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Abstract

Electron paramagnetic resonance (EPR) experimental techniques produce absorption or first-

derivative spectra. Uncertainty analysis provides the basis for comparison of spectra obtained by 

different methods. In this study it was used to derive analytical equations to relate uncertainties for 

integrated intensity and line widths obtained from absorption or first-derivative spectra to the 

signal-to-noise ratio (SNR), with the assumption of white noise. Predicted uncertainties for 

integrated intensities and line widths are in good agreement with Monte Carlo calculations for 

Lorentzian and Gaussian lineshapes. Conservative low-pass filtering changes the noise spectrum, 

which can be modeled in the Monte Carlo simulations. When noise is close to white, the analytical 

equations provide useful estimates of uncertainties. For example, for a Lorentzian line with white 

noise, the uncertainty in the number of spins obtained from the first-derivative spectrum is 2.6 

times greater than from the absorption spectrum at the same SNR. Uncertainties in line widths 

obtained from absorption and first-derivative spectra are similar. The impact of integration or 

differentiation on SNR and on uncertainties in fitting parameters was analyzed. Although 

integration of the first-derivative spectrum improves the apparent smoothness of the spectrum, it 

also changes the frequency distribution of the noise. If the lineshape of the signal is known, the 

integrated intensity can be determined more accurately by fitting the first-derivative spectrum than 

by first integrating and then fitting the absorption spectrum. Uncertainties in integrated intensities 

and line widths are less when the parameters are determined from the original data than from 

spectra that have been either integrated or differentiated.

Introduction

In the early days of electron paramagnetic resonance (EPR), continuous wave (CW) data 

were obtained as absorption spectra, but quickly the use of magnetic field modulation and 

phase-sensitive detection made first-derivative spectra almost a defining characteristic of 

EPR (1,2). Other EPR detection methods such as pulse Fourier transform, field-swept echo-

detected (3), and rapid scan EPR (4,5) generate absorption spectra. The signal-to-noise ratio 

(SNR) for a spectrum is a standard way to compare one first-derivative spectrum to another 

and to evaluate spectrometer performance. However, when evaluating methods that acquire 

data as absorption spectra with others that record the first-derivative, it is important to 

consider the uncertainties in derived parameters such as integrated intensity that are needed 
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for quantitation of signal (2) and line widths, as well as SNR. In addition, automation of data 

analysis and improved capabilities of data fitting software mean that it is increasingly 

common to extract parameters by automated fitting, rather than by manual manipulation.

In the absence of noise, spectroscopic parameters can be found exactly. However, noise in 

the spectra introduces uncertainty into the derived parameters, which depends on the SNR. 

This paper addresses the question of how to quantitatively compare experimental absorption 

and first-derivative spectra including noise, and to estimate uncertainties in parameters 

derived from spectra with different SNR. Uncertainties are compared for parameters 

obtained: (i) by fitting the original absorption or first-derivative spectra, (ii) after 

differentiation of absorption spectra, and (iii) after integration of derivative spectra.

Sensitivity analysis is defined as the analysis of how the uncertainty in a final result is 

apportioned to different sources of uncertainty in the inputs (6). The related ‘uncertainty 

analysis’ focuses on how uncertainty in the inputs translates into uncertainty in calculated 

outputs (6). This article is an application of uncertainty analysis to the impact of noise in 

experimental data on the uncertainty in determination of the total number of spins (the 

integrated intensity of the absorption spectrum) and the line width for absorption and first-

derivative EPR spectra. Stated differently, how good does the SNR for a first derivative 

spectrum need to be to give the same precision in the determination of the number of spins 

(or in measured line widths) as can be obtained from the absorption spectrum with a 

specified SNR. The focus is on cases with relatively low SNR. The analysis was performed 

by deriving analytical expressions and by Monte Carlo simulations. Noise was computer 

generated and added to the numerically generated spectra. Since integration and 

differentiation change the noise spectrum, these data manipulations also are discussed. If a 

spectroscopic model had a large number of parameters, Monte-Carlo analysis could be 

computationally expensive. The analytical method to estimate uncertainties has the 

advantage that it does not require extensive computations, but are only approximations when 

noise is not white.

