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A B S T R A C T

Purpose
To uncover the genetic events leading to transformation of pediatric low-grade glioma (PLGG) to
secondary high-grade glioma (sHGG).

Patients and Methods
We retrospectively identified patients with sHGG from a population-based cohort of 886 patients
with PLGG with long clinical follow-up. Exome sequencing and array CGH were performed on
available samples followed by detailed genetic analysis of the entire sHGG cohort. Clinical and
outcome data of genetically distinct subgroups were obtained.

Results
sHGG was observed in 2.9% of PLGGs (26 of 886 patients). Patients with sHGG had a high
frequency of nonsilent somatic mutations compared with patients with primary pediatric high-
grade glioma (HGG; median, 25 mutations per exome; P � .0042). Alterations in chromatin-
modifying genes and telomere-maintenance pathways were commonly observed, whereas no
sHGG harbored the BRAF-KIAA1549 fusion. The most recurrent alterations were BRAF V600E and
CDKN2A deletion in 39% and 57% of sHGGs, respectively. Importantly, all BRAF V600E and 80%
of CDKN2A alterations could be traced back to their PLGG counterparts. BRAF V600E distin-
guished sHGG from primary HGG (P � .0023), whereas BRAF and CDKN2A alterations were less
commonly observed in PLGG that did not transform (P � .001 and P � .001 respectively). PLGGs
with BRAF mutations had longer latency to transformation than wild-type PLGG (median, 6.65
years [range, 3.5 to 20.3 years] v 1.59 years [range, 0.32 to 15.9 years], respectively; P � .0389).
Furthermore, 5-year overall survival was 75% � 15% and 29% � 12% for children with BRAF
mutant and wild-type tumors, respectively (P � .024).

Conclusion
BRAF V600E mutations and CDKN2A deletions constitute a clinically distinct subtype of sHGG.
The prolonged course to transformation for BRAF V600E PLGGs provides an opportunity for
surgical interventions, surveillance, and targeted therapies to mitigate the outcome of sHGG.

J Clin Oncol 33:1015-1022. © 2015 by American Society of Clinical Oncology

INTRODUCTION

Gliomas are the most frequent primary CNS neo-
plasms in adults and children.1 In contrast to adult
low-grade gliomas, which invariably progress to sec-
ondary high-grade glioma (sHGG), pediatric low-
grade glioma (PLGG) rarely exhibits malignant
transformation.2-4 Only a handful of studies have
addressed the clinical and molecular parameters

leading to transformation of PLGG to sHGG. Radi-
ation therapy is thought to play a role in malignant
transformation of PLGG,5 particularly in the con-
text of cancer predisposition.6,7 Before the genomic
era, Broniscer et al3 were the first to describe several
genetic events that occur in these cancers. Recent
next-generation sequencing efforts have uncovered
somatic mutations in TP53, ATRX, and IDH1/2,
among other alterations that are present in adult
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low-grade gliomas and sHGGs.8 In addition, hTERT promoter muta-
tions with resulting re-expression of telomerase and alternative
lengthening of telomeres (ALT) are major telomere maintenance
mechanisms observed in adult glioblastoma and sHGG, respec-
tively.8,9 Similar efforts have characterized the genomic landscape of
pediatric primary high-grade glioma (HGG) and PLGG, with the
former containing somatic mutations in histone H3.3, ATRX, and
TP53 genes, and others,10-12 and the latter almost universally exhibit-
ing alterations causing activation of the MAPK/ERK pathway.13-15

Despite extensive characterization of primary HGG and PLGG,
the incidence of childhood sHGG and the genetic determinants of
PLGG transformation in children remain largely unknown. Because
pediatric HGGs are invariably lethal,16 there is an urgent need to
identify patients with PLGGs at high risk of malignant transforma-
tion and to initiate early aggressive surgical intervention, stratify
these patients for existing targeted therapies, and implement tai-
lored surveillance.

To address these needs, we performed a population-based long-
term outcome study of all patients with PLGG treated in southern
Ontario, Canada, from 1986 to 2013. We then analyzed genomic and
genetic alterations observed in PLGG that subsequently transformed
to sHGG and correlated these findings with multiple parameters in-
cluding outcome. Here, we describe a new subgroup of sHGG for
which early diagnosis and intervention may improve outcome.

