Morus alba	Hungary	1958
syringae pv. morsprunorum	ICMP 5795	Prunus domestica	nk	nk
syringae pv. myricae	ICMP 7118	Myrica rubra	Japan	1978
<i>syringae</i> pv. <i>panici</i>	NCPPB 1498	Panicum sp.	nk	nk
<i>syringae</i> pv. <i>papulans</i>	ICMP 4040	Malus domestica	USA	nk
syringae pv. passiflorae	NCPPB 1386	Passiflora edulis	New Zealand	1962
syringae pv. persicae	NCPPB 2761	Prunus persica	France	1974
<i>syringae</i> pv. <i>pisi</i>	ICMP 4433	Pisum sativum	Canada	1946
syringae pv. ribicola	NCPPB 963	Ribes aureum	nk	nk
syringae pv. sesame	NCPPB 1016	Sesamum indicum	Yugoslavia	nk
syringae pv. syringae	NCPPB 388	Oryza sativa	Hungary	nk
<i>syringae</i> pv. <i>tabaci</i>	ICMP 2835	Nicotiana tabacum	Hungary	1959
syringae pv. tagetis	ICMP 4091	Tagetes erecta	Zimbabwe	1972
syringae pv. tomato	NCPPB 2683	Lycopersicon esculentum	New Zealand	1972
syringae pv. ulmi	NCPPB 632	<i>Ulmus</i> sp.	Yugoslavia	1958
Ralstonia				
Solanacearum	NCPPB 339	Solanum tuberosum	Israel	nk
Rhizobium				
radiobacter	DSM 30205	Malus sp.	nk	1972
rhizogenes	ATCC 11325	Malus domestica	nk	nk
rubi	NCPPB 1854	Rubus ursinus var. loganobaccus	USA	1942
vitis	NCPPB 3554	Vitis vinifera	Australia	1977
Rhodococcus				
fascians	LMG 3601	Lillium speciosum cv. Rubrum	Belgium	nk
Xanthomonas				
campestris pv. campestris	KACC 10377	Brassica oleracea var. capitata	Rep. of Korea	nk
campestris pv. vesicatoria	KACC 11157	Capsicum annuum	Rep. of Korea	1999
<i>oryzae</i> pv. <i>oryzae</i>	KACC 10331	Oryza sativa	Rep. of Korea	nk

^aATCC, American Type Culture Collection, USA; DSM, DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Germany; ICMP, International Collecti on of Micro-organisms from Plants, Landcare Research, New Zealand; KACC, Korean Agricultural Culture Collection, Rural Development Administration, Rep. of Korea; LMG, Collection of the Laboratorium voor Microbiologie en Microbiele Genetica, Ghent University, Belgium; NCPPB, National Collection of Plant Pathogenic Bacteria, United Kingdom.

^bThis strains was used for genome sequencing by NGS.

°nk, not known.

nutrient broth and 15 g of agar per liter.

Genome sequencing and PCR primer design. Whole genome shotgun sequencing of *P. coronafaciens* LMG 5060 was performed using the Roche/454 pyrosequencing method on a genome sequencer with FLX titanium (Margulies et al., 2005). ORF prediction was performed with Glimmer v. 3.02 (Delcher et al., 2007), Prodigal (Hyatt et al., 2010),

and GeneMark.hmm-P (Lukashin and Borodovsky, 1998). ORFs from the draft genome sequence of *P. coronafaciens* LMG 5060 with more than 500 base pairs were BLASTed in the gene bank. To design the primers, candidate ORFs were selected from the ORFs with lower than 80% nucleotide homology to any known genes. The PCR primers were designed with Primer 3 (v. 0.4.0). The specificity of the primers for *P. coronafaciens* was analyzed by PCR. Nested

primers and the nucleotide sequence for the TaqMan probe were designed from amplicon sequence of *P. coronafaciens*-specific primers. All the primers and the TaqMan probe used in the study were synthesized by Bioneer Co., Ltd (Daejeon, Korea) or NeoProbe Co., Ltd. (Daejeon, Korea). The TaqMan probe was labeled at the 5' end with FAM and at the 3' end with TAMRA.

PCR and TaqMan PCR assays. The genomic DNA was extracted from the bacterial cells using the GeneAll Exgene[™] Cell SV kit (GeneAll Biotechnology, Seoul, Korea) according to the manufacturer's protocol. DNA concentrations were determined with a Qubit[™] fluorometer (Invitrogen[®], Carlsbad, CA, USA).

