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Abstract

We present RIPMMARC (Rotation Invariant Patch-based Multi-Modality Analysis aRChitecture), 

a flexible and widely applicable method for extracting information unique to a given modality 

from a multi-modal data set. We use RIPMMARC to improve interpretation of arterial spin 

labeling (ASL) perfusion images by removing the component of perfusion that is predicted by the 

underlying anatomy. Using patch-based, rotation invariant descriptors derived from the anatomical 

image, we learn a predictive relationship between local neuroanatomical structure and the 

corresponding perfusion image. This relation allows us to produce an image of perfusion that 

would be predicted given only the underlying anatomy and a residual image that represents 

perfusion information that cannot be predicted by anatomical features. Our learned structural 

features are significantly better at predicting brain perfusion than tissue probability maps, which 

are the input to standard partial volume correction techniques. Studies in test-retest data show that 

both the anatomically predicted and residual perfusion signal are highly replicable for a given 

subject. In a pediatric population, both the raw perfusion and structurally predicted images are 

tightly linked to age throughout adolescence throughout the brain. Interestingly, the residual 

perfusion also shows a strong correlation with age in select regions including the hippocampi 

(corr= 0.38, p-value < 10−6), precuneus (corr= −0.44, p < 10−5), and combined default mode 

network regions (corr= −0.45, p < 10−8) that is independent of global anatomy-perfusion trends. 

This finding suggests that there is a regionally heterogeneous pattern of functional specialization 

that is distinct from that of cortical structural development.
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1. Introduction

A fundamental challenge in the interpretation of functional images of the brain is the extent 

to which the observed function is driven by underlying structure, since the goal of most 

functional imaging is to provide insight into physiological and patho-physiological 

processes that may not be manifested in structural changes. In particular, a body of prior 

work establishes that perfusion and structural signal is shared across modalities. Franklin et 

al. recently showed that acute baclofen-induced perfusion decreases induce changes in T1-

derived gray matter (GM) density [1]. A prior study showed increases in observed GM 

density following acute administration of levodopa [2]. Chronically, decreased perfusion 

may result in decreased cortical thickness [3]. This connection between brain perfusion and 

structure may confound efforts to correlate disease processes with either perfusion or 

structure [4, 5, 6, 7, 8, 9]. In brief, structural modalities are not purely structural and may 

inform and even directly predict functional signal.

To improve interpretability of effects that are correlated across modalities, it is common to 

apply a correction to emphasize the information unique to a given modality. For example, 

many perfusion image processing protocols correct the perfusion image for partial volume 

effects due to variations in gray matter/white matter ratios [10], since gray matter and white 

matter have markedly different perfusion values [11]. In addition to partial volume and other 

technical challenges, though, perfusion in a given voxel may be at least partially determined 

by the underlying brain anatomy. Therefore, we seek to reframe this relation between brain 

anatomy and perfusion more broadly: Given a perfusion image and a structural anatomical 

image, how much information is unique to the perfusion image, and how much of the 

perfusion image can be reconstructed given the structural image? A schematic of this 

approach is shown in Figure 1.

As a motivating example problem, we consider perfusion measurements of typically 

developing adolescents. Perfusion studies of typically developing children have shown 

changes over development [12, 13, 14, 15, 16, 17, 18]. In parallel, many studies have 

focused on structural brain changes over development, including such metrics as cortical 

thickness [19] and white matter structure [20]. Some of the changes in perfusion are likely 

due to development of the underlying anatomical substrate, including such developments as 

cortical thickness, gyrification indices [21, 22], and possibly other, more subtle anatomical 

changes. On the other hand, it is possible that some of the changes in perfusion are due only 

to changes in the perfusion of specific cortical areas that are not explained by structural 

changes. We seek to improve the interpretability of perfusion imaging by separating the 

component of cortical perfusion that can be explained by structural features from the 

component of cortical perfusion that is due to biological processes not driven by the 

underlying anatomy. This separation will help evaluate what unique information is gained 

by using perfusion imaging as compared to anatomical imaging modalities, thus enabling 

more principled and informative integration of perfusion imaging into multimodal 

neuroimaging population studies. The residual perfusion signal represents localized 

processes that are not explained by the global anatomy-perfusion relationship, signifying 

development of functional specialization.
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Several image processing strategies incorporate knowledge of one modality to improve the 

interpretability of a second modality, especially where the two modalities offer 

complementary sources of information. One of the most commonly encountered variants of 

this problem occurs in positron emission tomograpy (PET) image processing. PET images 

have low spatial resolution, leading to significant partial volume effects (PVE) [23]. A 

widespread method for correcting these partial volume effects is to divide the PET image by 

gray and white matter probability images (e.g., [10]). By assuming that PET activity within 

white matter is known, it is then possible to reconstruct the amount of signal that would have 

resulted from a purely gray matter voxel. Similar strategies have been pursued for arterial 

spin labeling (ASL) perfusion [24] partial volume correction. Many ASL partial volume 

correction methods assume that white matter has perfusion that is 40% of a comparable unit 

of gray matter [25], based on quantitative in vivo measures of ASL perfusion [11], even 

though this ratio is almost certainly dependent on image resolution. More sophisticated 

models include partial volume correction based on locally determined gray matter activation 

[26, 27], a kinetic equation for multiple inversion time ASL [28], and specially designed 

pulse sequences [29]. In addition, some studies have incorporated the presence of brain 

lesions for partial volume correction of ASL images [30].

Fundamentally, partial volume correction (PVC) aims to reconstruct the ideal image that the 

scanner would have seen had technical impediments, such as scanner resolution and point 

spread function, not interfered. Although this correction is an important consideration when 

interpreting perfusion images, it does not attempt to account for true effects of underlying 

brain structure. Besides technical difficulties with obtaining accurate perfusion 

measurements, there may be genuine interactions between the underlying anatomy and the 

observed perfusion that go beyond white and gray matter probabilities. In this work, we 

address a different problem from PVC: How much brain perfusion can be related to the 

underlying structure, and how much cannot be predicted from the underlying structure?