PATIENTS AND METHODS

Patient Cohort

After institutional review board approval of the study, all patients treated
at the Hospital for Sick Children (SickKids) in Toronto, Ontario, Canada, for
PLGG between January 1, 1986, and December 31, 2013, were reviewed for
malignant transformation. In Canada, patients are almost exclusively treated
at their residential location. Because SickKids is the only reference center for
children in a population of 10 million people, no selection bias is expected, and
this qualifies as a population-based study. Furthermore, the Ontario health
system tracks clinical outcome data on all residents, enabling us to collect
long-term follow-up data including transformation events and survival for
more than 97% of patients, including adults, until December 2013.17,18 Pa-
tients were considered as having transformation to sHGG if they exhibited one
or more of the following: consecutive histologic diagnosis of low-grade glio-
mas and HGGs as per the WHO 2007 criteria19 (n � 20); histologic diagnosis
of low-grade glioma, followed by at least 1 year of stable disease, followed by
clinical and radiologic progression to HGG (n � 3; Data Supplement); or
clinicoradiologic evidence of low-grade glioma, at least 1 year of stable disease,
and subsequent histologic diagnosis of HGG (n � 3; Data Supplement).
Demographic, treatment, and outcome data were retrieved from our PLGG
database, as previously described.20,21 All PLGGs and corresponding sHGGs
were rereviewed by the study pathologist (C.E.H.).

Genomic and Genetic Analysis of Tumors

Isolation of DNA from tumor and control tissues was carried out as
previously described.22 Comprehensive analysis of mutations in protein-
coding genes by whole-exome sequencing (WES), using the Illumina HiSeq
2000 platform (Illumina, San Diego, CA), and of copy number alterations
(CNAs) by array comparative genomic hybridization were performed on
available samples. Genotyping for candidate hotspot mutations was carried
out as previously described.10,15,23,24 Specific CNAs were validated by real-
time quantitative polymerase chain reaction. BRAF fusion status of tumors
was obtained using interphase fluorescent in situ hybridization. Immunohis-
tochemistry and genotyping also identified BRAF V600E mutations and de-
termined p53 status. ALT was detected by the c-circle assay.25,26 Further
information on methods used in this study is available in the Data Supplement.

Statistical Analysis

For all correlative studies, Fisher’s exact test was used. The unpaired
two-tailed t test was used to compare time to transformation, the number of
somatic mutations, and p53 dysfunction between relevant groups. Survival
analysis was performed using the Kaplan-Meier method. A log-rank test was
used to compare groups, and curves were generated using Stata v12 (Stata,
College Station, TX). P � .05 was considered significant.

RESULTS

Clinical Characteristics of Patients With

Pediatric sHGG

Of 886 patients treated at our institution for PLGG from 1986 to
2013, 26 patients (2.9%) fulfilled the criteria for malignant transfor-
mation (Table 1; Data Supplement). Sixteen PLGGs that transformed

Table 1. Clinical and Pathologic Characteristics of Pediatric Secondary High-
Grade Glioma

Characteristic

No. of Patients

PLGG sHGG

Sex
Male 14
Female 12

Tumor location
Hemispheric 11
Thalamic 9
Brainstem 5
Optic pathway 1

Latency to MT, years
Median 2.84
Range 0.32-20.3

Outcome
Alive 3
Deceased 23

Disseminated at diagnosis 0 3
Histologic diagnosis

Low-grade astrocytoma 9
Pilocytic astrocytoma 7
Pleomorphic xanthoastrocytoma 5
Ganglioglioma 2
Anaplastic astrocytoma 9
Glioblastoma 7
Anaplastic pleomorphic xanthoastrocytoma 5
Anaplastic ganglioglioma 2

Extent of surgical resection
Gross total resection 1 1
Subtotal resection 15 5
Partial resection 0 3
Biopsy 5 4
Surgery done (extent unknown) 0 5

Treated with RT after diagnosis 5 14
Chemotherapy received 9 17
Age diagnosis, years

Median 7.0 12.5
Range 0.39-15.6 0.57-33.7

OS after diagnosis, years
Median 3.75 0.8
Range 0.52-26.1 0.02-21.7

Abbreviations: MT, malignant transformation; OS, overall survival; PLGG,
pediatric low-grade glioma; RT, radiotherapy; sHGG, secondary high-
grade glioma.

