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We appreciate the opportunity that this paper and the journal editors have provided us to 

clarify some important issues.

There is consensus that one should adjust for repeated analyses when conducting 

prospective disease surveillance. Correa et al. [1] are concerned about p-values adjusted for 

prior analyses in a prospective scan surveillance setting, an advanced option in the SaTScan 

software [2]. The key claim, stated in the last paragraph, is that ‘For both types of 

adjustments, … for each n [=analysis], the probability of type I error is much smaller than 

the significance level, since the p-values [are] in the interval 0.9,1.0. This lack of control of 

the type I error probability and of the average run length lead us to strongly oppose the use 

of the scan statistic in the prospective context with the SaTScan™ signal rules’. The 

complaint refers to p-values adjusted for either all prior analyses or the prior 100 analyses 

(situations c and d in the paper), but not to the default or usual signal rules in SaTScan 

software (situation b).

Correa et al.’s claim is based on a misunderstanding.

When adjusting for repeated analysis of the data, under the null hypothesis we should have a 

0.05 probability of rejecting the null across all analyses. Situations c/d will only give an 

adjusted p<0.05 when rejecting the null at the overall alpha 0.05 level for the many 

sequential analyses. This means that unadjusted p-values must be much smaller than 0.05 in 

order to generate a signal (=alarm) rejecting the null, and that the adjusted p-values are 

greater than 0.9 for most single analyses of the data (Figure 4). This is exactly the way it 

should be. Rather than showing “a lack of control of the type I error”, it demonstrates that 

the desired adjustment for repeated analyses of the data is working. It is not the adjusted p-

value from a single analysis, but the minimum of the adjusted p-values over repeated 

analyses, that should be approximately uniform [0, 1].

In particular, suppose we adjust for an overall alpha level of 0.05 across a sequence of 100 

analyses. The null probability of a signal during those 100 analyses will then be 0.05. Over 

300 such analyses it will be somewhat less than 1-(1-0.05)3=0.14, since there is some 

dependency between the three sets of 100 analyses. In the authors’ simulations, the 
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proportion was in fact 0.13 (section 3.2.3). The extensive simulations conducted by Correa 

et al. hence confirm that the adjusted p-values (situation d) properly account for repeated 

sequential analyses.

P-values adjusted for all prior analyses (situation c) should be avoided for long sequences of 

data [3], as rejection becomes increasingly difficult with time (Figure 3). P-values adjusted 

for a fixed number of prior analyses are always appropriate (situation d), but can be 

confusing. This is why we continue to recommend that users use recurrence intervals (RI) 

based on standard unadjusted p-values (situation b) [4, 5]. This is the default signal rule in 

SaTScan that we and others normally use to account for the repeated analyses in prospective 

space-time scan disease surveillance [6, 7].

A RI of (say) 365 analyses means that the expected number of signals of equal or greater 

strength is one during an arbitrary 365-analysis period. Hence, a public health department 

can use this to control the expected number of false signals they have to deal with, e.g., by 

setting a signal threshold of RI > 365.

The RI is calculated for each analysis of the data, and then compared to a pre-specified 

signal threshold. The run length (RL) is the number of analyses it takes until some statistic 

exceeds a signal threshold. There is no reason why the RI at the time of a signal and the RL 

should be correlated, and the lack of correlation in Figure 7d is expected. This is also true 

for other prospective methods such as the CUSUM. With a signal threshold of RI > 365 

days, one might think that the average run length (ARL) would also be 365 days, but that is 

not true, although there is obviously a correlation between the threshold used and the ARL.

In summary, the authors’ offer no objection to situation b, the SaTScan default, despite 

stating that they “strongly oppose the use of the scan statistic with the usual signal rules in 

the prospective context”, and their concerns about situations c/d are based on 

misunderstandings. The prospective space-time scan statistic is a valuable disease 

surveillance tool used by public health departments around the world, and we will continue 

to recommend using it with the recurrence interval based signal rules available in SaTScan.
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