Moreover, generating a feature vector for each voxel that contains all the necessary 

information to reconstruct perfusion from anatomy is not straightforward. Gray matter and 

white matter probabilities are nearly always used when predicting perfusion from anatomical 

imaging, even though they provide only a limited model of the structure-perfusion 

relationship. Cortical thickness may also be correlated to perfusion. Here, we present 

RIPMMARC (Rotation Invariant Patch-based Multi-Modality Analysis aRChitecture), an 

alternative data-driven strategy of deriving structure-perfusion relationships implicitly. 

RIPMMARC provides a way to encode more detailed local structural information about a 

given voxel in an image than a scalar intensity value, and this information can be used to 

predict the perfusion at that point. From concurrently acquired structural and perfusion 

images, we learn a dictionary of anatomical patch features that can be used to predict 

perfusion, with the atoms, or elements, in the dictionary corresponding to paradigmatic 

textural and anatomical features. Mean-centering each input patch ensures that the 

dictionary contains gradient information invariant to raw intensity value, with intensity 

represented in corresponding tissue probability values. In contrast to traditional dictionary 

learning approaches, we construct rotation-invariant dictionaries to enable more complete 

sharing between similar anatomical structures across the brain. This rotation invariance 
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allows, for example, sharing of information between right and left sides of the brain, which 

would not be possible when using traditional dictionary learning techniques. Rotation 

invariance is particularly important in 3D images, as the number of possible orientations 

increases with the number of dimensions. Projecting patches focused at every voxel in the 

image onto the rotation invariant dictionary produces a locally varying feature weight image 

for each atom in the dictionary. We combine the structural feature weights with the 

probabilitistic segmentation images in a linear model to predict perfusion from the 

structurally derived measures. This linear model then produces a “structurally predicted” 

perfusion image, corresponding to the predicted perfusion given the structural features, and 

a residual perfusion image, corresponding to the perfusion that cannot be explained by 

structural information. A graphical abstract of our method is shown in Figure 2.

RIPMMARC is inspired by feature learning methods [31, 32, 33]; rotation-invariant feature 

transforms [34, 35, 36, 37] and dictionary learning methods [38, 39]; and modality synthesis 

algorithms [40, 41, 42, 43]. To the best of our knowledge, this work is the first to use 

rotation invariance for image synthesis. In addition, our work uses a much more expressive 

and accurate model for predicting CBF from structural information than prior work.

In sum, we make the following contributions: 1) We propose a novel rotation-invariant 

dictionary learning method for modality synthesis; 2) We show that these learned 

dictionaries are significantly better at predicting perfusion than segmentation probability or 

cortical thickness maps; 3) We demonstrate that this method produces consistent perfusion 

maps across session scans within a single subject; 4) We show that this method decomposes 

the raw CBF signal into structurally predicted and residual CBF signals, and all three signals 

are linked to age in a pediatric population; and 5) The residual perfusion values display a 

weaker correlation with age in the occipital cortex and precentral motor cortex and a 

stronger correlation with age in precuneus and hippocampus, suggesting regionally 

heterogeneous trajectories of functional specialization that are distinct from trajectories of 

cortical structural development.

2. Methods

2.1. Representations of Structure

Given an image I, we denote the segmentation probability for white matter (WM) and gray 

matter (GM) at a voxel x ∈ I as pGM,WM(x). We additionally denote the observed cerebral 

blood flow (CBF) value as cobs(x), and the corrected CBF value as ccorr(x). Standard ASL 

partial volume correction [25] takes the form

(1)

This specific formulation derives from a more general assumption of a linear relationship 

between the voxelwise white matter and gray matter densities. Denoting the true GM and 

WM CBF levels at voxel x as cGM,WM(x), we have
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(2)

where assuming that cWM(x) = 0.4·cGM(x), as in the earliest work on PVC correction, leads 

to Equation 1. Alternatively, it is possible to learn the relation between GM and WM activity 

from the CBF image directly, either by sampling over lobes [25] or a local kernel centered 

on the voxel of interest [26]. Both approaches directly analyze the gray matter and white 

matter probability images as they relate to perfusion.

As explained in the introduction, we take a decidedly different approach to incorporating 

anatomy into CBF analysis. Instead of attempting to infer the unobservable true GM and 

WM perfusion in a voxelwise manner, we use all available anatomical information to create 

a “best guess” at what the observed perfusion would be given the anatomy at voxel x. 

Formulated as a prediction problem, we have

(3)

where we have replaced cGM,WM(x) with βGM,WM to emphasize that they are learned values 

that are constant across the image. The “residual(x)” term accounts for the observed 

perfusion that cannot be accounted for by the other predictors. In addition to the tissue 

membership probability values, we incorporate a structural feature vector that describes the 

anatomy surrounding the voxel of interest. Denoting the value of the n’th feature of voxel x 

as sn(x), n ∈ {1,…,k}, we obtain

(4)

where βn is the weight for the n’th feature. As before, the βn weights are learned over the 

entire image. Concatenating the anatomically derived predictors for voxel x on the right 

hand side of Equation 4 as Xx = [pGM(x), pWM(x),s1(x),…sk(x)] and the weights as β = [βGM, 

βWM, β1,…, βk]T allows us to reformulate Equation 4 as a standard linear regression:

(5)

where the ε term corresponds to the residual(x) term in Equation 4. Unlike in standard linear 

regression, the ε term here is not i.i.d. Gaussian noise; it corresponds to the component of 

perfusion imaging that cannot be predicted from anatomical information. Although the 

presence of structured residuals may motivate the use of nonlinear prediction techniques, we 

have found that linear regression works well for this problem and does not suffer from 

overfitting, even when training on a small proportion of the data. Further concatenating the 

observed CBF value across the image as Cobs = [cobs(1),…,cobs(m)], where there are m 

voxels in the image, and X = [X1; …;Xm], where [·;·] indicates row-wise concatenation, we 

obtain

(6)
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The Xβ term corresponds to the component of perfusion that can be predicted from 

anatomical features, and the ε term corresponds to the component of perfusion that cannot 

be predicted from anatomical features. A greater correlation between Cobs and Xβ indicates a 

more accurate reconstruction of observed perfusion from anatomical features.

