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PERSPECTIVES

The highly conserved abundant nuclear protein poly 
(ADP-ribose) polymerase-1 (PARP-1) is activated by 
DNA damage. PARP-1 activation is associated in DNA 
repair, cell death and inflammation. Since oxidative stress 
induced robust DNA damage and wide spread inflamma-
tory responses are common pathologies of various CNS 
diseases, the attention towards PARP-1 as a therapeutic 
target has been amplifying. This review highlights the 
multiple roles of PARP-1 in neurological diseases and po-
tential of PARP-1 inhibitors to enter clinical translation.

Activity of PARP-1 in physiology and patho-
physiology: PARP-1 is an abundant nuclear enzyme 
consisting of three domains: N-terminal DNA binding 

domain containing two zinc fingers, auto-modification 
domain and catalytical domain. PARP-1 functions as 
a sensor of DNA damage and to bind to DNA breaks/
nicks through Zn finger domains. Upon activation PARP-
1 synthesizes poly ADP-ribose polymers by catalyzing 
nicotinamide adenine dinucleo tide (NAD+) into nicotin-
amide and ADP-ribose, which are then used as substrates 
to form linear or branched polymers (poly(ADP-riboses); 
PARs). These polymers of ADP-ribose units then cova-
lently attached to Glu, Lys or Asp residues of acceptor 
proteins (heteromodification) or onto PARP1 itself (au-
tomodification). The high negative charge of PAR dra-
matically affects the function of target proteins, leading to 
electrostatic repulsion among histone proteins and DNA, 
a process implicated in chromatin remodeling, DNA re-
pair and transcriptional regulation. However, the covalent 
modification of proteins by the transfer of ADP-ribose 
residues is only momentary due to the rapid action of 
a group of enzymes including, poly(ADP-ribose) gly-
cohydrolase (PARG), ADP-ribosyl hydrolase3 (ARH3), 
nucleoside diphosphate linked to another moiety X (NU-
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Figure 1 Diagram representing the activity of ADP-ribosylation and consequences.
DNA-damaging stimuli (oxido-nitrosative stress) cause poly(ADP-ribose) polymerase (PARP) activation. Activated PARP cleaves nicotinamide 
adenine dinucleo tide (NAD) into nicotinamide and ADP-ribose and polymerizes the latter on nuclear-acceptor proteins. Poly(ADP-ribosylation) 
facilitates DNA repair and thus permits cell survival. Severe DNA damage, however, leads to overactivation of PARP, resulting in NAD and ATP de-
pletion and necrotic cell death.
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DIX) and macrodomain containing proteins (MDCPs) 
which catalyze the hydrolysis of these polymers into free 
ADP-ribose (ADPR) units (Sriram et al., 2014). Besides 
to the inception DNA repair mechanism, PARP-1 activity 
is found to be vital for epigenetic regulation of mitochon-
drial DNA repair and transcription as well (Lapucci et al., 
2011). Furthermore, the activity of PARP-1 is also essen-
tial for a vital epigenetic mechanism, DNA methylation 
(Lodhi et al., 2014).

PARP-1 acts at the center of cellular stress. Oxidative 
stress causes DNA damage and consequently activates 
PARP-1 to repair the damaged DNA (Krietsch et al., 
2012). PARP-1 has been implicated in neuronal pa-
thology, as the brain is highly susceptible to oxidative 
stress. The degree of the PARylation in response to DNA 
damage largely depends on the nature and amount of 
DNA breaks produced. For low levels of DNA damage, 
PARP1 activity favors repair and survival by interact-
ing with DNA repair enzyme cascade, such as such as 
XRCC1 and DNA-dependent protein. Moderate DNA 
damage leads to apoptotic cell death, during which 
PARP1 will be cleaved into two fragments by caspases. 
Cleavage of PARP1 is assumed to foil the activation of 
PARP1 by DNA damage and thereby it prevents cells 
from pathological consequences such as necrosis of cells. 
For extensive DNA injury as observed during ischemia/
reperfusion and inflammatory conditions, the massive 
production of PAR ultimately causes cell-death via at 
least two distinct mechanisms: energy-failure induced 
necrosis or apoptosis-inducing factor (AIF) dependent 
apoptosis (Sriram et al., 2014).

In the cells with extensive DNA damage or damage that 
is not repaired, PARP1 remains activated, leading to con-
tinued NAD+ depletion and further ATP consumption in 
order to resynthe-size NAD+ (Berger et al., 1983). Contin-
ued NAD+ depletion has also been shown to induce a rap-
id mitochondrial dysfunction, which was followed by a 
collapse in mitochondrial potential, and the release of AIF 
and cytochrome c (Alano et al., 2010). The released AIF 
thus mediates the caspase-independent cell death termed 
parthanatos. In contrast to its name, AIF is now further 
acknowledged as a necrotic rather than an apoptotic me-
diator, providing further support for the necrotic role of 
PARylation. Thus it is can be inferred that inhibition of 
elevated PARylation could be beneficial (Figure 1) (Sriram 
et al., 2014).

