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Abstract

Increased risk of skeletal fractures due to bone mass loss is a major public health problem 

resulting in significant morbidity and mortality, particularly in the case of hip fractures. Current 

clinical methods based on two-dimensional measures of bone mineral density (areal BMD or 

aBMD) are often unable to identify individuals at risk of fracture. We investigated predictions of 

fracture risk based on statistical shape and density modeling (SSDM) methods using a case-cohort 

sample of individuals from the Osteoporotic Fractures in Men (MrOS) study. Baseline QCT data 

of the right femur were obtained for 513 individuals, including 45 who fractured a hip during 

follow-up (mean 6.9 year observation, validated by physician review). QCT data were processed 

for 450 individuals (including 40 fracture cases) to develop individual models describing three-

dimensional bone geometry and density distribution. Comparison of mean fracture and non-case 

models indicated complex structural differences that appear to be responsible for resistance to hip 

fracture. Logistic regressions were used to model the relation of baseline hip BMD and SSDM 

weighting factors to the occurrence of hip fracture. Area under the receiver operating characteristic 

(ROC) curve (AUC) for a prediction model based on weighting factors and adjusted by age was 

significantly greater than AUC for a prediction model based on aBMD and age (0.94 vs. 0.83, 

respectively). The SSDM-based prediction model adjusted by age correctly identified 55% of the 

fracture cases (and 94.7% of the non-cases), whereas the clinical standard aBMD correctly 

identified 10% of the fracture cases (and 91.3% of the non-cases). SSDM identifies subtle changes 

in combinations of structural bone traits (e.g., geometric and BMD distribution traits) that appear 
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to indicate fracture risk. Investigation of important structural differences in the proximal femur 

between fracture and no-fracture cases may lead to improved prediction of those at risk for future 

hip fracture.
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INTRODUCTION

The problem of increased risk of skeletal fractures due to bone mass loss in aging or disease 

is a major clinical problem leading to estimated health care costs of nearly $17 billion in the 

US [1, 2]. Not withstanding the economic burden, non-vertebral fractures, particularly of the 

hip, are a significant cause of morbidity and mortality in the aging population [3–5]. More 

than 4% of hip fracture patients die during the initial hospitalization following fracture and 

24% will die within the first year [6]. Thus, concerted efforts are needed to identify treatment 

strategies that can maintain the health of the skeleton with age. However, of primary 

importance is improving the accuracy in identification of those at risk for bone fractures.

Bone mineral density (BMD) measurements are widely used to assess bone mineral status, 

especially in women, and BMD can account for up to 70% of bone strength. While 

correlations between bone mineral density, commonly determined using dual energy x-ray 

absorptiometry (DXA), and fracture risk have been demonstrated, prediction models based 

on DXA alone often have low sensitivity in identifying individuals likely to suffer a fracture, 

particularly in menopausal women and in older populations [7, 8].

The structural integrity of an individual bone in any mechanical loading environment is 

dependent on the spatial BMD distribution, the size and shape of the bone, as well as the 

material properties of the bone tissue [9, 10]. Numerous studies have investigated correlations 

between femur BMD and geometry and fracture risk, primarily in terms of bone 

strength [11–13]. However, it appears likely that risk predictions based on simplified 

measures of bone geometry (i.e., femoral neck axis length, femoral neck length, femoral 

neck diameter, cortical thickness, etc.) and measures of regional average BMD (i.e., femoral 

neck BMD, intertrochanteric BMD, total hip BMD) do not adequately describe the three 

dimensional combinations of bone traits that lead to the structural integrity of a bone.

Conversely, without making a priori assumptions regarding the importance of geometric 

descriptors or fundamental aspects of model definition, statistical shape modeling methods 

have been used to describe variability in the morphology of a population of anatomical 

structures [14–17]. Statistical shape models capture the high dimensional variability within a 

set of biological structures, such as bones, and describe the variation in structural traits (e.g., 

geometry and bone density distribution) in an efficient manner. In the context of 

biomechanics, statistical shape modeling allows investigation of the important structural 

differences expected to allow improved identification of those at risk.
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In this study, we investigated the use of fracture risk predictions based on statistical shape 

and density modeling (SSDM) methods, which describe both the multivariate geometry and 

BMD distribution variation contained implicitly within 3D imaging data for a set of bones. 

The performance of SSDM-based fracture risk predictions was compared to those based on 

BMD alone. The ultimate goal of this research program is to generate the fundamental 

knowledge required to develop and implement a clinical risk assessment tool.

METHODS

Study Population

The Osteoporotic Fractures in Men (MrOS) Study is a multi-center observational study 

investigating the determinants of fracture in a group of older men (n=5,994, age ≥ 

65) [18, 19]. Baseline areal bone mineral density (aBMD) was obtained for the total hip 

following standardized procedures at all study sites, including dual-energy x-xray 

absorptiometry (DXA) cross-calibration and daily quality control scans (QDR 4500W; 

Hologic) [20]. Hip quantitative computed tomography (QCT) image data were collected for 

the pelvic region extending from the femoral head to approximately 3.5 cm below the lesser 

trochanter. Imaging data of the hip and a hydroxyapatite (HA) density calibration phantom 

(Image Analysis, Columbia, KY) were collected with scanner settings of 80 kVp, 280 mA, 3 

mm slice thickness, 512 × 512 in-plane array dimensions, in spiral reconstruction mode [21]. 