Analytical Analysis

The following is a derivation of analytical equations for uncertainty analysis of an EPR 

lineshape model with two spectroscopic parameters and Gaussian white noise. One 

parameter always is the integrated signal intensity and the second parameter can be selected 

for a particular case, such as line width or hyperfine coupling. An absorption spectrum can 

be described by continuous function f Eq [1].

[1]

where A0 is the integrated intensity:

[2]
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and p0 is a spectroscopic parameter, such as line width. Since an experimental spectrum is a 

set of discrete values, s(H) for the uncertainty analysis is sampled at N discrete values of 

magnetic field:

[3]

The parameter δH is the field increment and is present in the equations to make the sum 

independent of N. The spectrum contains Gaussian white noise n with the standard deviation 

σ. It can be fitted to obtain A and p that differ from A0 and p0 because of noise:

[4]

The discrepancy between the fitting model with parameters in Eq. [4] and the spectrum, Eq.

[3], is given by Eq. [5]:

[5]

It is assumed that δA ≪ A0 and δp ≪ p0, and that SNR is high enough that line fitting can 

obtain estimates of the parameters with acceptable uncertainties. Substitution of Eq.[4] into 

Eq.[5], Taylor expansion, and preservation only of linear terms gives

[6]

The global minimum for Eq.[6] can be found by setting the partial derivatives of Err(δA,δp) 

with respect to δA and δp equal to zero. The result is a system of two algebraic equations:

[7]

where  can be considered as the dot product of two sets of discrete values a 
and b. The solution of Eq.[7] is:

[8]

where

[9]
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A series of calculations with different values of n produces an ensemble of values for A and 

p. It follows from Eq.[8] that because the mean value of white noise (n) is equal to zero, the 

mean values of δA and δp are also zero. Thus, the mean values of A and p are A0 and p0, 

respectively. The uncertainties, σA and σp, are the standard deviations for A and p in the 

ensemble, and can be calculated using Eq. [8].

[10]

The notation < > denotes the average over the ensemble. Using the property of white 

Gaussian noise that two different values of the noise vector are not correlated, Eq. [11],

[11]

Eq.[10] can be reduced to:

[12]

For the square root to be real, the argument must be non-negative. It is shown below that D 

is a positive scalar. The dot product of two vectors f and g is equal to the product of their 

lengths times the cosine of the angle θ between them, so (f,g)2 = (f,f)(g,g)cos2θ. Since cos2θ 

must be positive and less than 1, D must be ≥ 0. (f,f) and (g,g) also are positive. Since g is 

proportional to the derivative of f with respect to p, the two vectors will not be parallel, and 

therefore D cannot be 0. This equation provides a basis for uncertainty analysis for two 

spectroscopic parameters that define an EPR line shape. The uncertainties in σA and σp can 

be calculated from the experimental value of σ, the standard deviation of the noise.

Equation [12], which was derived for the absorption spectrum, can be modified to calculate 

uncertainties in spectroscopic parameters for the first derivative line. For that purpose, the 

function f(H) is replaced by its derivative with respect to H, as shown in Eq.[13]:

[13]

When Eq. [13] is expressed in the discrete form, multiplication by δH is required. In the 

equations for the first-derivative g, the normalization expression (Eq. [2]) is replaced by 

double integration. If two independent experiments are performed to measure an absorption 

and a first derivative spectrum (Eq.[12]) and the analogous equation for the first derivative, 

can be used to compare σA and σp for the two experiments.

The analytical approach described in this section can be extended for models with additional 

spectroscopic parameters.
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Uncertainty Analysis Applied to Lorentzian or Gaussian Lineshapes

Lorentzian and Gaussian lineshapes are typical for EPR spectra. Two parameters of interest 

are integrated intensities (number of spins, A) and line widths. The general equations 

derived in the prior section are therefore applied to these specific lineshapes to compare 

uncertainties in parameters derived from absorption and first derivative spectra. The 

software package Mathematica® was used to evaluate Eq. [12] and to simplify expressions.