Impact of PARP-1 in neurological diseases: As aforesaid, 
PARP-1 has been implicated in neuronal pathology, as 
the brain is highly susceptible to oxidative stress. We can 
go for the inhibition of PARylation for minimizing or 
nullifying the harmful effects of elevated oxidative-ni-

trosative stress. PARP-1 is the main enzyme responsible 
for PARylation, so inhibiting this enzyme could be useful 
in this regard. In the laboratory there are different types 
of models (in vitro and in vivo) for studying the possible 
protective role of PARP-1 inhibition. In the in vivo mod-
els PARP-1 inhibition can be achieved in two ways either 
by using knockout animal models or by using chemical 
inhibition, while in vitro models equip the cell lines which 
are devoid of PARP-1 gene. As inferred theoretically, even 
the results from many studies (in vitro and in vivo) have 
revealed the promising neuro-protective role of PARP-1 
inhibition (Sriram et al., 2014).

There are many neurological indications, in which 
PARP-1 has been studied extensively such as stroke, 
traumatic brain injury, neurodegenerative diseases (Par-
kinson’s disease, Alzheimer’s disease and amyotrophic 
lateral sclerosis) and neuro-inflmmatory diseases such as 
multiple sclerosis. Almost all the studies revealed a unique 
conclusion, that is targeting PARP-1 in neurological is a 
promising approach for minimizing the harmful effects 
of oxidative-nitrosative stress (Jangra et al., 2013; Martire 
et al., 2013; Rulten et al., 2014; Sriram et al., 2014). 

Among the neurological diseases stroke is extensively 
studied indication for the impact of PARP-1. The results 
from many studies have proved the protective impact 
of PARP-1 inhibition in stroke. A recent break through 
study by Matsuura and group has further enriched the 
concept of protective role PARP-1 inhibition in stroke. 
They have reported the outstanding findings from their 
study of PARP-1 inhibitor, MP-124 in cynomolgus and 
rhesus monkeys. Even the results from that particular 
study are in compliant with recommendations laid by 
Stroke Therapy Academic Industry Roundtable (STAIR). 
The magnitude of the therapeutic effect, as well as the 
therapeutic window of intervention is important while 
dealing with cerebral stroke and ischemia. The therapeu-
tic window of PARP-1 inhibitor is making them an at-
tractive class of drugs for these indications, as a very few 
number of drugs show such a good therapeutic window. 
However, presently a phase-1 clinical study of PARP1 
inhibitor, JPI-289 is underway for stroke (Matsuura et 
al., 2011; Moroni et al., 2012; Sriram et al., 2014). In ad-
dition, several PARP-1 inhibitors are in different clinical 
phases of development as a single and combined therapy 
for the cancer indications ranging from solid tumors to 
breast cancers (Sriram et al., 2014). 

To be honest the exploration of impact PARP1 in the 
other central nervous system diseases is a bit late as com-
pared to stroke. It is still better in the case of traumatic 
brain injury as compared to neurodegenerative diseases 
(Alzheimer’s and Parkinson’s) and neuroinflammatory 
diseases such as multiple sclerosis. Apart from stroke, the 
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results from several studies of PARP-1 in different neu-
rological models are also providing potential evidence of 
the approach (Sriram et al., 2014; Stoica et al., 2014)

Conclusion and future perspectives: Extreme severity 
and restricted clinical options are making neurological 
indications more difficult to handle. However, the treat-
ment with PARP-1 inhibitors showing promising results 
for neurological indications in multiple preclinical stud-
ies. Now PARP-1 could be reliable target for newer drug 
developments in the field of neurological diseases. In 
spite of this much propitious situation, PARP-1 inhibi-
tion therapy has its own set of limitations. The primary 
function of PARP1 is in DNA-damage repair, widespread 
PARP-1 inhibition may leave cells with larger number of 
DNA anomalies which may amplify the risk of genomic 
instability. Surviving neurons with DNA damage might 
be dysfunctional and thus later on undergo apoptosis. 
Additionally, the prolonged PARP-1 inhibition might 
have negative effects beyond the genetic stability. In addi-
tion, at present the available drugs are not exceptionally 
specific for PARP-1. To combat these issues some more 
studies are still required to corroborate the safety of the 
therapeutic approach. 
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