QCT data were available at study baseline for 3,561 individuals. After enrollment, 

participants were questioned by mail every four months regarding the occurrence of any 

recent fractures with 99% complete follow-up. Any reported hip fractures were validated by 

physician review of radiology reports or X-rays, if no radiology report was available.

Case-Cohort Selection

Within the follow-up period, a total of 45 hip fracture cases occurred in the group of 

individuals with baseline QCT data available. Based on the case-cohort sampling design, 

472 individuals were randomly selected from the group with baseline QCT. However, 4 hip 

fracture cases occurred in the random sample, resulting in a total of 513 individuals in the 

case-cohort sample with an average observation period of 6.9 years. Baseline QCT and 

aBMD data were obtained for these men.

Processing of QCT data

All image processing was performed while blinded to fracture status. Each baseline QCT 

data set was segmented to extract right femur data from the QCT image data (Figure 1) 

(Seg3D, The Center for Integrative Biomedical Computing, University of Utah, Salt Lake 

City, UT). Due to image quality issues or incomplete data for the right femur, a total of 450 

out of 513 image data sets were successfully processed. This resulted in a study sample 

containing 40 fracture cases and 410 non-cases. Closed triangulated surfaces were generated 

to describe the outer cortical boundary of each femur (Figure 1) (MATLAB R2012a, The 

Mathworks, Inc., Natick, MA).

Femur surfaces were aligned to the CT scan axes and transected at the inferior-most level of 

the lesser trochanter to generate femur surfaces proportionally sized for individual subject 
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hip anatomy (MATLAB R2012a, The Mathworks, Inc., Natick, MA). A new set of vertices 

was mapped onto each femur surface and repositioned such that each femur surface was 

described using 4,102 vertices and all vertices were positioned at the same anatomical 

locations for each femur (Figure 2) [22]. Thus, the resulting femur surfaces were defined by 

the same surface mesh definition due to vertex correspondence across the set of femurs. The 

average femur surface was determined by averaging vertex positions for all femurs.

A volumetric tetrahedral mesh (77,708 elements and 14,350 nodes) was defined for the 

average femur surface (Tetgen, Weierstrass Institute for Applied Analysis and Stochastics, 

Berlin, Germany). The average femur mesh was warped to each individual femur surface 

using displacement vectors calculated between corresponding surface vertices on the 

average femur mesh and the individual femur surfaces, resulting in a set of 450 

corresponding femur mesh models (ANSYS v11.0, ANSYS, Inc., Canonsburg, PA).

Individual femur models were superimposed on CT data for the same individual and CT 

image intensity was determined at the spatial location of each node (MATLAB R2012a, The 

Mathworks, Inc., Natick, MA). The image intensity distribution for each femur was 

converted to a spatial distribution of equivalent solid HA concentration using a regression 

based on the graded HA densities within the HA phantom and image intensity data within 

corresponding regions of interest. Following Carpenter, et al. [23], equivalent HA 

concentration was converted to equivalent liquid K2HPO4 concentration [24], and then to a 

wet apparent bone density distribution for each individual femur [25]. This process resulted 

in a set of 450 femur geometry and density distribution models where each model consisted 

of 57,400 variables (i.e., spatial location and BMD at each mesh node).

Development of Statistical Shape and Density Model for Femur Sets

A statistical shape and density model (SSDM) [26] was generated to describe and investigate 

variability in the baseline geometry and density distribution models for the set of 450 

femurs, without regard to subsequent fracture occurrence (Appendix). Using a principal 

component analysis, the highly correlated geometry and density variables were reduced into 

a relatively small set of 449 uncorrelated and independent composite geometry and BMD 

traits (i.e., principal components or shape modes). Each model was described as a weighted 

linear combination of principal components. By definition, all variability within the original 

set of geometry and bone density distribution models was retained and each individual 

femur was described by a set of 449 principal component weighting factors, rather than the 

original 57,400 descriptive variables.