Application to a Lorentzian lineshape

The function for a Lorentzian absorption lineshape (7) is:

[14]

where Lw0 denotes half-width at half-height line width, A0 is the integrated intensity with 

Σs(Hi)=A0, and Hi = 0 at the center of the line. Uncertainties for A and Lw, relative to the 

mean values, can be calculated using Eq.[12] and the relationships

[15]

where x, y are either f or g, resulting in

[16]

The maximum amplitude of the Lorentzian function (Imax) is given by . 

The signal-to-noise ratio for the absorption line is defined as SNRabs = Imax/σ, so Eq. [16] 

can be rewritten as:

[17]

where k = Lw0/δH, is the number of data points per line width Lw0.

Analogously, uncertainties in the parameters for the first derivative line:

[18]
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can be obtained by using Eq.[12] and [13] and defining SNRder as the ratio of the peak-to-

peak signal amplitude to σ. Eq. [17] and [18] can be used to compare uncertainties in A and 

Lw obtained from absorption and first-derivative spectra:

[19]

It follows from Eq.[19] that if SNRabs =SNRder, the uncertainty in the measurement of A is 

2.60 times larger for the derivative line than for the absorption, and uncertainties for the line 

width are about the same. Note that these ratios do not depend on the line width.

Application to Gaussian lineshape

Substitution of the equations for a Gaussian lineshape (7) into Eq. [12] and [13] gives the 

following results:

[20]

Uncertainties for the first-derivative line:

[21]

Eq. [20] and [21] can be used to compare uncertainties in A and Lw obtained from 

absorption and first-derivative spectra:

[22]

It follows from Eq.[22] that if SNRabs =SNRder, the uncertainty in the measurement for A is 

2.21 times larger for the derivative than for the absorption spectrum, and uncertainties are 

about the same for the line widths. Note that these ratios are similar to what was obtained for 

Lorentzian lines, and so it is expected that similar results would be obtained for intermediate 

lineshapes.

Monte-Carlo analysis

To test these analytical expressions, uncertainty analysis was carried out using numerical 

Monte-Carlo simulations in MatLab. Absorption and first-derivative Lorentzian lines with 

intensity A0 and half width at half height Lw0, were generated numerically. White Gaussian 
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noise was added with the routine randn. The standard deviations of noise, σ, were selected 

to produce spectra with equal SNRs: SNRabs = SNRder. The spectra were fitted using the 

Matlab least-squares non-linear curve fitting routine lsqcurvefit to give A and Lw, for the 

absorption and derivative lines, respectively. The procedure of noise addition and line fitting 

was repeated 5,000 times to produce statistical ensembles for A and Lw. Scatter plots in Fig.

1 show the values of A and Lw obtained with the input parameters A0 = 1, Lw0 = 1G and 

SNR = 5. σA and σLw were computed as the standard deviations of A and Lw. The shapes of 

the plots reflect the behavior of the error functions (Eq. [5]). The greater elongation of the 

plot of observed errors for the first derivative than for the absorption reflects the greater 

uncertainty in A obtained from the first derivative. Similar numerical experiments 

performed with various SNR, A0, and Lw0 did not produce noticeable change in the 

uncertainties. Results for the Monte-Carlo analyses for A0 = 1, Lw0 = 1G and SNR = 5, 10, 

15 are presented in Table 1, rows 2 - 4. Row 1 shows the predicted values based on Eq.[19]. 

The results of the Monte-Carlo simulations agree with the analytical analysis to within less 

than 2%. The agreement between the analytical expressions and Monte-Carlo analysis is not 

dependent on SNR.

Ratios of uncertainties obtained by the analogous method for a Gaussian lineshape are 

shown in Table 2. When there is no filtering, there is good agreement between the 

predictions from the analytical equations, and the results from Monte Carlo analysis, 

analogous to what was observed for the Lorentzian lineshape.