Mistry et al

1016 © 2015 by American Society of Clinical Oncology JOURNAL OF CLINICAL ONCOLOGY



(69%) were diagnosed histologically as either low-grade astrocytoma
or pilocytic astrocytoma, whereas the remaining were pleomorphic
xanthoastrocytomas (22%) and gangliogliomas (9%). Three sHGGs
were disseminated on transformation, two of which were located in
hemispheric regions.

The median age at PLGG diagnosis for all patients was 7.0 years
(range, 0.39 to 15.6 years). The median age at sHGG diagnosis was
12.5 years (range, 0.57 to 33.7 years), respectively. Only five (19%) of
26 patients were treated with radiotherapy at PLGG diagnosis. Three
patients (11%) had cancer predisposition syndromes. These included
one patient with neurofibromatosis type 1, one with Li-Fraumeni
syndrome, and one with biallelic mismatch repair deficiency syn-
drome. None of these patients received radiation at PLGG diagnosis.

Landscape of Point Mutations in sHGG

We performed WES on seven sHGGs and two matched PLGGs.
Mean sequencing coverage of sHGG and matched control tissue (n �
7 pairs) was 94� and 114�, respectively. Interestingly, the patient
with Li-Fraumeni syndrome (patient 7) harbored only 21 somatic
mutations in their sHGG, whereas the patient with biallelic mismatch
repair deficiency (patient 16) harbored 11,953 somatic mutations,
representing a hypermutator phenotype. WES analysis identified a
median somatic nonsilent mutation rate of 0.45/Mb in seven sHGGs
(median total mutations, 25 mutations; range, six to 11,953 muta-
tions). sHGGs exhibited a higher somatic mutation load than primary
pediatric HGGs (median, 11 mutations; range, zero to 4,628 muta-
tions; P � .0042; Data Supplement), available from previously pub-
lished data.10 Importantly, none of these sHGGs were irradiated
before surgical resection.

Three sHGGs harbored heterozygous missense mutations in
chromatin-modifying genes including SETD1B, DOT1L, and DNMT1
(Data Supplement). The most recurrent mutation was BRAF V600E
(c.1799T�A), identified in three (43%) of seven sHGGs. We then
performed targeted genotyping of recurrent and common genes in-
volved in primary HGG and adult sHGG on all childhood sHGGs. No
mutations in H3F3A G34 or IDH1 were identified, and only one
patient with a mutation in ATRX was observed. Nineteen percent of
sHGGs harbored H3F3A K27M mutations, all of which were located
in the brainstem or thalamus. BRAF V600E was identified to be the
most recurrent somatic mutation, present in seven (39%) of 18
sHGGs (Fig 1A; Data Supplement), 71% of which (five of seven
sHGGs) were hemispheric.

CNAs in sHGG

We interrogated the same seven sHGGs for recurrent CNAs
using array comparative genomic hybridization. Total CNA per
sHGG genome was 100, and CNA was 56 in the two patient-matched
PLGGs. The only recurrent CNA observed in the sHGGs was a focal
deletion of chromosome 9 (p21.3), encompassing the CDKN2A gene.
CDKN2A deletions were observed in 71% of patients from our initial
cohort. To determine the frequency of the CDKN2A gene deletion in
the entire sHGG cohort, we performed real-time quantitative poly-
merase chain reaction on 14 tumors. Overall, 57% of sHGGs (eight of
14 sHGGs) had heterozygous or homozygous deletions of CDKN2A
(Fig 1A; Data Supplement).

BRAF V600E and CDKN2A Deletion Are Early Events

in PLGG Undergoing Transformation

Analysis of patient-matched low- and high-grade samples re-
vealed that BRAF mutations identified in the sHGG were also identi-
fied in 100% of the corresponding PLGGs and that 80% of sHGG
CDKN2A deletions were also identified in the corresponding PLGGs
(Fig 1). To determine whether these early events are unique to this
subset of pediatric gliomas, we compared the frequency of these alter-
ations to nontransformed PLGG and primary pediatric HGG. BRAF
V600E was significantly enriched in PLGG that transformed, being
present in 44% (eight of 18) of PLGGs that transformed compared
with 6% (10 of 167) of PLGGs that did not transform (Fig 2A; P �
.001; Data Supplement). The mutation was also highly enriched in
sHGGs compared with only one of 31 primary pediatric HGGs (Fig
2B; P � .0023). Strikingly, this single patient had a 3-year history of
headache and seizures before the diagnosis and is currently alive more
than 15 years after treatment for their presumed primary HGG. Sim-
ilar to BRAF mutations, CDKN2A deletions were significantly en-
riched in PLGG that transformed (71% v 20% of PLGGs that did not
transform; Fig 2C; Data Supplement; P � .001). Interestingly, six
(75%) of eight BRAF mutant PLGGs harbored concomitant CDKN2A
deletions (Fig 1). Therefore, we conclude that BRAF V600E mutant
sHGGs are a genetically distinct group.