Investigation of the Differences between Fracture Cases and Non-Case

Previous investigation has demonstrated that complex differences in proximal femur 

geometry and BMD distribution exist between individual bones that suffer fractures and 

those that do not [27]. Additionally, these important variations may not be captured using 

typical physical descriptors of bone geometry (i.e., femoral neck axis length, femoral neck 

diameter, neck-shaft angle, femoral head diameter) and regional measures of bone density 

distribution (i.e., greater trochanter or total hip BMD). To investigate the complex structural 

variations between fracture cases and non-cases, a mean fracture model and a mean non-
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case model were generated by separately averaging the weighting factors for the 40 fracture 

cases and the 410 non-cases (Appendix, Eqns. 4 and 6). Spatial variation in surface 

geometry and mid-plane BMD variation of the 3D models was quantitatively investigated by 

determining the trait differences at each model node. Similarly, the structural variations 

described by the first two shape modes were also investigated by generating models based 

on the mean femur modified by the mean variation in the appropriate shape mode for the 

fracture cases and the mean femur modified by the mean variation in the appropriate shape 

mode for the non-case femurs (Appendix, Eqns. 4 and 6)

Development of Risk Prediction Models

Separate risk prediction models were developed to indicate the occurrence of future fracture 

using predictor variables including baseline aBMD and SSDM weighting factors determined 

from analysis of baseline QCT data, and covariate data (Table 1). A logistic regression was 

used to model the relation of total hip aBMD, the current clinical gold standard, to the 

occurrence of hip fracture (MATLAB R2012a, The Mathworks, Inc., Natick, MA) and this 

relation was modified by sequentially adding age and BMI.

Similarly, the relation of SSDM weighting factors to the occurrence of hip fracture was 

modeled with a logistic regression based on a subset of weighting factors (MATLAB 

R2012a, The Mathworks, Inc., Natick, MA). The number of selected weighting factors was 

first reduced by eliminating any weighting factors with a F-score less than the sum of the 

median F-score and 3 times the mean absolute deviation of the F-scores, thereby eliminating 

weighting factors that do not differentiate well between fracture cases and non-cases [28]. 

The lasso approach was used to further reduce the number of selected weighting factors and 

fit the logistic regression between the selected weighting factors and the occurrence of hip 

fracture [29, 30]. Baseline covariates (i.e., age, BMI, and aBMD) were sequentially added to 

the pool of predictor variables and logistic regressions adjusted by covariates were 

determined by repeating the two-level variable reduction approach.

A nested 10-fold cross-validation approach was used to develop all fracture prediction 

models in order to maximize reproducibility and eliminate the potential for bias and 

overfitting of the classifiers [31, 32]. The sample of 450 individuals was randomly partitioned 

into 10 equal size subsamples (i.e., “test” sets) of 45 individuals. Once a test set was 

selected, a fracture prediction model was defined using predictor variables for the remaining 

“training set” of 405 individuals, and the resulting prediction model was used to predict the 

occurrence of future fracture using predictor variables from the test set of individuals. This 

nested loop procedure was repeated 10 times (i.e., 10 folds) such that future fracture 

likelihood was determined using predictor variables of the individuals in each test set based 

on fracture prediction models established from predictor variables for the remaining 405 

individuals. Stratified partitioning was employed to ensure that the training and test sets in 

each fold contained the same proportion of fracture cases and non-cases as in the overall 

sample of 450 individuals. This partitioning approach resulted in 4 fracture cases and 41 

non-cases in each test set. In prediction models involving weighting factors, 10-fold cross-

validation was also used in the lasso fit of the logistic regression between training set 

predictor variables and fracture occurrence.
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Investigation of Fracture Classifier Performance

Receiver operating characteristic (ROC) curves were generated to graphically represent true 

positive rate (i.e., sensitivity) versus false positive rate (i.e., 1-specificity) for each 

prediction model in each of the 10 folds and averaged over the folds to determine the ROC 

for each prediction model. The area under the ROC curve (AUC) was determined from each 

ROC for each prediction model as a direct indicator of reliability (i.e. probability that the 

prediction model will rank a randomly chosen positive (i.e., correct) prediction higher than a 

randomly chosen negative one) and 95% confidence intervals for AUC values were 

computed using 1000 bootstrap replicas. Cross-validated AUC values and 95% confidence 

intervals for the AUC values were determined for each prediction model (cvAUC package in 

R, available at http://cran.r-project.org/web/packages/cvAUC/index.html) [33].

The predictive performance of each fracture prediction model was validated using the results 

of the test set predictions in the nested cross-validation approach. It follows that 

performance was judged on the ability of each model to predict the occurrence of fracture in 

a set of individuals (i.e., the test set) that were not involved in prediction model definition 

and that these individuals were “unknown” and external to the prediction model. Rates of 

overall correct prediction and correct prediction for fracture and non-case individuals were 

determined for the test set in each fold and averaged over the 10 folds to determine the 

performance of each prediction model. Significance of differences in prediction accuracy 

was investigated using repeated measures analyses of variance and Tukey’s test was used for 

between predictor comparisons, if appropriate.

The association between the accuracy of prediction models and the principal components 

that explained the majority of the total variance in femur geometry and bone density 

distribution was investigated. Three new prediction models were developed using subsets of 

weighting factors selected in the prediction model based on principal components and 

adjusted for age. Prediction models were defined using selected weighting factors that 

individually described greater than 10% of the total variance, weighting factors that 

individually described greater than 1% of the total variance, and weighting factors that 

individually described less than 1% of the total variance. All subset-based predictors were 

adjusted by age and the rates of overall correct prediction and correct prediction for fracture 

and non-case individuals were determined as means in a 10-fold cross-validation analysis. 