Impact of filtering on uncertainties

Experimental spectra usually are filtered, either in hardware or by post-processing, to reduce 

high-frequency noise. As a result, the white noise assumption, Eq.[11], that was used to 

derive Eq.[12] is violated, which can be demonstrated with a simple binomial filter:

(23)

Each data point in the filtered array becomes a weighted sum of the neighboring points in 

the original array. As a result, two adjacent data points become correlated, . 

Introduction of a filter function into the analytical analysis would be cumbersome, but the 

impact of a filter can readily be evaluated using the Monte-Carlo analysis. A 4th order low-

pass Butterworth filter has been found to be useful with experimental data (8), so it was 

selected as the example to test. It was applied to the calculated absorption and first-

derivative spectra. The cut-off frequencies of the filter were selected to produce 1% line 

broadening, which improves SNR without significantly compromising the spectral shape. 

The cut-off frequency that produces 1% broadening for the derivative line was about 50% 

larger than that for the absorption line. Filtering the spectra + noise reduced the ratios of 

uncertainties of A and Lw by as much as 18% for Lorentzian lines and 13% for Gaussian 

lines (Tables 1 and 2, rows 5-7).

The results shown in Tables 1 and 2 indicate that for spectra with equal SNR, fitting the 

absorption signal produces more precise values of the integrated signal intensity than fitting 
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the first derivative. The derivative line is slightly more likely to give a more precise value of 

the line width. In addition, when comparing absorption and derivative spectra with different 

SNR, the inverse relationship between uncertainty and SNR (Eq. 17, 18, 20, 21) must be 

taken into account.

Changes in Uncertainties Caused by Differentiation or Integration

Change in noise caused by differentiation of absorption line

One way to compare absorption and first derivative spectra is by differentiation of the 

absorption line. In this section equations are derived to estimate the effect of differentiation 

on SNR and uncertainties in A and Lw. The impact of differentiation on the signal 

amplitude is known for a defined lineshape. To determine the change in SNR thus requires 

understanding of the change in noise. The change in σ depends on the type and cut-off 

frequencies of the filter that is used to reduce high-frequency noise. To analyze the impact 

of differentiation on white noise, the vector n is Fourier transformed to obtain

[24]

In Eq.[24] δv is the frequency increment in units of 1/gauss. The rationale for expressing 

frequency in inverse magnetic field units lies in the nature of the discrete Fourier 

transformation, DFT. The Fourier transform of the spectrum is the sum of sinusoidal waves. 

The period of the longest wave is equal to the sweep width SW. The frequency that 

corresponds to this wave is |v1| = δv = 1/SW. All other waves have frequencies that are 

integer multipliers of δv. Applying a filter in the frequency domain reduces the standard 

deviation of the noise σ in the magnetic field domain. The noise reduction due to the filter 

Z(vm) can be quantitatively evaluated using Parsevals' theorem (9):

[25]

Where Nm is the Fourier transform of the noise, n, at point m. After averaging Eq.[25] over 

an ensemble of Nm, one can obtain an expression for σ:

[26]

where σv is the standard deviation of the noise in the frequency domain, which does not 

depend on m if the noise is white. For a simple case when Z(vm) is a sharp low-pass filter 

with a cut-off frequency vcut, Eq.[26] can be approximated as
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[27]

Eq.[27] is consistent with the generalization that the SNR of the signal improves inversely 

proportional to the square root of the filter cutoff frequency.

A similar approach can be used to find the standard deviation σD of the noise in the 

differentiated spectrum. Differentiation in the magnetic field domain is equivalent to 

multiplication by j2πvm in the frequency domain. This linear ramp amplifies the high 

frequency components and attenuates low frequency components of the noise. The resulting 

expression for the standard deviation is:

[28]

where Gm is the filter function. If a sharp low-pass filter with a cut-off frequency vcut
D is 

used to reduce high frequency noise in the derivative spectrum, Eq.[28] becomes 

approximately

[29]

where ncut = vcut
D/δv. The standard deviation for noise in the first derivative (Eq.[29]) has a 

stronger dependence on the vcut than for the absorption (Eq.[27]). In addition, multiplication 

by j2πvm increases the signal bandwidth in the frequency domain, so to maintain the same 

broadening of the first-derivative and absorption lineshapes vcut
D > vcut, which increases 

noise.