Integrative Genetic and Molecular Analysis of

Childhood sHGG

Several important biologic features emerged from our analysis of
PLGGs and their sHGG counterparts. First, no sHGG harbored the
7q34 duplication, which is indicative of the oncogenic BRAF-
KIAA549 gene fusion.27,28 Notably, only one of the PLGGs that later
transformed harbored that aberration. For this single patient, the 7q34
duplication was identified in 10% of tumor cells examined and was
not observed at all in the corresponding sHGG (Fig 1).

Second, additional evidence of clonal evolution was observed in
the TP53 data. Specifically, patient 16 harbored a deleterious TP53
(p.R273C) missense mutation in the PLGG at 7% allele frequency.
The matched sHGG had a 30% allele frequency of the same mutation.
Similarly, the PLGG had less than 25% immunopositivity for p53,
whereas the matched sHGG tumor had more than 90% of tumor cells
staining positive for p53 (Data Supplement). Eighty percent of pa-
tients (eight of 10 patients) demonstrated increases in p53 tumor cell
immunopositivity between matched low- and high-grade tumor sam-
ples. Overall, there was a higher proportion of p53 immunopositive
sHGG (72%) versus PLGG (27%; Fig 1; P � .0149; Data Supplement).

Third, telomere maintenance abnormalities were observed in
54% of sHGGs. In contrast to adult low-grade gliomas, no PLGG
exhibited ALT (zero of 12 PLGGs), whereas hTERT promoter muta-
tions were seen in 15% of PLGGs (two of 13 PLGGs), both of which
were conserved in their high-grade counterparts. All ALT and hTERT
promoter mutation cases were mutually exclusive (Fig 1).

Finally, alterations of the p53 and/or RB tumor suppressor
pathways were identified in 14 (93%) of 15 sHGGs. Surprisingly, a
high proportion of PLGGs (12 of 14 PLGGs; 86%) also harbored
overexpression of p53 or CDKN2A deletions, suggesting early ab-
lation of cell cycle control in PLGGs that later transform (Fig 1;
Data Supplement).

BRAF Mutation and CDKN2A Deletion in Childhood High-Grade Glioma
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BRAF V600E Defines a Clinically Distinct Subset

of sHGG

To understand the clinical consequences of the identified BRAF
V600E–driven sHGG subset, we compared onset and outcome of this
subgroup to BRAF wild-type sHGG and other pediatric gliomas. Pa-
tients with BRAF mutant PLGGs that later transformed were all older
than age 5 years at diagnosis (range, 5.1 to 13.4 years), and 89% of
these patients were between 5 and 10 years of age, in contrast to all
other patients with PLGGs that later transformed (Fig 3A).

Most notably, BRAF V600E mutant PLGGs had significantly
prolonged latency periods to transformation (median, 6.65 years;
range, 3.50 to 20.3 years) compared with BRAF wild-type PLGGs that
also experienced transformation (median, 1.59 years; range, 0.32 to
15.9 years; Fig 3B; P � .0389). As a result, all BRAF mutant sHGGs
were diagnosed at age greater than 9 years (Fig 1A).

Furthermore, 5-year overall survival rates of children with BRAF
mutant and wild-type PLGGs that transformed were 75% � 15% and
29% � 12%, respectively (P � .024;Fig 3C). To further confirm that
these two groups of sHGG are distinct, we compared the outcomes of

these patients with those of patients with PLGG and primary HGG in
our institution. Children with nontransformed PLGG had a 5-year
overall survival rate of 98% � 0.5%. Importantly, children with pri-
mary HGG had a 5-year overall survival rate of 5% � 4%, a signifi-
cantly worse outcome than any subgroup of sHGG, including BRAF
wild-type PLGGs that transform (Fig 3D; P � .0163). After malignant
transformation, 23 of 26 patients died, and no significant differ-
ence in survival between subgroups of sHGG was observed (P �
.49; Data Supplement).

