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ABSTRACT

An increasing amount of studies integrate mRNA
sequencing data into MS-based proteomics to com-
plement the translation product search space. How-
ever, several factors, including extensive regula-
tion of mRNA translation and the need for three-
or six-frame-translation, impede the use of mRNA-
seq data for the construction of a protein sequence
search database. With that in mind, we developed the
PROTEOFORMER tool that automatically processes
data of the recently developed ribosome profiling
method (sequencing of ribosome-protected mRNA
fragments), resulting in genome-wide visualization of
ribosome occupancy. Our tool also includes a trans-
lation initiation site calling algorithm allowing the de-
lineation of the open reading frames (ORFs) of all
translation products. A complete protein synthesis-
based sequence database can thus be compiled
for mass spectrometry-based identification. This ap-
proach increases the overall protein identification
rates with 3% and 11% (improved and new identifi-
cations) for human and mouse, respectively, and en-
ables proteome-wide detection of 5’-extended prote-
oforms, upstream ORF translation and near-cognate
translation start sites. The PROTEOFORMER tool is
available as a stand-alone pipeline and has been im-
plemented in the galaxy framework for ease of use.

INTRODUCTION

The integration of next-generation transcriptome sequenc-
ing and highly sensitive mass spectrometry (MS) has
emerged as a powerful strategy for the fast and compre-

hensive profiling of mammalian proteomes (1). Protein se-
quence database search tools (2) typically use publicly avail-
able protein databases, such as Swiss-Prot and Ensembl,
to match MS spectra to peptides. Because these reference
databases only contain experimentally verified and/or pre-
dicted protein sequences, it is very unlikely that they give
a comprehensive assessment of the expressed protein pool
of a given sample. Translation product prediction based on
messenger RNA sequencing (mRNA-seq) data gives a more
representative state of the protein repertoire expressed and
aids the protein identification process by eliminating unex-
pressed gene products from the search space (3). On top of
that, transcript data additionally provides sequence varia-
tion information, such as single nucleotide polymorphisms
(SNPs) and RNA-splice and editing variants (4), which im-
prove the chances of identifying novel protein forms (5,6).

Despite the benefits of adding mRNA-seq information to
proteomics experiments, this approach has some shortcom-
ings. First, mnRNA levels are not a perfect proxy for protein
expression levels since the translation of mRNA is subject to
extensive regulation (7). Furthermore, there are several fac-
tors, such as internal ribosome entry sites, non-AUG start
codons and non-sense read-through (8), that hinder the pre-
diction of the exact protein product(s) translated from the
transcript sequence. Also, inclusion of mRNA-seq informa-
tion requires three- or six-frame-translation of the derived
sequences, dramatically expanding the protein search space
and hence decreasing the search sensitivity and specificity
9).

Recently a new strategy, termed ribosome profiling
(RIBO-seq), was introduced that overcomes these short-
comings (8). By using the property of translating ribosomes
to protect mRNA fragments from nuclease digestion it is
possible to directly monitor the in vivo synthesis of mRNA-
encoded translation products measured at the genome-wide
level (10). In contrast to polysome profiling, often used for
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analyzing gene expression, RIBO-seq enables delineation of
the genomic positions of translating ribosomes with sub-
codon to single-nucleotide precision (11). Furthermore, (al-
ternative) translation initiation sites (TIS) can be accurately
predicted by exploiting the abilities of antibiotics, such as
harringtonine (HARR) or lactimidomycin (LTM), that halt
ribosomes at sites of translation. However, as some non-
coding transcripts show association with ribosomes (12),
MS-assisted validation is in many cases still indispensable
(13).

The presented PROTEOFORMER tool processes
RIBO-seq data allowing genome-wide visualization of pro-
tein synthesis, and moreover enables the delineation of in
vivo proteoforms (14) building an optimal protein sequence
search database for peptide to MS/MS matching (15-18)
(Figure 1). PROTEOFORMER starts with the mapping of
ribosome-protected fragments (RPFs) and quality control
of subsequent alignments. It further includes modules for
identification of transcripts undergoing protein synthesis,
positions of translation initiation with subcodon specificity
and SNPs. We used PROTEOFORMER to create protein
sequence search databases from publicly available mouse
(8) and in-house performed human RIBO-seq experiments
and evaluated these with matching proteomics data. We
demonstrate that this approach results in an increase of
the number of protein/peptide identifications, leads to
the identification of novel protein forms and aids in the
re-annotation of the genome.

MATERIALS AND METHODS

The PROTEOFORMER pipeline (Figure 1) is made up of
six major steps: (i) the alignment of the RPF reads to a ref-
erence genome, (i) a quality control of the alignments, (iii)
assignment of transcripts with evidence of translation, (iv)
identification of TIS, (v) inclusion of SNP information and
(vi) finally generation of a RIBO-seq derived translation
product database that can be used as a search space for MS-
based proteomics studies, either independently or combined
with a canonical protein database. All input parameters for
the different steps of the PROTEOFORMER pipeline are
user-definable in order to allow research-specific optimiza-
tion. A more detailed description of the parameter settings
is available via the readme file and website (Supplemental
File S2 and http://www.biobix.be/proteoformer).