2.2. Dictionary Construction

We consider an image I with N scalar-valued voxels at locations xn ∈ I, n = 1,…,N. We seek 

a function s : I(xn) ↦ ℝk that produces a vector descriptor of the structure around each 

voxel. Denoting the neighborhood of voxel xn as , where r is 

the radius of the neighborhood, we generate for each voxel xn in the image the vectorized 

patch P(xn) = vectorize ({I(xj) | xj ∈ (xn) }) ∈ ℝp, where each neighborhood consists of p 

voxels and the “vectorize” operation returns the vector representation of elements in a set. In 

addition, we denote the mean-centered patch as Pc(xn) = P(xn) − mean(P(xn)). Mean-

centering each patch serves to minimize the effect of intensity inhomogeneity and 

concurrently emphasize the gradient and texture information. We denote the sets of voxels 

in cortical gray matter and white matter as xGM,WM respectively. Because our studies focus 

on cortical perfusion, we only work with cortical voxels.

To generate the s feature descriptor function, we begin by constructing a rotation-invariant 

dictionary. Creating a rotation-invariant dictionary requires three steps: Determining a 

reference direction to reorient all patches to; reorienting all patches to that direction; and 

constructing a dictionary from the reoriented patches. To find the reference direction, we 

concatenate row-wise the vectorized patches Pc(xn) of 1000 voxels sampled randomly from 

around the cortex into a matrix S ∈ ℝ1000×p. The number of sample voxels to take is limited 

only by computational power, but we did not observe any improvement in performance 

when sampling more than 1000 voxels. Next, we perform an SVD of S to obtain its 

eigenvectors and consider the first eigenvector of S the canonical reference frame.

We used a closed-form solution to align the image patches to the reference frame. The 

problem of aligning the orientation of two vectors is known as Wahba’s problem [44], and 

the analytical solution is known as the Kabsch algorithm [45]. Aligning two images 

corresponds to aligning the orientations of the first eigenvector (or two eigenvectors for a 

3D image) of the covariance matrix of the gradient of the image. We denote the gradient 

operator g : (xn) ↦ ℝD, where D is the number of dimensions in the image. The 

covariance matrix C ( (xn)) of the gradient of the neighborhood (xn) is then given by

(7)

To align the patches of two voxels xi and xj, we denote the k’th eigenvector of C( (xi)) as 

wk and the k’th eigenvector of C( (xj)) as vk and calculate the rotation matrix Q that best 

aligns them:

(8)
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Denoting , we compute the singular value decomposition (SVD) of B: B = UΣVT. 

Then the analytical solution to Equation 8 is given by Q = UMVT, where 

. We then rotate the voxel coordinates xi by Q and use a 

linear interpolator to regenerate the neighborhood image after the rotation. A more 

computationally expensive alternative is to use the Radon transform to estimate orientation 

[46]. Using the Kabsch-based approach, we reorient all patches in S to the principal 

eigenvector of S. Then, we perform a second SVD of the reoriented patches. These 

eigenvectors make up the rotation-invariant dictionary. We retain enough eigenvectors to 

account for 95% variance explained. Pseudocode for this algorithm can be found in 

Algorithm 1.

Once we have the rotation-invariant dictionary, we construct the feature vector for a given 

voxel xn ∈ xGM by constructing the vectorized patch Pc(xn), reorienting the patch to the 

reference frame, and then multiplying the reoriented patch by each atom in the rotation-

invariant dictionary. This procedure generates a k-vector for each voxel, with the i’th entry 

corresponding to the response of the i’th eigenvector to the voxel neighborhood. Pseudocode 

for this algorithm can be found in Algorithm 2.

2.3. Feature Learning

Once we have the rotation-invariant dictionary, we project the reoriented patches 

corresponding to each voxel in the image onto each rotation-invariant eigenpatch. This gives 

us an n ×k feature matrix, where n is the number of voxels in the image and k is the number 

of eigenpatches. The columns of this feature matrix correspond to the response of each 

eigenpatch to the patch centered on each voxel. In addition to the structural feature matrix, 

we use the GM and WM probabilities for each voxel in the image. The GM and WM 

probabilities are usually the two strongest predictors of blood flow in a given voxel, and we 

have found that they significantly increase the accuracy of CBF prediction. Thus, although 

modern PVC approaches [26] move beyond this simplistic relationship between tissue type 

and perfusion, even this primitive method of incorporating tissue probabilities into the 

prediction results in a feature that is highly predictive of perfusion, as it is a reasonable first-

order approximation to the true relationship between tissue type and perfusion. The GM and 

WM probabilities also model each voxel’s intensity value.

Once we have the final structural predictor matrix, we run a linear model relating CBF to 

our predictor matrix:

(9)

To avoid overfitting, we train the model on 5% of the cortical voxels, sampled randomly, 

and then predict on the remaining 95% of the cortex. The use of a linear model and the fact 

that there are several orders of magnitude more training samples than predictors further 

minimize the risk of overfitting, and we did not observe a tendency to overfit in our data. 

We typically found a drop in variance explained of roughly 2% when going from training to 

testing data (Figure 13b). We note that in the current study, we learned the relationship 

between brain structure and perfusion on a per-subject basis. A graphical outline of the 
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method is in Figure 2, and a more formal description of the algorithm is in Algorithm 2. An 

open-source ITK-based implementation can be found at https://github.com/bkandel/

PatchAnalysis.

Algorithm 1

Algorithm for generating reference frame and rotation-invariant dictionary.

Input: patch neighborhood operator (xn), number of 
patches to sample m, input image I, target variance 
explained v.

▷ (xn) defines the points in the neighborhood of voxel 
xn.

p ← number of voxels in (xn).

Initialize S ← [ ] ▷ m × P sample patch matrix.

for i = 0,…,m −1 do

 xi ← random voxel in I.

 t ← vector representation of {xj : xj ∈ (xi)}

 t ← t − mean(t). ▷ Mean-center patch.

 S ← [S t]. ▷ Concatenate patches.

end for

Compute eigenvector matrix V of S.

Retain k1 eigenvectors to account for v variance 
explained.

▷ V ∈ ℝp×k1.

for i = 0,…,m −1 do

 Reorient Si to V1. ▷ Align each vectorized patch to reference frame.

end for

Compute eigenvector matrix W of S. ▷ Construct rotation-invariant dictionary.

Retain k2 eigenvectors to account for v variance 
explained.