The PCR assays used 1 µl of template DNA in a 25 µl reaction mixture containing 2 mM of Tris-HCl (pH 8.0), 10 mM of KCl, 10 uM of EDTA, 100 uM of DTT, 0.05% Tween 20, 0.05% Nonidet P-40, 5% glycerol, 2.5 mM of dNTP, 5 units of Ex Taq DNA (TaKaRa Bio Inc., Shiga, Japan), and 10 pM of each primer. The reactions were performed in a T Gradient Thermal Cycler (Biometra, Göttingen, Germany) programmed for one cycle of 10 min at 95°C, followed by 35 cycles of 30 s at 95°C, 30 s at 60°C, and 30 s at 72°C, with a final extension step for 7 min at 72°C. The amplicons were analyzed by electrophoresis in a 2% agarose gel in TAE buffer.

The TaqMan PCR assay was carried out using 2 μ l of DNA template, 8.5 μ l of Premix Ex Taq (TaKaRa Bio Inc., Shiga, Japan), 1 μ l of TaqMan probe (10 pmoles/ μ l), 0.5 μ l (10 pmoles/ μ l) of each nested primer, and 12.5 μ l of DEPC-DW (Bioneer, Daejeon, Korea). Real-time PCR amplifications were performed in a Smart CyclerTM System (Cepheid, Sunnyvale, CA, USA) with 40 cycles at 95°C for 30 sec and 60°C for 20 sec after initial incubation for 30 sec at 95°C.

Oat seed preparation and extraction. Prior to inoculation, the oat seeds (cultivar Samhan, provided by the National Honam Agricultural Experiment Station in Korea) were surface sterilized by soaking in 70% ethanol for 30 minute and 1.2% sodium hypochlorite solution for 1 hour. The oats seeds were washed 3 times with sterilized water and dried completely in clean bench. Twelve grams of the surface-sterilized oat seeds were artificially inoculated by shaking (120 rpm) in 45 ml of *P. coronafaciens* LMG 5060 suspension for 24 h. The seeds were dried by leaving them in a clean bench for 20 h. The bacterial pathogen was extracted from the artificially inoculated oat seeds as described previously (Maes et al., 1996). The seeds (12 g) were shaken in 12 ml of cold aqueous saline (0.85% NaCl) containing a drop of Tween 20 for 5 min on a rotator shaker (180 rpm) at room temperature. The extracts were treated at 95°C for 7 min and used in the PCR assay or stored at -20°C.

Results

Primer and PCR specificity. To obtain specific primers of the *P. coronafaciens*, the draft genome sequence of P. coronafaciens LMG 5060 was constructed by genome shotgun sequencing in this study. The draft genome sequence was deposited at NCBI GenBank (accession number: JSED0000000). The 36 primer sets were designed from the ORFs in total 2028 contigs which showed low homology to that of known genes in Gen-Bank and the primer specificities for P. coronafaciens were checked by PCR assays with target and non-target bacterial strains. Among the primers tested, the Pc-12-F (5'-GATTGCGTCATATGCAACAT-3') and Pc-12-R (5'-AATAGCAGATCCAGCCAAAG-3') primer sets amplified a 498 bp in all 13 strains of P. coronafaciens (Fig. 1), whereas target-size DNA was not amplified in non-target bacteria, including 30 P. syringae pathovars, 3 P. savastanoi pathovars, and 16 other pathogenic bacteria (Fig. 2). The nested primers, Pc-12-ne-F (5'-AACGACGGGCTGCAGTTTAT-3') and Pc-12-ne-R (5'-AACGTGATAGCAGCCCCACT-3'), were designed from the Pc-12-F/Pc-12-R amplicon. The PCR assay was conducted with the Pc-12-ne-F/Pc-12-ne-R nested primer set and genomic DNA amplified the 298 bp in all 13 strains of P. coronafaciens (supplement Fig. 1), whereas targetsize DNA was not amplified in any non-target bacteria, including 30 P. syringae pathovars, 3 P. savastanoi path-

Fig. 1. Gel electrophoresis of the polymerase chain reaction products formed with primer Pc-12-F/Pc-12-R and bacterial DNA of *Pseudomonas coronafaciens* strains. Lanes 1~13, *P. coronafaciens* LMG 5060, KACC 13262, KACC 12133, LMG 2170, LMG 5030, LMG 5061, LMG 5081, LMG 5380, LMG 5449, LMG 5452, LMG 5536, LMG 13190, LMG 2330; lane 14, water as a negative control.