Change in uncertainties caused by differentiation of absorption line

As noted by Posener (10) “resolution enhancement commonly associated with a derivative 

spectrum is purely subjective.” Although differentiation of the absorption signal is used to 

enhance resolution as perceived by the human eye (11), it does not add new spectroscopic 

information. The actual information content of the spectrum may be degraded by 

differentiation that devalues low-frequency components in the absorption signal. Monte-

Carlo analysis was carried out to evaluate the change in σA and σLW due to differentiation. 

A Lorentzian absorption line was calculated and white Gaussian noise was added. Two 

methods were used to obtain the first derivative spectrum: (i) numerical differentiation 

followed by a 4th order Butterworth low-pass filter, (ii) pseudo-modulation (12). The cut-off 

frequency of the Butterworth filter was adjusted to produce 1% broadening of the first-

derivative line. The net effect of multiplication by j2πvk to obtain the derivative, followed 

by the Butterworth filter is the filter function shown in Fig.2 (green trace). In the second 
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method the modulation amplitude was also adjusted to broaden the line by 1%. Because of 

the oscillatory character of the Bessel function that is used as a filter for the pseudo-

modulation method, an additional square filter in the frequency domain was used to delete 

high frequency noise starting from the first zero crossing of the Bessel function. Fig. 2 

shows the original (red dashed) and square-filtered (blue) Bessel functions. For calculation 

of SNR and uncertainties, the absorption spectra also were filtered using a 4th order 

Butterworth filter to produce 1% line broadening. The absorption and derivative spectra 

were fitted to determine A and Lw. The numerical experiment starting from noise addition 

to line fitting was repeated 5,000 times to produce statistical ensembles for A and Lw. The 

ensembles were analyzed and the results are presented in Table 3. Rows 1 and 5 show 

theoretical predictions based on the analytical analysis. Rows 2 - 4 and 6 - 8 show the results 

of Monte-Carlo analysis for the Butterworth filter and pseudo-modulation, respectively. 

Computations were done for values of SNR ≈ 5, 10 and 15 for the absorption line, where 

the approximation indicates that the SNR had random values with averages around 5, 10 and 

15.

There is significant degradation of SNR after differentiation and filtering. Pseudo-

modulation has greater impact than numerical differentiation and low-pass filtering. For 

both methods the theoretical predictions for SNR ratios are in good agreement with the 

computations. Degradation of the SNR results in an increase in the uncertainties σA and 

σLW. Substitution of SNRder/SNRabs = 3.2, calculated from Eq. [26] and [28], into Eq. [19] 

predicts the ratios of uncertainties shown in Table 3 row 1. The degradation in uncertainties 

of the parameters (rows 2 - 4) is not as great as predicted by Eq. [19] because differentiation 

and filtering substantially change the noise spectrum and the resulting noise is far from 

white. Eq. [19] predicts a greater increase in uncertainties (row 5) when pseudomodulation 

is used instead of the Butterworth filter, but the degradation of the uncertainties is less than 

predicted (rows 6 - 8). Reliable statistics were not obtained for the absorption line with 

SNR=5 and the pseudo-modulation method. Because of very high noise levels in the 

derivative spectra, line fitting did not give reliable results. Despite large differences in 

SNRder obtained by (i) numerical differentiation together with a low-pass filter and (ii) 

pseudo-modulation, the impact on the uncertainties in A and Lw are smaller than predicted 

for white noise. This observation is a reminder that when noise is not white, precision of 

derived parameters is not a linear function of SNR.

Fig. 2 explains the differences in performance of the two differentiation methods. The 

Butterworth filter has a sharper drop-off than the Bessel function, so it filters out more high-

frequency noise. However the uncertainties in the fitting parameters are more sensitive to 

low-frequency noise than to higher-frequency noise, so the degradation in uncertainties is 

not as great as predicted based on the degradation in SNR.