Significance of differences in prediction accuracy was investigated using repeated measures 

analyses of variance and Tukey’s test was used for between predictor comparisons, if 

appropriate.

RESULTS

The first principal component (shape mode) of the SSDM explains 21% of the total variance 

in femur geometry and bone density distribution, shape modes 1–53 explain 90% of the total 

variance, and shape modes 1–329 explain 99% of the total variance (Figure 3). Accordingly, 

the remaining 120 shape modes cumulatively explain 1% of the total variance in geometry 

and BMD distribution.
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The complex pattern of structural geometry variations between the mean fracture case model 

and the mean non-case model is clearly demonstrated (Figure 4). Interestingly, as indicated 

by the red and orange regions, the mean fracture case femur model is generally larger than 

the mean non-case model, particularly in the distal neck, greater trochanteric, and 

intertrochanteric regions. The fringe pattern at the femoral head appears to demonstrate a 

rotation of the fracture case model femoral head with respect to that of the non-case model, 

indicating that the neck-axis shaft angle is greater for the fracture case than the non-case. 

The neck axis shaft angle and the neck diameter are greater for the mean fracture case model 

than for the mean non-case model. However, it remains that typical length-based measures 

would inadequately describe the complex variations shown.

Similarly, the mid-plane density variation indicates complex differences that are difficult to 

completely characterize using typical regional measures of density (Figure 5). In general, the 

light blue and blue regions indicate that the mid-plane BMD is lower in the mean fracture 

case than in the mean non-case, particularly in the intertrochanteric and distal cortical 

regions, as well as the location of the primary compressive strut in the femoral head [34]. The 

yellow and orange regions indicate small regions of increased mid-plane BMD between the 

mean fracture case and the mean non-case models, although these differences are slight.

Mode 1 described increases in the femoral head diameter and the femoral neck axis length 

for the fracture cases when compared to non-cases, along with other more complex increases 

over the surface of the proximal femur (Figure 6). Mode 1 also described very minor 

decreases (< 0.03 g/cm3) in density along the medial cortical bone inferior to the femoral 

head (Figure 7). Conversely, shape mode 2 described decreases in femoral head diameter, 

femoral neck diameter, and femoral neck axis length for fracture cases compared to the non-

cases, along with complex variation of the remaining surface (Figure 8). Shape mode 2 also 

described decreases in lateral and medial cortical bone density, as well as within the 

trabecular bone of the greater trochanter, superior femoral neck, and the primary 

compressive strut, for the fracture cases compared to the non-cases (Figure 9).

The two-level predictor selection approach identified an average number of discriminative 

weighting factors ranging from 16.6 to 23.5 weighting factors out of 449 (Table 1). 

Adjusting the SSDM-based risk prediction model by age reduced the average number of 

selected weighting factors from 23.5 to 20 and further adjusting the model by aBMD 

reduced the average number to 16.6, suggesting that discriminative information contained 

within some weighting factors could be replaced by covariate adjustment. BMI was not 

selected as a discriminative predictor in logistic regressions containing SSDM weighting 

factors. Interestingly, prediction models defined using the nested cross-validation approach 

were based on selected weighting factors describing between 49.6 and 53.8% of the total 

model variability. Furthermore, prediction models primarily included principal components 

describing a small percentage of the total variation in geometry and BMD distribution for 

the set of 450 femurs. For instance, the risk prediction model containing SSDM weighting 

factors and age contained 3 weighting factors that cumulatively described 46.7% of the total 

variability and 17 weighting factors that cumulatively described 7.1% of the total model 

variability (Figure 10).
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ROC curves demonstrated that both the sensitivity and specificity of future fracture 

prediction increased substantially with the inclusion of SSDM weighting factors over that of 

aBMD alone or of aBMD adjusted by age and BMI (Figure 11). Accordingly, AUC values 

indicating prediction reliability were significantly greater in prediction models including 

weighting factors than those without (Table 2). Adjustment of the SSDM-based fracture 

prediction model by covariate characteristics resulted in slight variation in the AUC values 

from that of SSDM alone.

Cross-validation analyses were performed using aBMD-based risk prediction (as the clinical 

gold standard) with adjustment by age and BMI and the fracture predictors determined using 

SSDM weighting factors (Table 3). The overall accuracy for the SSDM-based predictor 

adjusted for age was significantly greater than the overall accuracy for all aBMD-based 

measures (p-value = 0.000). The accuracies of all SSDM-based fracture classifications were 

significantly greater than the accuracies of all aBMD-based measures (p-value = 0.000). 

There were no significant differences in the accuracy of identifying non-case individuals (p-

value = 0.925)

A subset of three weighting factors selected in the SSDM-based predictor adjusted for age 

[SSDM & Age] individually explained greater than 10% of the total variance in the set of 

femurs and cumulatively described 46.7% of the total variance [SSDM (WFs > 10%) & 

Age] (Table 4). Five weighting factors individually described greater than 1% of the total 

variance and cumulatively described 52.3% of the total variance [SSDM (WFs > 1%) & 

Age]. The remaining 15 weighing factors individually described less than 1% of the total 

variance and cumulatively described 1.5% of the total variance [SSDM (WFs < 1%) & 

Age].