Fig. 2. Gel electrophoresis of the polymerase cain reaction products formed with primer Pc-12-F/Pc-12-R and total DNA of lane 1, *Pseudomonas coronafaciens* LMG 5060, lanes 2–31, *P. syringae* pvs, *actinidiae* KACC 10582, *antirrhini* ICMP 4303, *aptata* DSM 50252, *atrofaciens* ICMP 4394, *berberidis* NCPPB 2724, *ciccaronei* NCPPB 2355, *delphhinii* ICMP 529, *dysoxyli* ICMP 545, *eriobotyae* NCPPB 2331, *helianthi* NCPPB 1229, *japonica* ICMP 6305, *lachrymans* ATCC 11965, *lapsa* ATCC 10859, *maculicola* ICMP 3935, *mellea* ICMP 5711, *mori* ICMP 4331, *morsprunorum* ICMP 5795, *myricae* ICMP 7118, *panici* NCPPB 1498, *papulans* ICMP 4040, *passiflorae* NCPPB 1386, *persicae* NCPPB 2761, *pisi* ICMP 4433, *ribicola* NCPPB 963, *sesami* NCPPB 1016, *syringae* NCPPB 388, *tabaci* ICMP 2835, *tagetis* ICMP 4091, *tomato* NCPPB 2683, *ulmi* NCPPB 632; lanes 32~34, *P. savastanoi* pvs. *glycinea* NCPPB 1134, *pahseolicola* KACC 10575, and *savastanoi* NCPPB 639; lane 35, *Acidovorax avenae* subsp. *avenae* NCPPB 1011; lanes 36–38, *Clavibacter michiganensis* subsp. *insidiosus* NCPPB 312; lanes 40–43, *Rhizobium radiobacter* DSM 30205, *R. rhizogenes* ATCC 11325, *R. rubi* NCPPB 1854, *R. vitis* NCPPB 3554; lane 44, *Rhodococcus fascians* LMG 3601; lane 45, *Ralstonia solanacearum* NCPPB 339; lanes 46–47, *Xanthomonas campestris* pvs. *campestris* KACC 10377, *vesicatoria* KACC 11157; lane 48, *X. oryzae* pv. *oryzae* KACC 10331; lane 1, *P. coronafaciens* LMG 5060, as a positive control; lane 49, water as a negative control.

ovars, and 16 other pathogenic bacteria (Supplement Fig. 2).

TaqMan PCR specificity. To reduce the rate of false-positives and quantitatively detect *P. coronafaciens*, a TaqMan probe, Pc-taqman (5'-TGAAACCGCCGAAACGGTCT-3'), was designed from the sequence of the Pc-12-ne-F/Pc-12-ne-R amplicon. The real-time PCR with Pc-12-ne-F/ Pc-12-ne-R and Pc-taqman generated Ct values in a dosedependent for 10 ng-10 pg of *P. coronafaciens* LMG 5060' genomic DNA. The r^2 of the linear regression was 0.994 (Fig. 3A).

The specificity of the TaqMan PCR was checked with the target and non-target bacteria. In the TaqMan PCR assays, 10-fold diluted DNAs (10 ng to 10 pg) of *P. coronafaciens* LMG 5060 were used as standard, and 10 ng of DNAs of the other bacterial strains were used. The Ct values of the 13 *P. coronafaciens* strains were 22–28 cycles (Fig. 3B and Table 2), whereas the average Ct values of the DNA of 49 non-target bacterial strains were more than 37 cycles (Table 2). The Ct values of the target and non-target bacteria were well separated into two different groups.

TaqMan PCR detection of *P. coronafaciens* from the artificially inoculated oat seeds. The TaqMan PCR assay developed in this study was applied to detect *P. coronafaciens* from the oat seeds. Since the seeds naturally infested

Fig. 3. Sensitivity and specificity of the TaqMan real-time PCR with primer, Pc-12-ne-F/Pc-12-ne-R and TaqMan probe, Pc-taqman. (A) The linear regression generated by ten-fold dilution of DNA of *Pseudomonas coronafaciens* LMG 5060 and (B) TaqMan PCR with DNAs (circle dot) of *P. coronafaciens* LMG 5060, and *P. coronafaciens* strains (square dot): *P. coronafaciens* KACC 13262, KACC 12133, LMG 2170, LMG 5030, LMG 5061, LMG 5081, LMG 5380, LMG 5449, LMG 5452, LMG 5536, LMG 13190, and LMG 2330.