Change in noise caused by integration of first-derivative

An alternative approach to compare two experiments that measure an absorption spectrum 

and its first derivative is to integrate the derivative signal. Integration of a discrete signal by 

cumulative summation changes noise vector n to
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[30]

The sum of m random numbers with standard deviation σ is a random number with a 

standard deviation given by Eq. (31)

[31]

The standard deviation for the integrated noise becomes dependent on m. Eq.[31] explains 

the commonly observed fact that integration of the first-derivative line frequently gives a 

spectrum that requires an additional baseline correction. On average, the last point in the 

integration will have a deviation that is  larger than that for the first point. Fig.3a 

demonstrates the results of cumulative integration of 16 computer-generated noise traces 

using the cumsum Matlab routine. Fig.3b shows the standard deviation of 16 traces 

computed at each point m. As expected from Eq.[31],  grows proportional to  The 

last point in the integrated noise, m=1600, is on average offset from the zero line by about 

 Although integration is sometimes viewed as a filter, its impact on data is quite 

different.

In integrations of experimental data, a polynomial baseline correction is often used to bring 

the end of the spectrum to the zero line. This does not eliminate the noise, but redistributes it 

across the spectrum.

Change in uncertainties caused by integration of first-derivative line

Integration of the first-derivative EPR line produces an absorption spectrum with visually 

improved smoothness. This is because integration in the magnetic field domain is equivalent 

to division by j2πvm in the frequency domain. As a result, high-frequency components of 

the derivative line are attenuated and the low-frequency components are amplified. Monte-

Carlo analysis was carried out to evaluate the change in σA and σLw as a result of 

integration. A first-derivative Lorentzian line was generated (Fig.4a green line) and white 

Gaussian noise was added. The spectrum was filtered with a 4th order low-pass Butterworth 

filter with vcut
D adjusted to allow 1% of line broadening (Fig.4a dashed blue line). Since the 

bandwidth requirement of the first-derivative (Eq. [29]) is higher than for the absorption 

(Eq. [27]), filtering the first-derivative to 1% broadening does not introduce additional 

broadening of the absorption spectrum. The filtered line was integrated to produce an 

absorption spectrum. A first-order polynomial baseline correction was applied and the result 

was filtered by low-pass filter. The cut-off frequency of the filter was selected that produced 

1% broadening of the noiseless computer-generated absorption spectrum (Fig.4b dashed 

blue line). The derivative and integrated lines were fitted to determine A and Lw. The fitting 

curves are shown in Fig. 4 (red curves). Numerical experiments starting from noise addition 

to line fitting were repeated 5,000 times to produce ensembles of A and Lw. Results of the 

uncertainty analysis for A0 = 1, Lw0 = 1G, SW = 20G, and SNR = 5, 10, 15 are presented in 

Table 4. They show that integration increases the uncertainties with which A and Lw for the 

Lorenzian line can be measured. This result may seem counterintuitive, because the 
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integrated spectra look smoother and may have higher SNR. The downside is that 

integration amplifies the low-frequency noise and, as a result, distorts the baseline. Fig. 4 

demonstrates that the accuracy of the line fitting procedure is more sensitive to the baseline 

distortion than to the standard deviation of the noise. As demonstrated in Table 4, 

integration increases σA and σLw by factors of 3 and 4, respectively.

Results similar to those shown in Table 4 were obtained for the uncertainty analysis with 

different A0 and Lw0 when the sweep width SW was changed proportional to Lw0, SW = 20 

Lw0. Changing the ratio of sweep width to line width produced minor changes in 

and . In all cases integration of the derivative line resulted in increasing σA and 

σLw.