DISCUSSION

In this population-based study, we define the risk of PLGG transfor-
mation to sHGG (2.9%) and uncover clinically applicable genetic
subgroups of these cancers. The absolute risk of PLGG transformation
is lower than previously estimated.3 Broniscer et al3 estimated that
approximately 10% of PLGGs will transform to sHGG; however, that
study represents a referral center experience that may be biased to
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Fig 1. Clinical, genetic and molecular
characteristics in (A) secondary high-grade
glioma and (B) pediatric low-grade glioma
(PLGG) undergoing transformation. Fre-
quency of genetic or molecular alterations
indicated as percentage at the far right of
each row. AA, anaplastic astrocytoma;
AGG, anaplastic ganglioglioma; APXA,
anaplastic pleomorphic xanthoastrocy-
toma; bMMRD, biallelic mismatch repair
deficiency syndrome; CPS, cancer predis-
position syndrome; Dx, diagnosis; GBM,
glioblastoma; GG, ganglioglioma; HG, high
grade; LFS, Li-Fraumeni syndrome; LG,
low grade; LGA, low-grade astrocytoma;
MT, malignant transformation; N/A, not
applicable; PA, pilocytic astrocytoma; PXA,
pleomorphic xanthoastrocytoma; RT, radio-
therapy. p53 dysfunction is defined by
more than 50% p53 immunopositive tu-
mor cells and/or TP53 mutation.
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more aggressive cancers (Data Supplement). The provincial health
care system in Ontario and follow-up data allowed us to track patients
for more than 30 years and detect even late transformation events in
survivors of PLGG. Indeed, survivors of childhood BRAF mutant
PLGG may experience malignant transformation up to 20 years after
their initial diagnosis when they are well into adulthood.

Our study reveals additional molecular and genetic differences
between childhood and adult gliomas. Common alterations found in
adult low-grade gliomas that transform such as ATRX, IDH1, and
ALT were extremely rare in our cohort, whereas BRAF V600E, H3.3,
and hTERT promoter mutations, which are uncommon in adult
sHGG, were highly enriched in our cohort. Nevertheless, genomic
analyses of both adult and pediatric sHGG reveal common aberra-
tions in p53 and RB cancer pathways, which are key to avoiding
cellular senescence and growth arrest. An important clinical implica-
tion of this observation is the high incidence of both p53-positive
immunostaining and CDKN2A deletion observed in our PLGG co-
hort that subsequently experienced transformation. Because these two
markers are extremely uncommon in PLGGs that do not transform,
integration of these tests to the panel used at diagnosis may enable us
to detect a high-risk patient population for follow-up.

The complete lack of the BRAF-KIAA1549 gene fusion observed
in sHGG represents another clinically important parameter for risk

assessment. In our PLGG database of 886 patients, only one patient
with chromosome 7q34 duplication went on to experience transfor-
mation. This patient had only 10% of cells harboring this duplication,
and this clone disappeared in the corresponding sHGG, suggesting
that minor subclones harboring the BRAF duplication do not
portend the same good clinical outcome. Because more than
half of PLGG are expected to harbor this alteration, inclusion of
this test will add important negative information on the risk of
transformation.21 BRAF V600E mutations have been described
in a variety of pediatric gliomas, most frequently in ganglioglio-
mas and pleomorphic xanthoastrocytomas.25-27 The latter also
manifest concomitant CDKN2A deletions.14 Interestingly, pleo-
morphic xanthoastrocytomas have the tendency to transform to
high-grade tumors.29,30 Nevertheless, 69% of PLGGs in our co-
hort were initially diagnosed as grade 1 astrocytomas, demonstrat-
ing that transformation is not restricted to these pathologic
subtypes. The frequency of BRAF mutations in pediatric HGG is
controversial. Different studies reveal rates between 10% and
25%.11,31-33 Our observations resolve some of these discrepancies,
because the mutation may be specific to the subgroup of secondary
pediatric HGG rather than primary pediatric HGG.