An et al.

Table 2. The Ct values of *Pseudomonas coronafaciens* strains, the non-target bacterial strains and the seed extracts from artificially inoculated oat seeds with *Pseudomonas coronafaciens* LMG 5060 which were obtained by the TaqMan PCR assays

Samples		DNA conc.	Mean Ct ^a
Pseudomonas coronafaciens	LMG 5060 (STD)	10 ng	22.8 ± 0.1
		1 ng	28.7 ± 2.5
		100 pg	31.3 ± 1.5
		10 pg	36.5 ± 3.3
	KACC 12133	10 ng	22.5 ± 0.1
	KACC 13262	10 ng	22.7 ± 0.2
	LMG 2170	10 ng	23.3 ± 0.1
	LMG 2330	10 ng	27.1 ± 0.7
	LMG 5030	10 ng	22.8 ± 0.3
	LMG 5061	10 ng	28.0 ± 1.0
	LMG 5081	10 ng	25.8 ± 2.1
	LMG 5380	10 ng	24.7 ± 0.4
	LMG 5449	10 ng	25.1 ± 0.4
	LMG 5452	10 ng	25.5 ± 2.0
	LMG 5536	10 ng	23.5 ± 0.6
	LMG 13190	10 ng	27.9 ± 1.5
Non-target bacterial strains			
Acidovorax avenae subsp. avenae	NCPPB 1011	10 ng	39.1 ± 1.7
Clavibacter michiganensis subsp. incidiosus	NCPPB 1020	10 ng	>40
Clavibacter michiganensis subsp. michiganensis	NCPPB 1064	10 ng	>40
Clavibacter michiganensis subsp. sepedonicus	NCPPB 2137	10 ng	>40
Pectobacterium carotovorum subsp. carotovorum	NCPPB 312	10 ng	>40
Pseudomonas savastanoi pv. glycinea	NCPPB 1134	10 ng	>40
Pseudomonas savastanoi pv. phaseolicola	KACC 10575	10 ng	39.5 ± 0.9
Pseudomonas savastanoi pv. savastanoi	NCPPB 639	10 ng	>40
Pseudomonas syringae pv. actinidiae	KACC 10582	10 ng	>40
Pseudomonas syringae pv. antirrhini	ICMP 4303	10 ng	>40
Pseudomonas syringae pv. aptata	DSM 50252	10 ng	>40
Pseudomonas syringae pv. atrofaciens	LMG 5095	10 ng	>40
Pseudomonas syringae pv. berberidis	NCPPB 2724	10 ng	37.8 ± 1.9
Pseudomonas syringae pv. ciccaronei	NCPPB 2355	10 ng	39.6±0.8
Pseudomonas syringae pv. delphinii	ICMP 529	10 ng	39.5 ± 0.9
Pseudomonas syringae pv. dysoxyli	ICMP 545	10 ng	39.3 ± 1.3
Pseudomonas syringae pv. eriobotryae	NCPPB 2331	10 ng	>40
Pseudomonas syringae pv. helianthi	NCPPB 1229	10 ng	39.9±0.2
Pseudomonas syringae pv. japonica	ICMP 6305	10 ng	>40
Pseudomonas syringae pv. lachrymans	ATCC 11965	10 ng	>40
Pseudomonas syringae pv. lapsa	ATCC 10859	10 ng	>40
Pseudomonas syringae pv. maculicola	ICMP 3935	10 ng	>40
Pseudomonas syringae pv. mellea	ICMP 5711	10 ng	38.7 ± 1.3
Pseudomonas syringae pv. mori	ICMP 4331	10 ng	>40
Pseudomonas syringae pv. morsprunorum	ICMP 5795	10 ng	>40
Pseudomonas syringae pv. myricae	ICMP 7118	10 ng	>40
Pseudomonas syringae pv. panici	NCPPB 1498	10 ng	>40
Pseudomonas syringae pv. papulans	ICMP 4040	10 ng	>40
Pseudomonas syringae pv. passiflorae	NCPPB 1386	10 ng	39.7±0.6
Pseudomonas syringae pv. persicae	NCPPB 2761	10 ng	>40