Discussion

Quantitation of the number of spins in a sample has been a challenging goal of EPR 

spectroscopy from its earliest days (13). Methods developed before lab computers became 

common, including methods of weighing spectra cut out of chart paper, were reported in 

Poole's first edition (1) (page 591 and chapter 20) and in Alger (13) (pages 215-220). As 

computers became more readily available, integrating the area under the curve, and hence 

performing two successive integrations of a first-derivative curve, became an important 

technique (2). It has been recognized for many years that low frequency noise, including 

slow baseline drift, can dominate integrals of spectra, especially when the S/N is low (see 

for example Fig. 4.16 on p. 61 of (2). Alger also gives examples (13). Commonly, linear 

approximations to the baseline are used to correct each integration stage (see Appendix C of 

(2)), but low order polynomials are also used if enough points in the baseline can be 

identified. Spectra may be difficult to integrate accurately even when the baseline looks like 

“random noise” to the operator, as shown in (2) Figure C.1, page 133. The errors introduced 

by low frequency noise are demonstrated quantitatively by the analyses in this paper. We 

have shown that if the lineshape is known and spectra have the same SNR, simulations of 

the absorption spectra provide more accurate values for spin concentration than simulation 

of first-derivative spectra. Future developments in data analysis software development 

should depend more heavily on simulations of spectra to determine integrated intensities.

Measurements of line widths are key to the use of EPR for oximetry (14). The uncertainty 

analysis in this paper demonstrates that it is best to extract the line width parameter directly 

from the native data, whether absorption or first-derivative, rather than after integration or 

differentiation. For both absorption and first-derivative spectra the accuracy with which 

spectral parameters can be calculated increases proportional to SNR if noise is white, so 

SNR remains a key figure of merit for spectrometers and detection methods.

Conclusion

Comparison of different spectrometers and detection methods that give absorption and first-

derivative data can be based on uncertainties in derived parameters. Uncertainty analysis 

was performed to determine how integration and differentiation impact uncertainties in A 

and Lw calculated from EPR spectra. Analytical expressions and Monte Carlo analysis of 
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the uncertainties in A and Lw for Lorentzian or Gaussian lines were in good agreement if 

noise is white. The analytical expressions are simpler to use. When noise is not white, due 

either to spectrometer bandwidth or filtering, the Monte Carlo analysis gives more realistic 

results. Differentiation of the absorption line or integration of the first derivative reduces the 

precision with which integral intensity A or line width Lw can be extracted from noisy 

spectra. The most accurate approach to comparison of experimental methods that produce 

absorption and derivative spectra is line fitting of the experimental data. If SNR is the same 

for experimental data obtained as absorption and first-derivative spectra, the integrated 

intensity can be obtained about twice as precisely from the absorption as from the derivative. 

A conservative low-pass filter can be used to decrease the uncertainties in the line fitting 

results. Monte-Carlo simulations are more practical for extension to more complicated 

lineshapes. The analytical and Monte Carlo uncertainty analyses could be extended to a 

larger number of parameters, including the hyperfine splittings.
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Fig.1. 
Scatter plots for A and Lw obtained for absorption (a) and first-derivative Lorentzian spectra 

(b). Each subplot has 5,000 points corresponding to the fitting results of 5,000 numerical 

experiments. In each experiment random noise was added to the absorption and derivative 

spectra with A0 = 1, Lw0 = 1G. The standard deviation of noise, σ, was selected to produce 

spectra with SNR=5.
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Fig.2. 
Comparison of two methods to calculate the first derivative spectrum: (i) numerical 

differentiation followed by low-pass filtering with Butterworth filter (green), (ii) pseudo-

modulation (blue). The parameters for both methods were selected to produce 1% line 

broadening. The pseudo-modulation filter is a Bessel function of the 1st kind (dashed red). It 

was modified (blue) to reduce high frequency noise.
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Fig.3. 
Cumulative integration of 16 computer-generated noise traces with zero mean value and 

standard deviation equal to 1 (a), and standard deviations for those 16 traces calculated at 

each point in the traces (b).
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Fig.4. 
Example of one of the 5000 trials for fitting the first-derivative (a) and its integral (b). The 

fitted lines (red) are compared to the noise-free (green) derivative and absorption Lorentzian 

lines.
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Table 4

Comparison of uncertainties for A and Lw before and after integration of the first derivative line.

Method Filter SNR (Deriv)

Monte-Carlo 1% 5 N/Ra N/Ra

Monte-Carlo 1% 10 0.34 0.21

Monte-Carlo 1% 15 0.36 0.23

a
N/R indicates that the noise was too large to obtain reproducible results.
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