▷ Now, W ∈ ℝp×k2.

Output: W.

2.4. Parameter Settings

RIPMMARC has four free parameters: How many voxels to sample when constructing the 

dictionary; the ratio of testing to training data for the linear model; how many eigenvectors 

to retain; and the size of the patches. We have found that algorithm performance is 

insensitive to reasonable settings of the first three parameters, and the final parameter should 

be chosen in a principled way (Figure 13). The number of voxels to sample when 

constructing the dictionary is limited by computational power, but we have not observed 

improvements in prediction accuracy or dictionary stability when using more than 1000 

voxels (Figure 13c). Similarly, the prediction accuracy does not improve when trained on 

more than 5% of the cortex (Figure 13b). Choosing how many eigenvectors to retain is an 

issue that does not have a clear resolution, but we have found that retaining enough 

eigenvectors to account for 95% variance explained is a good rule of thumb and works well 

in our experience. Beyond 95% variance explained, no improvement is seen (Figure 13a). 

The only parameter that has a significant effect on algorithm performance is the patch size. 

However, the patch size can be chosen to emphasize the spatial scale of features of interest. 

Because we are interested in features such as position along a sulcus, we chose a radius of 

1.4 cm, but it is likely that this parameter will need to change for different applications.
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Algorithm 2

Algorithm for generating rotation-invariant patch-based description of image.

Input: patch neighborhood operator (xn), input image I, rotation-invariant dictionary W from Algorithm 1.

N ← number of voxels in I.

p ← number of voxels in (xn).

Initialize P ← [ ] ▷ N × p patch matrix for every pixel in image.

for i = 0,...,N −1 do

 t ← vector representation of {xj : xj ∈ (xi)}.

 t ← t − mean(t).

 Reorient t to W1.

 P ← [P t]. ▷ Concatenate patches.

end for

F → PW ▷ Project patches of input image onto eigenvectors.

Output: F. ▷ Matrix with response of each image voxel to each eigenpatch.

2.5. Clinical Data

2.5.1. Test-Retest Data—The cohort consists of 12 healthy young adult participants 

(mean age 25.5±4.5 years, 7 female, 5 male). For each subject, data was acquired at two 

time points in the same day. For each time point, high resolution T1-weighted anatomic 

images were obtained using 3D MPRAGE imaging sequence and the following acquisition 

parameters: TR = 1620 ms, TI = 950 ms, TE = 3 ms, flip angle = 15°, 160 contiguous slices 

of 1.0 mm thickness, FOV = 192 × 256 mm2, matrix = 192×256, 1 NEX with a scan time of 

6 min. The resulting voxel size was 1 mm. Additionally, pseudo-continuous ASL (pCASL) 

images were aquired with 80 alternating tag/control images all with 14 contiguous slices of 

7.5mm thickness, FOV = 220 × 220mm2, matrix = 64 × 64; TR = 4000ms, tagging duration 

1500ms, and postlabeling delay of 1 second. A complete description of this dataset can be 

found in [47].

2.5.2. Pediatric Data—Our pediatric data consists of 88 subjects, with mean age 11.72, 

range 7.07–17.46 years (Figure 3). Magnetization-Prepared Rapid Acquisition Gradient 

Echo (MPRAGE) images were acquired using a 3D inversion recovery sequence with 

TR/TE/TI = 2170/4.33/1100 ms. The resolution was 1×1×1mm2 with a matrix size of 

256×256×192. Flip angle = 7° and total scan time was 8:08 minutes. Pseudo continuous 

arterial spin labeled (pCASL) images were acquired using TR/TE = 4000/22 ms, with 

resolution of 3.125×3.125×6mm3 over a 64×64×24 matrix. The M0 image was estimated by 

averaging the control (non-tagged) images. 40 label/control pairs were acquired. 

Generalized autocalibrating partially parallel acquisition (GRAPPA) was done using an 

acceleration factor of 2. Labeling duration was 1.5s and the post-labeling delay was 1.2s. 

Total imaging time was 5:30 minutes.

2.5.3. Image Preprocessing—The set of T1 images from the first session was used from 

each subject to construct a template using ANTs [48]. Additionally, a three-tissue 
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segmentation of the template [49] allowed the labels to be partially masked so only cortex 

and deep gray structures were labeled. For each time point, the T1 image was registered to 

the template image using SyN [50]. The subject’s T1 image was also registered to the 

estimated M0 image as a reference for the pCASL using the 

antsIntrasubjectIntermodality.shscript in ANTs. These transforms were composed to map 

the cortical labels into ASL native space for each time point. All anatomical data was 

downsampled to 2mm isotropic resolution for analysis. For pCASL images, the M0 image 

served as a reference for motion-correction of all time-point volumes. Nuisance parameters, 

including motion and physiological confounds, were included as regressors, along with the 

tag-control binary label, in a robust regression scheme for CBF calculation [51]. Cerebral 

blood flow in physiological units was calculated from the difference between control and 

tagged images as

(10)

where f is the perfusion in physiological units (mL/100g/min); λ is the blood-tissue water 

partition coefficient (0.9 g/mL); ΔM is the mean difference between control and tagged 

images; α is the tagging efficiency (0.85); M0 is the equilibrium brain tissue magnetization, 

approximated by the mean of the control (non-tagged) images; T1b is the blood T1 value, 

modified for each subject based on gender and age, as below; w is the postlabeling delay (1 

second); and τ is labeling duration (1.5 seconds). Full details are available in the open-

source script at https://raw.github.com/stnava/ANTs/master/Scripts/antsASLProcessing.sh. 

For the pediatric data, the blood T1 value was adjusted for age and gender as T1 = (2115.6 

−21.5 *age −73.3 *sex)ms, where female sex was set to 0 and male was set to 1, as 

suggested in [52]. One subject was eliminated because of extreme non-physiological CBF 

values, and two subjects were eliminated because of poor image quality with little 

differentiation between gray matter and white matter. Prior to dictionary construction, the 

pCASL and T1 images were resampled to 2mm isotropic resolution. To obtain region of 

interest (ROI) values for each subject, we warped the MNI template to the population-

specific template generated with ANTs. This warp was concatenated with the template-to-

subject warp to propagate the AAL label set to the subject space.