Cross-validation analyses were performed to compare the accuracy of the SSDM & Age 

fracture risk predictor to predictors defined using subsets of these weighting factors and 

adjusted by age (Table 5). Overall accuracy for the SSDM & Age predictor was significantly 

greater than overall accuracy for SSDM (WFs> 10%) & Age, but was not significantly 

different than overall accuracy for SSDM (WFs < 1%) & Age and SSDM (WFs < 1%) & 

Age (p-value = 0.012). Accuracy for fracture classifications using SSDM & Age was not 

significantly different from the accuracy for SSDM (WFs < 1%) & Age; however, it was 

significantly greater than the accuracy for fracture classifications using SSDM (WFs > 10%) 

& Age and SSDM (WFs > 1%) & Age (p-value = 0.001). There were no significant 

differences in accuracy for prediction of the non-case individuals (p-value = 0.627).

DISCUSSION

Quantitative differences in baseline proximal femur geometry and BMD distribution exist 

between older men that subsequently suffer a hip fracture and those do not, and these 

variations are complex. Using imaging processing methods, the baseline variability in the 

proximal femurs of fracture and non-fracture cases was described by high fidelity models 

composed of a set of highly correlated variables describing proximal femur shape and bone 

density distribution. In turn, the highly correlated variables were transformed using a 

variable reduction method (i.e., principal component analysis) into a relatively small set of 
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new composite trait variables (i.e., principal components or shape modes) that described 

independent and uncorrelated combinations of geometry and BMD distribution.

SSDM provides a means of explicitly describing baseline variation between individuals that 

subsequently suffer a hip fracture and those that do not, suggesting that the statistical 

investigation of composite bone traits that differ between these individuals may lead to 

improved methods of fracture risk diagnosis. Statistical shape and density modeling methods 

describe inherent combinations of traits related to three-dimensional bone shape and the 

spatial distribution of bone mineral density that are found within bones. The unsupervised 

means of disseminating highly correlated shape and density variables into composite traits 

identifies hidden structural combinations within the shape and density data that are directly 

related to fracture risk. We note that composite bone traits do not have explicit physical 

meaning, as they are combinations of observable bone traits; however, differences in 

baseline composite traits between individuals that suffer a hip fracture and those that do not 

can be qualitatively examined, as shown in the present study. Moreover, composite bone 

traits represent an integrated view and an important starting point for investigation of the 

importance of not only multiple observable bone traits, but also of the significance of the 

essential interactions between bone traits with regards to structural integrity and fracture 

resistance of the bone. As demonstrated in the current study, fracture risk predictions for a 

small set of individuals (i.e., the test set) are based on the similarity of SSDM weighting 

factors for the proximal femur of test individual(s) to those of individuals in the training set 

that have suffered a fracture. It follows that identical methods could be applied to 

individuals in the clinic to determine the risk of subsequent fracture.

Importantly, the results of this study demonstrate that subtle differences between bones that 

are described using SSDM weighting factors may predict the likelihood to suffer a 

subsequent fracture. It seems likely that variation in both geometry and BMD density 

distribution described by SSDM methods directly relates to the structural integrity of an 

individual bone. Accordingly, SSDM methods may lead to means of identifying individuals 

at risk for suffering a fracture and improving the understanding of fracture pathophysiology. 

Furthermore, SSDM methods may help in identifying the complex composite traits that 

appear to be deficient in individuals at risk and focusing on treatments that address structural 

deficiencies.

Although the analyses described here represent a comprehensive analysis of the variation of 

structural bone traits in a large (n=450) set of individuals, all of those individuals are men 

and, are predominantly Caucasian. As such, further work is necessary to expand these 

investigations to include females and other ethnicities in order to understand important sex- 

or ethnicity-based structural differences that may also lead to variation in fracture risk and 

the mechanisms likely to cause fracture in these individuals. The case-cohort sample in the 

present study included only 40 fracture cases and further work is necessary to understand the 

important structural trait variations that may surface in a larger sample of fracture cases. 

Further investigation is also needed to understand how variation within the sample of 

individuals that suffered fractures leads to varying fracture mechanisms and/or locations in 

the occurrence of hip fractures. Additionally, the radiation exposure associated with 3D 

QCT scans using current clinical scanners is approximately 1 to 3 mSv, which is two orders 
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of magnitude greater than that of a DXA scan (0.009 – 0.013 mSv) and also greater than that 

associated with standard radiography (0.3 – 0.7 mSv) [35]. Although the risks of radiation 

doses associated with assessing bone mineral density or collecting three-dimensional QCT 

data are uncertain, the radiation doses associated with determining bone condition are low 

and it is likely that potential risks to an individual are low [35]. However, further work is 

needed to reduce the radiation dose with clinical QCT, and scan parameters and automatic 

exposure control tools may provide viable means of reducing the radiation exposure. We 

also acknowledge that replication of analyses of fracture risk classifiers based on statistical 

shape and density modeling using independent populations is an important step in the 

development of these risk classification methods, despite the predictive accuracy 

demonstrated for “unknown” test individuals in the present study.