Table 2. Continue

Samples		DNA conc.	Mean Ct ^a
Pseudomonas syringae pv. pisi	ICMP 4433	10 ng	>40
Pseudomonas syringae pv. ribicola	NCPPB 963	10 ng	>40
Pseudomonas syringae pv. sesami	NCPPB 1016	10 ng	>40
Pseudomonas syringae pv. syringae	NCPPB 388	10 ng	>40
Pseudomonas syringae pv. tabaci	ICMP 2835	10 ng	>40
Pseudomonas syringae pv. tagetis	ICMP 4091	10 ng	>40
Pseudomonas syringae pv. tomato	NCPPB 2683	10 ng	>40
Pseudomonas syringae pv. ulmi	NCPPB 632	10 ng	39.8 ± 0.3
Ralstonia solanacearum	NCPPB 339	10 ng	>40
Rhizobium radiobacter	DSM 30205	10 ng	>40
Rhizobium rhizogenes	ATCC 11325	10 ng	>40
Rhizobium rubi	NCPPB 1854	10 ng	>40
Rhizobium vitis	NCPPB 3554	10 ng	>40
Rhodococcus fascians	LMG 3601	10 ng	>40
Xanthomonas campestris pv. campestris	KACC 10377	10 ng	>40
Xanthomonas campestris pv. vesicatoria	KACC 11157	10 ng	>40
<i>Xanthomonas oryzae</i> pv. <i>oryzae</i>	KACC 10331	10 ng	>40
Seed extracts from oat seeds inoculated in			
10 ⁸ cfu/ml cell suspension		_	21.2 ± 0.5
10 ⁷ cfu/ml cell suspension		_	21.4 ± 0.2
10 ⁶ cfu/ml cell suspension		_	21.3 ± 0.2
10^5 cfu/ml cell suspension		_	22.5 ± 0.5
10 ⁴ cfu/ml cell suspension		_	24.2 ± 0.7
10 ³ cfu/ml cell suspension		_	25.1 ± 1.1
10 ² cfu/ml cell suspension		_	29.2 ± 0.3
10 cfu/ml cell suspension		_	32.2 ± 0.7
control (water treatment)		-	>40

with the pathogen were not available, the artificially inoculated oat seeds were used. TaqMan PCR with the seed extracts generated a range of mean Ct values from 21.2 for 10^8 cfu/ml-inoculated seed extracts to 32.2 for 10 cfu/mlinoculated seed extracts (Table 2). Since Ct values of all the non-target bacteria used in this study were larger than 37 cycles, the TaqMan PCR can detect *P. coronafaciens* from the seed extract of the artificially inoculated oat seeds above 10 cfu/ml inoculation level.

Estimation of the recovery number of P. coronafaciens from the artificial inoculated seed extract was tried with several different ways, but the accurate enumeration of *P. coronafaciens* from the seed extract failed because the many non-target-shape colonies were cultured on the culture plate and the selective medium for *P. coronafaciens* was not available. Surface sterilization of the oat seeds prior to artificial inoculation could not prevent growth of some non-target bacteria on the recovery culture plates.

Discussion

Highly specific PCR and TaqMan PCR assays have been developed in this study to detect *P. coronafaciens*, the halo blight pathogen of oats. Since *P. coronafaciens* is a plant quarantine bacterium in many countries and using of the certificated seed is important for the disease control, developments of these assays are significant for the management of halo blight of oats.

To obtain specific primers of the *P. coronafaciens*, a genome-wide search was conducted from the draft genome sequence of *P. coronafaciens* which was constructed by genome shotgun sequencing in this study. A specific primer, Pc-12-F/Pc-12-R, was designed from ORF 7 in contig 7 of the draft genome sequence of *P. coronafaciens* (NCBI GenBank accession number: JSED00000000). ORF 7 was 1341 nucleotides long, and no significant homologous gene was found in the NCBI GenBank database. PCRs with Pc-

12-F/Pc-12-R and Pc-12-ne-F/Pc-12-ne-R generated the target size DNA from all 13 strains of *P. coronafaciens* isolated in seven countries. The target-size DNA was not amplified in 49 strains of non-target bacteria. The Ct values of the target and non-target bacteria were well separated in the TaqMan PCR. The homology of the ORFs in which PCR was designed and the results of the PCR and TaqMan PCR indicate that the primer sequences and PCR assays developed in this study are highly specific to *P. coronafaciens*.

TaqMan PCR was applied to detect the target pathogen from artificially inoculated oat seeds. TaqMan PCR generated the *P. coronafaciens*—positive Ct values in the seed extracts obtained from oat seeds inoculated in 10 cfu/ml and above. Although detection sensitivity of this TaqMan PCR cannot compared to the previously published results because detection of *P. coronafaciens* from oat seeds has not been published, positive detection of the seed extracts obtained from oat seeds inoculated in 10 cfu/ml *P. coronafaciens* LMG 5060 suspension and above is thought to be a quite high sensitivity and can apply to seed test and plant quarantine service.