3. Results

Before analyzing real neuroimaging data, we first present two synthetic data analyses to 

provide a greater understanding of the motivation and mechanics of our method. We 

demonstrate the operation of the perfusion-anatomy decomposition on simple synthetic 

images to highlight the effect of orientation invariance when predicting perfusion. We then 

perform a simulated population experiment showing how observed changes in perfusion can 

in fact be due either to the underlying anatomy or changes in perfusion that are not 

explained by anatomical features. Following the synthetic experiments, we show that our 

anatomical features are much better than tissue probability maps or cortical thickness at 

predicting perfusion, and that both the anatomically predicted and residual functional images 

are highly reproducible within subjects. Finally, we demonstrate that the anatomically 
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predicted and residual CBF signals in a pediatric population are tightly correlated with age 

in a region-specific manner, and that in certain instances have opposing trends.

3.1. Synthetic Image Decomposition

We generated synthetic data to demonstrate how the proposed method decomposes 

simulated functional images into its purely functional component and to the component that 

can be inferred from structure. Figure 4 shows the “anatomical” and “perfusion” 

components of the data. Some aspects of the perfusion data, such as the increased activity at 

the intersections of the lines, can be inferred from the structure of the image (when trained 

on an appropriate reference functional image). Other aspects of the functional data, such as 

the increased activity on the upper right-hand line, cannot be inferred from the structural 

data: Given a patch-based descriptor of a given voxel in the structural image, it is impossible 

to tell whether the corresponding perfusion voxel has a high or low value. In addition, 

certain functional values can only be inferred from the orientation of the structure. For 

example, the horizontal central line has a higher functional value than the vertical lines. 

Given only an orientation-invariant feature description of the central line, it is impossible to 

tell what the functional value is. Figure 4 shows the result of the decomposition. As 

expected, both decompositions do not predict the increased activity in the upper right-hand 

line from the structural data, but do reconstruct the increased activity at the intersections of 

the lines. Only the non-rotation invariant decomposition reconstructs the increased activity 

on the horizontal line. On the other hand, constructing orientation-invariant features enables 

sharing more data across regions, leading to a lower-variance reconstruction (Figure 4e). We 

consider the structure of neuroimaging data to be “rotation-invariant” in the sense that a 

gyrus pointing superiorly is equivalent to a gyrus pointing inferiorly. This rotation 

invariance enables information to be shared across hemispheres of the brain and reduces the 

chances of overfitting to a specific region.

3.2. Simulated Population Study

To demonstrate the need for a structure-function decomposition that differentiates between 

changes in perfusion that are due to structural abnormalities and those that are unrelated to 

the underlying structural substrate, we constructed a simulated data set that includes 

structural and functional effects. Throughout the brain, we simulated an ASL perfusion 

image based on the gray and white matter probability maps, with added noise. Using the 

notation from Section 2.1, at voxel x ∈ I:

(11)

To the images in the experimental group, we added additional anatomical and perfusion 

blobs in the following manner (Figure 5). In one blob (the “anatomical” blob), we increased 

the probability of gray matter. This caused a corresponding increase in the perfusion images. 

In the second blob, we increased the perfusion without a corresponding increase in GM 

probability, creating a perfusion increase that does not have a corresponding structural 

abnormality. Denoting CBF that is not predicted from the underlying anatomy as cr(x),
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(12)

In the third blob, we increased the GM probability and also added additional perfusion 

above that predicted by the increased GM probability. This blob represents an area that has 

both a structural abnormality (increased GM probability) and a perfusion abnormality 

(increased perfusion above that predicted by GM content). To recover an anatomy-perfusion 

decomposition of the images, we regressed out the anatomical information (GM and WM 

probability maps) from the perfusion images following the method in Section 2.3. This 

regression gave us two images: The perfusion predicted from structure, and the residual 

functional activation that is not explained by structure, in addition to the original perfusion 

images.

We ran a voxelwise t-test comparing control vs. experimental groups on the three types of 

images. The results are shown in Figure 5. The voxelwise p-statistic maps on the raw 

perfusion images shows all three blobs, because all three blobs indeed had increased 

perfusion in the experimental group (Figure 5, top). p-statistic maps on the residual 

functional images show both the residual perfusion blob and the combined anatomical and 

perfusion blob (Figure 5, middle). This image, however, ignores the potentially biologically 

important role of decreased perfusion caused by abnormal anatomy. The p-statistic map on 

the perfusion images as predicted by anatomy shows this missing information (Figure 5, 

bottom).

3.3. Sample subject

The raw perfusion image, the perfusion that can be predicted from structure, and the residual 

perfusion images for a sample subject are shown in Figure 6. For reference, the perfusion 

that can be predicted from probability maps is also shown. Our structural predictors are 

better at predicting CBF than the the probability maps, and in particular predicts higher 

perfusion in sulcal pits. A quantitative depiction of the correlation between predicted and 

actual CBF is given in Figure 7.

3.4. Variance explained

The structural features we compute are significantly better at predicting perfusion data than 

gray and white matter probability masks and than cortical thickness maps. Figure 8 

compares predicted vs. actual perfusion values using the proposed method, segmentation 

probability maps, and cortical thickness for the test-retest cohort. The correlation is 

computed voxel-wise across the gray matter, and each sample corresponds to one subject. 

The higher correlation of our structural predictors with CBF as compared to the controls 

indicates that our predictors are more effective at explaining observed perfusion than the 

control predictors.

3.5. Reproducibility

A key measure of the reliability of a clinical measurement is its test-retest reproducibility 

within a given subject. We evaluated the test-retest reproducibility of our anatomically-

predicted and residual perfusion images and compared them to the reproducibility of the raw 
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CBF signal and reproducibility of perfusion as predicted by tissue probability maps and 

cortical thickness (Figure 9). We evaluated reproducibility by voxel-wise correlation 

between the images at two time points for a given subject. The most reproducible measure 

was the CBF predicted by the probability maps, as this value is dependent only the CBF 

value averaged across an entire tissue compartment and is therefore highly reproducible. The 

voxel-wise reproducibility of CBF measurement was found to be 0.71±0.09, and this value 

serves as the upper bound on the reproducibility of predictions from spatially varying 

anatomical predictors. Predictions from probability maps and thickness on the one hand and 

our structural predictors have similar reproducibility to the raw CBF images. The residual 

CBF image was less reproducible as compared to raw CBF reproducibility (p-value=6.69 × 

10−6), but still displayed relatively high reproducibility across subjects (0.52±0.07). 