Perhaps the most important observation of this study is that
specific alterations identified in sHGG could be traced back to their
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guishes secondary from primary high-grade
gliomas (HGGs) in children (P � .0023); and
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that later transform versus PLGGs that do not
transform (P � .001). Statistical significance
was evaluated using Fisher’s exact test.
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PLGG counterparts. Both BRAF V600E and CDKN2A-deleted tu-
mors may be eligible for targeted therapies. If so, preventive measures,
including a more aggressive surgical approach and consideration of
medical therapies34 even when a stable tumor is observed, may be able
to mitigate the devastating transformation event. This concept is
further highlighted because the BRAF V600E mutation and
CDKN2A deletion were observed in 63% and 100% of tumors in
peripheral locations, respectively (Fig 1B), suggesting enrichment
of these alterations in tumors that are more amenable to surgical
resection.

Wild-type BRAF sHGG could be divided into two groups. One
includes the brainstem lesions that are enriched for the H3F3A K27M
mutations. This mutation can differentiate them from other brains-
tem PLGGs that have excellent survival.20 The second group of sHGG
includes patients with cancer predisposition syndromes. These pa-
tients may also benefit from surveillance and early intervention to
prevent tumor transformation.35,36

Together, we observed known alterations in 21 (88%) of 24
patients with PLGG that later transformed and no BRAF fusions in
any secondary HGG. These genetic alterations could stratify PLGG
into the following risk groups (Data Supplement): tumors that have
the BRAF fusion but lack the rest of the previously mentioned altera-
tions (excellent long-term outcome and extremely low risk for trans-
formation); PLGGs harboring the BRAF V600E mutations and
alterations in CDKN2A or TP53 (higher risk for transformation and
should be managed with care); PLGGs originating with cancer predis-
position syndromes associated with HGG (these tumors will eventu-
ally transform); and finally, midline PLGGs harboring H3.3 K27M
mutations that will behave as primary HGGs. Because all of these
tests could be performed in most clinical laboratories, it may be
worthwhile to add them to the current battery of tests used for
PLGG.

A potential pitfall of all studies investigating transformation of
PLGG to sHGG involves instances where tumors, according to the
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with BRAF wild-type PLGGs (P � .0389). Horizontal lines indicate medians. Statistical significance was evaluated using an unpaired t test. (C) Kaplan-Meier survival
estimates showing improved overall survival after initial diagnosis for BRAF mutant versus wild-type PLGGs that later transform. (D) Primary high-grade gliomas (HGGs)
have a worse overall survival after initial diagnosis than BRAF wild-type secondary HGG (P � .0163). Nontransformed PLGGs have a favorable overall survival compared
with all other groups, at 98% � 0.5%.
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biopsy, are PLGGs, but nevertheless behave as aggressively as primary
HGGs. This can occur in two scenarios. One is where a small biopsy
may have missed malignant regions as a result of tumor heterogeneity.
This is particularly the case for deep-seated tumors. Indeed, our study
(three patients) and previous reports3 have identified low-grade le-
sions on initial biopsy followed by a second biopsy revealing HGG in a
short time span. The second scenario is where tumors with low-grade
histology nevertheless behave as high grade. This has been demon-
strated for low-grade astrocytomas of the brainstem that harbor H3.3
K27M mutations.37,38 In both scenarios, the addition of molecular
markers as described in this study may help to establish (eg, BRAF-
KIAA1549 fusion) or refute (eg, H3F3A mutation) the PLGG diagno-
sis. PLGGs that harbor H3.3 K27M, TP53 mutations, or mismatch
repair deficiency may in fact represent high-grade–behaving gliomas
(Data Supplement), whereas cancers harboring BRAF V600E muta-
tions, if they transform, will have significant lag before transformation
even if they are deeply seated midline tumors. This study has the
classical limitations of a retrospective analysis over several decades and
should be interpreted accordingly. Although the importance of BRAF
mutations together with CDKN2A as risk factors for transformation is
clear, the level of risk requires further study. It will be important to test
in the future how many incompletely resected tumors that harbor
both alterations will not transform using long clinical follow-up.

In summary, this study defines molecular and genetic subgroups of
pediatric sHGG. Most of these alterations are early events that can guide
the management of patients with PLGG at risk of malignant transforma-
tion. Further population-based research is required to better define the
role of BRAF and CDKN2A alterations in childhood gliomas.
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