A similar statistical shape model (SSM) approach was employed to predict incident hip 

fracture in a nested case-control study of white women 65 years and older[36]. A two-

dimensional (2D) statistical shape model was generated to describe the variation in proximal 

femur shape determined from baseline hip radiographs of 399 individuals (168 fracture 

cases, 231 controls). Shape modes based on the outer 2D boundary of the proximal femur 

resulted in more accurate prediction of the occurrence of future hip fractures than BMD or 

FRAX scores. The AUC for the fracture classifier based on shape modes and adjusted by 

femoral neck BMD was 0.835, compared to 0.813 for shape modes alone and 0.675 for 

femoral neck BMD alone and 0.645 for intertochanteric BMD alone. Another study utilized 

baseline DXA scans of the hip from elderly women aged 75 years or older, including 182 

fracture cases and 364 controls [37]. Active shape models (a.k.a. statistical shape models) 

were developed from corresponding points located on the proximal femur and parts of the 

pelvis and active appearance models were developed to describe the 2D distribution of bone 

mineral density within the femoral head and neck. Fracture risk predictors based on shape 

and appearance modes resulted in AUC values ranging from 0.57 to 0.65, and no predictor 

resulted in an AUC value that was significantly different than that of total hip BMD alone 

(AUC = 0.62). A third study utilized regional fast Fourier transform-based texture analyses 

and fractal analyses of hip radiographs previously obtained for a set of postmenopausal 

women (26 hip fracture cases and 24 controls) [38]. Statistical shape modeling was used to 

model the shape of power spectrum texture profiles, rather than femoral geometry. Regional 

texture modes and fractal dimensions were used to develop fracture risk predictors that 

resulted in AUC measures ranging from 0.59 to 0.93, where the maximum AUC value was 

achieved for a predictor based on lower femoral neck texture. Although this study utilized a 

small sample set, prediction accuracy rates were not reported, and the lack of nested cross-

validation to limit the potential for predictor bias suggest that texture analysis of the lower 

femoral neck may hold promise as a fracture risk predictor. However, it is unclear whether 

lower femoral neck texture will show similar performance for the full range of fracture types 

and locations. In comparison to fracture risk predictors based on statistical modeling of 2D 

imaging data, cross-validated AUC values ranged from 0.93 to 0.94 for SSDM-based 

classifiers in the present study, suggesting that description of the 3D geometry and spatial 

distribution of BMD play an important role in the prediction of future hip fractures.

A study involving 3D QCT data implemented voxel-based morphometry to compare the 

femoral BMD distribution between groups of individuals that suffered a subsequent fracture 
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and those that did not [39]. Voxel-based morphometry relies on a comparison of BMD at 

each voxel over BMD distributions that are warped to a common “atlas.” In effect, 

variations in the spatial distribution of BMD are considered, but variations in geometry 

between individuals and groups are not, although Carballido-Gamio, et al., considered 

overall changes in geometry scale. Decreased BMD was noted along the endosteal cortical 

region of both the superior and inferior cortices of the femoral neck of women with 

subsequent fracture. This finding parallels the results of the present study considering men 

with and without subsequent fracture, suggesting that cortical bone loss patterns may be 

similar in both males and females that suffer fracture. Additionally, females that suffer 

subsequent fracture have greater femoral neck diameter than those that do not, which again 

parallels findings in the current study comparing males with and without subsequent 

fracture. Increases in femoral neck size in individuals with subsequent fracture seem likely 

to be a response intending to offset patterns of decrease in neck BMD [39].

As fracture is a structural failure of the bone, numerous studies have employed finite 

element methods to determine peak expected strain, strength, or load-to-strength ratio in 

order to develop fracture risk predictors. One such study employed two-dimensional finite 

element models developed from DXA imaging data of the femur previously obtained from 

93 white women, 42 of whom suffered a subsequent hip fracture [40]. Elastic material 

properties were assigned based on density distribution, fall-type loading conditions were 

employed and principal strains were calculated for each femur. A fracture risk predictor 

based on femoral neck BMD had an overall accuracy of 64.5%, a predictor based on femoral 

neck BMD and height had an overall accuracy of 76.3%, and adding neck shaft angle and 

maximum principal tensile strain increased the overall accuracy to 81.7%, although 82.9% 

of the fracture cases were correctly identified. A similar study defined finite element models 

of the proximal femur using baseline DXA data obtained for 728 women aged 75 years or 

older, including 182 that suffered a subsequent hip fracture [41]. Fracture risk predictors 

based on femoral neck BMD, estimated femoral strength, and load-to-strength ratio resulted 

in AUC values ranging 0.66 for BMD alone to 0.68 for load-to-strength ratio. Adjusting 

estimated strength and load-to-strength ratio by femoral neck BMD resulting in AUC values 

of 0.68 and 0.69, respectively. AUC values for predictors were not significantly different 

than that of BMD alone (95% significance level). A third study implemented 3D finite 

element models using baseline QCT data for a subset of 250 individuals in the present study 