Although the high reproducibility of the structurally predicted CBF was expected, the high 

reproducibility of the residual CBF indicates that it is not simply random noise and varies in 

a consistent way across subjects.

3.6. Pediatric Population Study

To return to the motivating problem of this work, we examined whether observed perfusion 

changes throughout adolescent development are predicted by a global model relating brain 

structure to perfusion. We examined trends from a variety of areas representing distinct 

functional domains and developmental characteristics. The hippocampus and precuneus 

represent higher-order memory and cognitive functions [53], and the occipital cortex and 

precentral gyrus represent sensorimotor regions that are presumed to mature relatively early 

in development [54, 55]. The default mode network (DMN), a collection of regions that are 

most active when subjects are not specifically engaged in any externally directed task [56], 

continues to undergo maturation during adolescence [57, 58]. We therefore also examined 

the CBF trends for the most consistent and conservative definition of the DMN, consisting 

of left and right precuneus, medial orbitofrontal cortex, and angular gyrus [56].

CBF trends are plotted in Figure 10, with quantitative results in Table 1. We found that 

although both the raw perfusion values and structurally predicted perfusion changed 

throughout adolescence in all regions examined, the functional specialization of different 

regions, as measured by the residual CBF values, followed a regionally varying trajectory. 

Hippocampal and precuneal residual CBF values showed a strong correlation with age, 

whereas the residual CBF values were not as strongly associated with age in the superior 

occipital cortex and the precentral gyrus. These trends were bilateral (see plots for the right 

hemisphere in Supplementary Material, section 7). With the exception of the hippocampus, 

the structurally predicted CBF had lower variance than the raw CBF, and in all areas the 

residual CBF had lower variance than the raw CBF. For simplicity and to minimize 

overfitting, we used linear regression and did not include an interaction between age and 

gender, but it is possible that this analysis masks nonlinear effects.

4. Discussion

We have presented here a method to separate the anatomically predicted from the residual 

components of perfusion images as measured by ASL MRI. Our method to generate 

structural predictors gives much better prediction accuracy for predicting CBF than either 

Kandel et al. Page 13

Neuroimage. Author manuscript; available in PMC 2016 January 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



probability maps or cortical thickness. The test-rest reproducibility of both the structurally 

predicted and residual CBF is close to that of the raw CBF, implying that both the 

structurally predicted and residual CBF maps contain stable signals. In addition, we found 

that although the anatomically predicted and raw CBF were closely related to age, the 

residual CBF showed a regionally heterogeneous pattern, suggesting that different brain 

regions undergo different amounts of functional specialization during development.

4.1. Interpretation of Structurally Predicted and Residual CBF

RIPMMARC takes CBF and structural images as input, and produces as output a 

structurally predicted CBF image and a residual CBF image. At first glance, the 

interpretation of these two outputs may be somewhat obscure, but we believe that when 

properly understood, each image has an intuitively clear interpretation that can be directly 

incorporated into clinical characterization of a subject. By way of analogy, we imagine an 

experiment tracking subject performance on a test of verbal ability in a group of children. A 

researcher may regress out “nuisance variables,” such as subject age and familial income, 

before examining the results. At the group level, the effect of these nuisance variables may 

in fact be of interest, but looking at an individual’s score without accounting for these 

nuisance variables would be misleading. In our method, we consider the “group effects” to 

be structural effects shared across the brain, whereas the “subject-level” measurements are 

the perfusion values at a given voxel. The group effects of underlying brain structure, 

similarly to age and familial income in our imagined verbal ability study, may be of 

independent interest, and we may be interested in looking at regional variations in perfusion 

as predicted by structural measures. When looking at a given voxel, though, we may also be 

interested in the amount of perfusion that is not predicted by the underlying neural 

architecture, just as one may look at a verbal ability result for a given subject when corrected 

for age and family income. For both the structurally predicted and residual CBF 

measurements, the units are in the same units of blood flow as the original mean CBF 

image. Negative values for the residual CBF image correspond to areas with less-than-

expected perfusion as compared to structurally homologous regions elsewhere in the brain. 

Finding regions of the brain that consistently have lower CBF than other structurally similar 

regions may help clarify which specific anatomical or microstructural characteristics drive 

regional perfusion variations.

Biological Interpretation of CBF Measurements—The reproducibility of the residual 

CBF, as well as its correlation with age, indicate that it is not only the result of measurement 

noise, but these results do not provide a true validation that the residual CBF results from a 

discrete biological process. Although this study establishes an empirical link between local 

cortical structure and ASL-measured perfusion, it does not conclusively demonstrate a 

specific biological mechanism for this link. One plausible biological mechanism for a link 

between cortical structure and perfusion is astrocyte-mediated vasodilation. Astrocyte 

morphology and distribution is known to vary across the cortex [59], and recent work has 

demonstrated that astrocytes are capable of modulating arteriole vasoconstriction [60]. A 

careful evaluation of possible correlations between cortical structure and cytoarchitectonic 

and vascular modulation of perfusion is necessary to establish a clear causal link between 

cortical structure and perfusion.
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4.2. Results from Population Study

We examined how structurally predicted and residual CBF vary across age in a pediatric 

population. We found that although the raw and structurally predicted CBF decreased across 

all regions throughout adolescence, the trends for residual CBF exhibited a spatially 

heterogeneous pattern. In the precuneus, the residual CBF decreased with age, whereas in 

the hippocampus, the residual CBF increased with age. In both regions, the residual CBF 

showed a strong bilateral correlation with age. In contrast, the residual CBF in the precentral 

gyrus and superior occipital cortex showed a much weaker correlation with age. These 

findings suggest that the functional specialization in some areas follows the cortical 

structural development, but in other areas displays a distinct trajectory. For example, the 

precentral gyrus and the occipital lobe are known to reach their mature cortical thickness 

relatively early in development [54], and we found that the residual CBF of these areas did 

not show a strong correlation with age. On the other hand, the hippocampus has also been 

found to reach structural maturity relatively early in adolescence [54], but we found a strong 

correlation between residual CBF and age here. The precuneus, in contrast, displays 

significant structural changes throughout adolescence [61], and the precuneal residual CBF 

was also found to correlate strongly with age. As a whole, these findings indicate that 

functional specialization may follow a trajectory that is distinct from that of cortical 

structural development.