Acknowledgements

This work was supported by the research grant of Chungbuk National University in 2012.

References

- Bella, P., Licciardello, G., Tessitori, M. and Catara, V. 2008. A real-time PCR quantitative detection assay for *Pseudomonas savastanoi* pv. *nerii* in Nerium oleander. *Phytopathol. Mediterr*: 47:204–213.
- Cho, J. H., Jeong, M. J., Song, M. J., Yim, K. O., Lee, H. I., Kim, J. H., Baeg, J. H. and Cha, J. S. 2010. Development of PCR Primers to Detect *Pseudomonas savastanoi* pv. *phaseolicola* from the Bean Seeds. *Res. Plant Dis.* 16:129–135.
- Collins, D. J. 2010. Oat Diseases in Alabama: Circular ANR-631. *Alabama Cooperative Extension Service.*
- Delcher, A. L., Bratke, K. A., Powers, E. C. and Salzberg, S. L. 2007. Identifying bacterial genes and endosymbiont DNA with Glimmer. *Bioinformatics* 23:673–679.

Elliott, C. 1920. Halo-blight of oats. J. Agric. Res. 19:139-172.

- Finetti-Sialer, M. M. and Ciancio, A. 2005. Isolate-specific detection of *Grapevine fan-leaf virus* from *Xiphinema index* through DNA-based molecular probes. *Phytopathology* 95:262–268.
- Harder, D. E. and Haber, S. 1992. Oat diseases and pathologic techniques. In *Oat Science and Technology* 33:307–402.
- Hyatt, D., Chen, G. L., Locascio, P. F., Land, M. L., Larimer, F. W. and Hauser, L. J. 2010. Prodigal: prokaryotic gene recognition and translation initiation site identification. *BMC Bioinform*. 11:119–129.
- Lukashin, A. and Borodovsky, M. 1998. GeneMark.hmm: new solutions for gene finding. *Nucleic Acids Res*. 26:1107–1115.
- Maes, M., Garbeva, P. and Kamoen, O. 1996. Recognition and detection in seed of the *Xanthomonas* pathogens that cause cereal leaf streak using rDNA spacer sequences and polymerase chain reaction. *Phytopathology* 86:63–69.
- Margulies, M., Egholm, M., Altman, W. E., Attiya, S., Bader, J. S., Bemben, L. A., Berka, J., Braverman, M. S., Chen, Y. J., Chen, Z., Dewell, S. B., Du, L., Fierro, J. M., Gomes, X. V., Godwin, B. C., He, W., Helgesen, S., Ho, C. H., Ho, C. H., Irzyk, G. P., Jando, S. C., Alenquer, M. L., Jarvie, T. P., Jirage, K. B., Kim, J. B., Knight, J. R., Lanza, J. R., Leamon, J. H., Lefkowitz, S. M., Lei, M., Li, J., Lohman, K. L., Lu, H., Makhijani, V. B., McDade, K. E., McKenna, M. P., Myers, E. W., Nickerson, E., Nobile, J. R., Plant, R., Puc, B. P., Ronan, M. T., Roth, G. T., Sarkis, G. J., Simons, J. F., Simpson, J. W., Srinivasan, M., Tartaro, K. R., Tomasz, A., Vogt, K. A., Volkmer, G. A., Wang, S. H., Wang, Y., Weiner, M. P., Yu, P., Begley, R. F. and Rothberg, J. M. 2005. Genome sequencing in microfabricated highdensity picolitre reactors. *Nature* 437:376–380.
- Martens, J. W., Seaman, W. L. and Atkinson, T. G. 1984. Diseases of field crops in Canada. *Canadian Phytopathological Society.*
- Schena, L., Nigro, F., Ippolito, A. and Gallitelli, D. 2004. Realtime quantitative PCR: A new technology to detect and study phytopathogenic and antagonistic fungi. *Eur. J. Plant Pathol.* 110:893–908.
- Walcott, R. R. 2003. Detection of seedborne pathogens. *Hort-Technology* 13:40–47.
- Wallwork, H. 1992. Cereal leaf and stem diseases. In Grains Research and Development Corporation.
- Young, J. M., Dye, D. W. and Wilkie, J. P. 1978. Genus VII. Pseudomonas Migula 1894. New Zealand J. Agric. Res. 21:153–177.