[20]. Elastic-plastic material properties were assigned based on density distribution and 

strength of the proximal femur under fall loading conditions and load-to-strength ratio were 

calculated and used to define fracture risk predictors. Predictors based on femoral strength, 

load-to-strength ratio, and total hip aBMD resulted in AUC values of 0.83, 0.79, and 0.85, 

respectively. After accounting for age, BMI, and clinical center in the predictors, AUC 

values increased slightly to 0.87 for femoral strength, 0.88 for load-to-strength ratio, and 

0.88 for aBMD alone, although differences in the results were not significant. Decreased 

accuracy when compared to the present study and lack of significant differences between 

predictors based on finite element model results and those of BMD alone suggest that 

modeling choices and assumptions do play an important role in determining the likelihood 

of future fracture occurrence. It remains unclear how sensitive relative changes in accuracy 

of the finite element model predictions are to modeling choices, as well as how well finite 
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element-based strength predictions can accurately predict the likelihood of subsequent 

fracture in a living individual. As noted previously, the statistical shape and density 

modeling approach does not make a priori assumptions in developing a predictive classifier. 

Rather, the SSDM approach describes the available data on proximal femur shape and BMD 

distribution in an unsupervised manner and is trained to generate a classifier based on 

consideration of the relation of shape mode weighting factors to fracture occurrence.

In conclusion, statistical shape and density modeling provides a means of explicitly and 

efficiently describing the complex spatial variation in geometry and BMD distribution 

within a sample of proximal femurs. Statistical shape and density modeling allows for 

determination of complex combinations of structural bone traits that appear to indicate 

fracture risk and may help to differentiate at risk individuals within a sample population. 

Finally, description of bone sample variation using SSDM allows investigation of important 

structural differences that may allow improved prediction of those at risk for future hip 

fracture.
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APPENDIX

Joint point distribution models were constructed from all individual mesh models. Model 

geometry and the spatial density distribution for each individual were described by a shape 

and density parameter vector as

(1)

where vj(xyz) are the three-dimensional coordinates of the nodes in the volumetric mesh, vjd 

is the bone density at that node, j =1,…, 14,350 nodes in the volumetric mesh, and i = 1 …n 

= 450 denote each femur in the set. In order to account for disparate units (i.e. location and 

density) in the vector and large differences in the variance of the variables, all individual 
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shape and density parameter vectors, pi, were normalized by dividing each variable by the 

standard deviation of that variable calculated for the set of 450 individuals.

The mean shape and bone density distribution of all femurs in the set was defined as

(2)

and the correlation between individual models in the set was given by the empirical 

covariance matrix

(3)

A principal components analysis (PCA) of the covariance matrix, S, resulted in a set of k = n

−1 eigenvalues (λk) and eigenvectors (qk), which are the principal directions spanning a 

shape and bone density space centered at the mean, . The proportion of the total variance 

described along each eigenvector is equal to its corresponding eigenvalue divided by the 

sum of all eigenvalues; eigenvectors corresponding to the largest eigenvalues describe the 

majority of the variance (Figure 3). Thus, geometry and density distribution models for each 

femur in the set were described in terms of the average model and a weighted linear 

combination of uncorrelated principal shape and bone density modes as

(4)

where for each individual femur

(5)

are the score vectors that are functions of the eigenvalues and QT contains the k 

eigenvectors. Weighting factors for each individual model were determined by dividing the 

k scores by the square root of the corresponding eigenvalue

(6)

where  is the standard deviation of the shape and density distribution from the mean 

along the corresponding eigenvector.
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Figure 1. Image Processing Pathway from QCT Data to Segmented Data to Femur Surface
QCT data was semi-automatically segmented to generate a binary stack of image data for 

each individual femur. The binary stack of image data was processed to generate closed 

triangulated surfaces describing the outer cortical boundary of each individual femur. (Note: 

A subset of QCT and segmented data slices are shown here for clarity.)
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Figure 2. Anatomic Position of Surface Vertices Correspond for all Femur Surfaces
White, black, and gray dots denote corresponding surface vertices between three example 

femur surfaces. Note that the dots are located at the same anatomic position for each femur 

surface allowing the geometry of surfaces with dissimilar shapes to be directly compared.
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Figure 3. 
Cumulative Percentage of Femur Variability Explained by Principal Components
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Figure 4. Surface Geometry Variation between Mean Fracture and Non-Case Femurs
Color contours represent the difference in shape between the mean fracture model and the 

mean non-case model at each surface node. Accordingly, red regions indicate that those 

nodes in the case model are outside the non-case model at that point, demonstrating that the 

mean case model is larger than the mean non-case model in these regions. Conversely, blue 

regions indicate that the mean case model is smaller than the mean non-case model at those 

points.
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Figure 5. Mid-plane Density Variation between Mean Fracture and Non-Case Femurs
Color contours represent pointwise density differences between the mean fracture model and 