In all regions examined, the trend throughout adolescence was for the residual CBF to move 

towards zero, implying that in older adolescents, a global model relating brain structure to 

perfusion is more accurate than in younger adolescents.

4.3. Comparison to Partial Volume Correction Techniques

Although the method proposed here falls into the general category of atrophy and structure 

correction techniques, it has a fundamentally different purpose from standard partial volume 

correction (PVC) techniques [62, 10, 63]. Our method directly addresses the question of the 

relationship between brain structure and perfusion, which is not the purpose of PVC 

techniques. PVC aims to recover what the scanner would have seen had technical 

impediments, such as partial volume effects, not interfered with the imaging. This correction 

is crucial to appropriately interpreting observed perfusion values, but does not aim to 

discover what proportion of perfusion can be accounted for by underlying brain structure. In 

contrast, we aim to recover both the effect of anatomy on the perfusion image and the 

perfusion that is independent of anatomy. The separation of structural from non-structural 

perfusion effects is distinct from PVC-based approaches, which incorporate the structural 

information directly into the output image. We did not explicitly investigate the relationship 

between the eigenpatch-derived predictions and partial volume effects. It is possible that the 

eigenpatch predictions are affected by partial volume artifacts. However, the gradient 

information included in the eigenpatch descriptors should also indicate how close a given 

voxel is to the edge of the cortex, thus implicitly accounting for partial volume effects.

4.4. Consideration of Resolution

The different resolutions of arterial spin labeling MRI as compared to T1 MRI present 

significant challenges when attempting to analyze the relationship between the two 
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modalities. Because the T1 image is at a much higher resolution than the ASL image, it is 

difficult to disentangle the effects of scanner characteristics on observed perfusion from true 

perfusion results. As opposed to PET imaging, quantitative analysis of ASL scanners using 

physical or computational phantoms is not widespread, although some initial efforts have 

been reported [64]. The lack of quantitative tools for analyzing scanner properties 

complicates the effort to work across resolutions. To examine the effect of anatomical 

variation on observed perfusion, we resampled both the ASL images and the T1 images to 

2mm isotropic resolution. This resolution was observed to minimize interpolation artifacts 

from the ASL native space while still providing adequate anatomic detail. In addition, we 

explicitly examined the dependence of the results on resolution. We found that choosing the 

resolution to be 2mm or 3mm had a minimal effect on either structurally predicted or 

residual CBF (Figure 11).

4.5. Limitations

Although this work demonstrates that the proposed method has promise, it does leave some 

unanswered questions that require further study. First, although the results in the pediatric 

population imply that the signal present in the residual CBF has biological significance, 

more study is necessary to validate this finding in a variety of populations to further 

elucidate its utility in broader applications. Second, we have not rigorously examined here 

how the dictionaries and coefficients vary across patients. Using only the predicted value 

from the dictionary learning approach without examining how the predictions are made may 

in fact throw away useful data, as the relationship between structure and perfusion itself may 

contain biologically significant information. To compare the structure-CBF relationship 

across subjects, though, it would be necessary to learn a consistent dictionary and apply it to 

all subjects. Carefully examining the variability of learned dictionaries across subjects and 

across different populations is necessary to establish appropriate techniques for constructing 

population-wide dictionaries. Third, the residual CBF retains significant amounts of the 

noise present in the raw CBF images, such as transit effect artifacts from large blood vessels 

as evident in Figure 6. The residual CBF image will in general be noisier than the structural 

CBF image, as the residual image will contain both biologically significant signal and noise, 

whereas the structurally predicted CBF image will not be affected by ASL noise. For ASL 

sequences that are noisier than pCASL, such as PASL-derived sequences, the additional 

noise may interfere with detection of the residual CBF signal. Finally, this method assumes 

a good registration between the ASL and T1 images. We have found that using an affine 

registration coupled with a small deformable registration is provides a reliable and accurate 

way to align cortical perfusion images. In applications with dynamic structural images, such 

as cardiac or muscular imaging, finding a good correspondence between structural and 

perfusion images may be more difficult.

4.6. Future Work

4.6.1. Variations of the Technique—In this work, we learned the relationship between 

brain structure and perfusion on a per-subject basis. The motivation for this is that although 

there may be global variations in the function that relates brain structure and perfusion, the 

function is a global signal over the entire brain, whereas the use of imaging is intended to 

highlight regionally varying measures of perfusion. This correction for global signal changes 
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is similar in spirit to the use of relative CBF [65], where correcting for global perfusion has 

been found to increase the ability to find regional differences in blood flow. For application 

to patient populations, though, it may be more appropriate to learn the structure-perfusion 

relationship in an age-matched control cohort and apply the structure correction to the 

patient population. Alternatively, it may be ideal to learn eigen-patches from an independent 

population and project all subjects in the test population to that basis.

A related question that this study raises is how the structure-perfusion relationship changes 

across the brain. It may be more appropriate to learn the structure-perfusion relationship 

across individual lobes, rather than over the entire brain. RIPMARC can be easily modified 

to perform such an analysis by sampling the patches and training only over lobes, as 

opposed to over the whole brain.

The infrastructure for constructing a patch-based representation of imaging data has many 

other applications. It may be possible, for example, to use the patch descriptors to drive 

registration of images in cases where scalar intensity values are not sufficiently 

discriminatory. The patch-based descriptors would allow for a more expansive description 

of anatomy, similar to landmark-based registration techniques [66], while still enabling a 

dense representation of the images, as is common in voxel-based registration techniques 

[50].

4.6.2. Additional Applications—Although this study is limited to the connection 

between brain structure and perfusion, the method is fundamentally agnostic to imaging 

modality and can be applied across a wide range of imaging techniques. An obvious 

application of this work is atrophy correction for neurodegenerative populations [6]. 