the mean non-case model. Accordingly, red regions indicate that those nodes in the case 

model have greater density than the non-case model at that point and blue regions indicate 

that the mean case model has less density than the mean non-case model at those points.
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Figure 6. Mode 1 Surface Geometry Variation between Fracture and Non-Case Femurs
Color contours represent the pointwise differences in shape between the mean femur 

modified by the mean variation in shape mode 1 for the fracture cases and the mean femur 

modified by the mean variation in shape mode 1 for the non-case femurs.
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Figure 7. Mode 1 Mid-plane Density Variation between Fracture and Non-Case Femurs
Color contours represent the pointwise density differences between the mean femur 

modified by the mean variation in shape mode 1 for the fracture cases and the mean femur 

modified by the mean variation in shape mode 1 for the non-case femurs.
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Figure 8. Mode 2 Surface Geometry Variation between Fracture and Non-Case Femurs
Color contours represent the pointwise differences in shape between the mean femur 

modified by the mean variation in shape mode 2 for the fracture cases and the mean femur 

modified by the mean variation in shape mode 2 for the non-case femurs.
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Figure 9. Mode 2 Mid-plane Density Variation between Fracture and Non-Case Femurs
Color contours represent the pointwise density differences between the mean femur 

modified by the mean variation in shape mode 2 for the fracture cases and the mean femur 

modified by the mean variation in shape mode 2 for the non-case femurs.
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Figure 10. 
Percentage of Femur Variability Explained by Individual Principal Components
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Figure 11. 
Receiver Operating Characteristic (ROC) Curves for Cross-Validated Fracture Prediction 

Models
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Table 1

Fracture Classifier Characteristics

Fracture Classifier Mean Number of SSDM Weighting Factors 
Included

Mean Percentage of Total Variability Explained by 
Selected Weighting Factors

Total Hip aBMD 0 0

aBMD & Age 0 0

aBMD & Age & BMI 0 0

SSDM 23.5 49.6

SSDM & Age 20 53.8

SSDM & Age & aBMD 16.6 52.9
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Table 2

Reliability of Fracture Prediction Models

Fracture Prediction Model AUC (95% C.I.)

Total Hip aBMD 0.82 (0.75 – 0.89)

aBMD & Age 0.83 (0.77 – 0.90)

aBMD & Age & BMI 0.83 (0.77 – 0.89)

SSDM 0.94 (0.91 – 0.97)

SSDM & Age 0.94 (0.91 – 0.97)

SSDM & Age & aBMD 0.93 (0.90 – 0.96)
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Table 3

Validation of Fracture Prediction Model Accuracy

Fracture Classifier Mean Correct Classifications 
(out of 45 men)

Mean Correct Fracture 
Classifications (out of 4 men)

Mean Correct Non-case 
Classifications (out of 41 men)

Total Hip aBMD 41.1 (91.3%) 0.4 (10.0%) 40.7 (99.3%)

aBMD & Age 41.1 (91.3%) 0.6 (15.0%) 40.5 (98.8%)

aBMD & Age & BMI 41.0 (91.1%) 0.6 (15.0%) 40.4 (98.5%)

SSDM 42.1 (93.6%) 1.6 (40.0%) 40.5 (98.8%)

SSDM & Age 42.6 (94.7%) 2.2 (55.0%) 40.4 (98.5%)

SSDM & Age & aBMD 42.1 (93.6%) 1.7 (42.5%) 40.4 (98.5%)
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Table 4

Characteristics of Fracture Classifiers based on Subsets of Weighting Factors

Fracture Classifier Number of SSDM Weighting Factors Included Total Variability Explained by Selected Weighting 
Factors

SSDM & Age 20 53.8

SSDM (WFs > 10%) & Age 3 46.7

SSDM (WFs > 1%) & Age 5 52.3

SSDM (WFs < 1%) & Age 15 1.5

Note: Parenthetical descriptions of weighting factor subsets refer to the variability that is explained individually by each principal component 
weighting factor. For instance, there are 3 weighting factors that each describe greater than 10% of the total variability in the set of femurs.
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Table 5

Accuracy of Fracture Prediction Model based on Subsets of Weighting Factors

Fracture Classifier Mean Correct Classifications 
(out of 45 men)

Mean Correct Fracture 
Classifications (out of 4 men)

Mean Correct Non-case 
Classifications (out of 41 men)

SSDM & Age 42.6 (94.7%) 2.2 (55.0%) 40.4 (98.5%)

SSDM (WFs > 10%) & Age 40.8 (90.7%) 0.4 (10.0%) 40.4 (98.5%)

SSDM (WFs > 1%) & Age 41.2 (91.6%) 1.1 (27.5%) 40.1 (97.8%)

SSDM (WFs < 1%) & Age 42.1 (93.6%) 1.5 (37.5%) 40.6 (99.0%)

Notes: Parenthetical descriptions of weighting factor subsets refer to the variability that is explained individually by each principal component 
weighting factor.
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