Although several studies have shown that brain perfusion, as measured by ASL imaging, 

changes in Alzheimer’s Disease [67], the extent to which this decrease could be determined 

by atrophic and other structural changes has not been addressed using methods similar to the 

proposed work. Some studies have shown hippocampal hyperperfusion in early Alzheimer’s 

Disease, notwithstanding hippocampal atrophy [68]. These contrasting trends of increased 

perfusion and atrophy highlight the need for rigorous structural correction of perfusion 

imaging.

RIPMMARC may also be useful for missing image imputation. Standard methods for data 

imputation rely on methods borrowed from matrix imputation [69, 70]. Using an imputation 

method that incorporates image characteristics into the imputation may result in a more 

accurate imputation method. Traumatic brain injury represents a disease state where 

RIPMMARC may be particularly useful. In many cases, pre-injury perfusion scans of 

subjects are not available, confounding disease effects with natural inter-subject variation. 

By imputing perfusion based on structurally similar areas of the brain, RIPMMARC can 

provide a subject- and region-specific estimate of expected brain perfusion for the damaged 

region. Finally, RIPMMARC provides a scalable approach to novelty detection in multi-

modal imaging studies.
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5. Conclusion

The method presented here shows promise in decomposing CBF images into anatomically 

predicted and residual perfusion components. The algorithm proposed explains significantly 

more of the variance in CBF images than the segmentation probability maps commonly used 

for performing partial volume correction, and therefore may be more suitable for structural 

correction of perfusion images than tissue segmentation images. In addition, the method can 

be used to improve the interpretability of perfusion images by indicating how much of the 

observed changes in perfusion are caused by global structural trends and how much by 

localized processes. This separation of global from local effects can provide greater 

sensitivity for correlating spatially localized neuronal processes with perfusion images.
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Refer to Web version on PubMed Central for supplementary material.
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Highlights

We propose a method to learn the connection between cortical structure and 

perfusion.

Our learned structural features predict perfusion better than gray matter content.

Both the predicted and residual perfusion values are highly reproducible.

In a pediatric population, both predicted and residual perfusion are linked to age.
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Figure 1. 
Schematic of predicting perfusion from structural MRI.
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Figure 2. 
Graphical abstract of proposed method. Patches are sampled from image in modality 1 (here, 

T1) and SVD is used to learn optimal features (“eigenpatches”) to describe patches. Patches 

corresponding to each point in the image are then projected onto the “eigenpatches” to 

create a representation of the input image in feature space. We then use linear regression to 

predict the second image (here, perfusion image) from the feature-based description of the 

first image. This enables us to decompose the perfusion image into a component that is 

predicted from the structural image and the unique contribution of the perfusion image.
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Figure 3. 
Histogram of ages of pediatric population.
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Figure 4. 
Synthetic perfusion and anatomical data. Some aspects of the perfusion data, such as the 

higher activity at the intersection of the lines, can be deduced from the underlying anatomy 

(the intersection of the lines), but other aspects of the perfusion data, such as the increased 

activity on the upper right line, cannot be deduced from the anatomy. 4c,4d: Decomposition 

of synthetic data using non-rotational invariant features. The constructed features include 

orientation, so the higher values in the horizontal line are correctly reconstructed. 4e,4f: 

Reconstructed perfusion and residual perfusion decomposition of Figure 4b. Because 

orientation invariant features were used, the higher perfusion of the horizontal line is not 

predicted, but the intersection of the lines does indicate a greater predicted functional signal. 

Orientation invariance enables greater information sharing across regions, leading to lower 

variance in the reconstruction as compared to the reconstruction using non-rotationally 

invariant features (4c).
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Figure 5. 
Negative log p-value map (FDR corrected) for raw perfusion (top), structurally predicted 

perfusion (middle), and residual perfusion (bottom). The structural, combined structural and 

functional, and functional areas all appear on the perfusion map. The structural and 

combined functional and structural blob appear on the structural p-value map, and the 

combined structural and functional blob and the purely functional blob appear on the 

functional p-value map.
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Figure 6. 
Comparison of mean CBF image (top left), reconstruction from anatomy using RIPMMARC 

(top right), reconstruction from GM and WM probability images (bottom left), and residual 

perfusion image (bottom right). Mean CBF image is shown at ASL resolution 

(3.4mmx3.4mmx7.5mm); other images are shown at 2mm isotropic resolution.

Kandel et al. Page 30

Neuroimage. Author manuscript; available in PMC 2016 January 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. 
Predictions of CBF within cortical GM using our structural predictors and probability maps. 

Our structural predictors account for much more variance than probability maps, which 

exhibit a strong ceiling effect. This figure indicates that even within the cortex, where 

additional tissue probability information does not predict CBF, the proposed structural 

predictors can find a meaningful relation between structure and CBF.
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Figure 8. 
Correlation of CBF with: retest CBF; probability images; probability images and thickness; 

and our structural predictors. Our structural predictors are much better at predicting CBF 

than probability images, and account for roughly half the reproducible ASL signal. This 

result indicates that our structural predictors are more appropriate for structural correction of 

perfusion than using only tissue probability images and cortical thickness.
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Figure 9. 
Reproducibility of mean CBF and derived CBF measures. Reproducibility is reported as the 

voxelwise correlation of the measure at two scans taken one hour apart. Although the 

reproducibility of the probability-derived CBF prediction is quite high, the low amount of 

variance explained by tissue probability values as opposed to RIPMMARC-derived 

predictors indicates that the reproducibility is most likely driven by whole-brain consistency 

in CBF values.
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Figure 10. 
Raw, anatomically predicted, and residual CBF as a function of age. The raw CBF signal 

contains a mixture of the structurally predicted and residual CBF signals. The residual CBF 

shows a spatially heterogeneous longitudinal trajectory of functional specialization, with 

earlier-developing regions, such as the superior occipital lobe and precentral gyrus, showing 

less change over adolescence than the later-developing precuneus and hippocampus. This 

relative stability is not apparent in the raw or structurally predicted CBF signal.
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Figure 11. 
Assessment of effect of resolution on CBF measurements. Raw CBF measurements are not 

affected at all by resolution. Both structural and residual CBF are minimally affected by 

processing resolution: The ROI-wise correlation between structural and residual CBF at 

2mm and 3mm resolution are greater than 0.92.
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