Sequence processing and alignment

For the mouse and human sequences we use respectively
the Ensembl (19) release 72 and 70 genome annotation
(assembly GRCm38 and GRCh37) from the iGenome
repository (http://support.illumina.com/sequencing/
sequencing_software/igenome.ilmn).

RIBO-seq-derived reads can be aligned using both a
STAR (20) (2.3.0e_r291) or TopHat (21) (v2.0.9) based
pipeline. The STAR-based workflow sequentially aligns
the reads to STAR indices composed of the following se-
quences: (i) the PhiX bacteriophage genome, (ii) Mus mus-
culus or Homo sapiens TRNA (obtained using BioMart, fil-
tered on Mt_TRNA and rRNA gene types) and (iii) Mus
musculus or Homo sapiens complete genome (obtained from
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the corresponding iGenome repository). The STAR inter-
nal clipping function is used to clip the 3’ adaptor, up to
two mismatches are allowed for the alignment, the option
seedSearchStartLmaxOverLread is set to 0.5 and no introns
are allowed for the alignment against the PhiX genome. The
TopHat-based workflow uses Bowtie (v2.1.0) to sequen-
tially align sequencing reads to Bowtie indices composed
of the PhiX bacteriophage and the rRNA sequences (see
above) using the ‘sensitive-local’ option, whereas TopHat
itself is used for the complete genome alignment using de-
fault settings except for ‘segment-length’ that is set to 15.
Since TopHat does not have an internal clipping function-
ality, the clipper from the FASTX Toolkit (0.0.13) is used
to clip the 3’ adaptor sequence prior to mapping. For the
RPF distribution plots and quality controls, only uniquely
mapped reads are accounted for whereas for the custom DB
creation multi-mapping reads (up to 15 locations) are ad-
ditionally considered. Only reads with a length between 26
and 34 bases (i.c. relevant RPFs) are retained for further ge-
nomic coordinate mapping. RPF alignments are assigned to
the current ribosomal P-site, based on the length of the frag-
ment. The offset from the 5'-end of the alignment is +12,
+13 and +14, respectively, for alignments <30 bases long,
31-33 bases long or >34 bases long (8). The alignment and
RPF density information are returned as output by PRO-
TEOFORMER (BedGraph format) making it easy to up-
load and visually evaluate the data in a genome browser en-
vironment of choice (22).

Quality control: metagenic functional classification

As a first quality assessment, the obtained ribosomal foot-
prints are classified using a species-specific Ensembl anno-
tation bundle (converted to SQLite format). First, a meta-
genic functional annotation of the uniquely mapped foot-
prints is determined using the Ensembl annotation of all
transcripts. Here, translation associated annotation (i.e. 5’
untranslated region (UTR), exon, intron or 3’ UTR) is
only defined for transcripts with a ‘protein-coding’ biotype.
The RPFs not assigned to protein-coding transcripts are
assigned to non-protein-coding transcripts (i.e. ‘other bio-
types’). The remaining unassigned footprints are classified
as ‘intergenic’. The resulting classification counts are avail-
able in a tab-separated table and summarized as a pie chart
(Supplementary Figure Sla). For the ribosome footprints
classified as ‘other biotypes’, a second table and accompa-
nying pie chart is created, depicting the biotype distribution
of these footprints (Supplementary Figure S1b).

Gene distribution

The quality is also assessed by determining the uniquely
mapped ribosomal footprint counts per gene (using avail-
able Ensembl annotation). In total, three summarizing plots
are available: (i) a gene abundance plot ranging from the
highest to the lowest covered genes, (ii) a cumulative gene
distribution plot ranging form the highest to the lowest cov-
ered genes and (iii) a gene density plot (for more details, see
Supplementary Figure S2). These results are also stored as
tabular files.
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Figure . PROTEOFORMER integrates RIBO-seq and MS data. This schematic overview presents the different steps in the PROTEOFORMER workflow
together with the used tools and file formats. The reads produced by a ribosome profiling experiment are first checked for their quality and subsequently
mapped to the appropriate genome, using the STAR or TopHat transcriptome mapper and different species-specific annotation sources. Next, a SNP
calling and a TIS prediction step are performed in order to accurately delineate the proteoforms. These RIBO-seq-derived proteoforms are then translated
and mapped to a public protein database, creating a custom search space for an MS-based proteomics or peptidomics experiment. This protein sequence
database created by PROTEOFORMER can then be used as a search space together with the SearchGUI and PeptideShaker tools (see Supplementary
Methods S1) to identify proteoforms based on MS/MS spectra. The complete process of transforming RIBO-seq data into a custom search space is

available as a stand-alone or Galaxy instance implementation.

Transcript calling based on elongating ribosome coverage

Profiles of ribosomal footprints along a transcript are ob-
tained by summing the number of footprints assigned to
each genomic position of the coding sequence (CDS). The
CDS of each known transcript is assembled using a species-
specific Ensembl annotation bundle (converted to SQLite
format). For non-protein-coding transcripts, the CDS is de-
fined as the full exonic region of that specific transcript.
For protein-coding transcripts, UTR-information is avail-
able, allowing us to determine the start and stop codons
and to define the CDS as the exonic region between these
two codons.

To remove variability in ribosomal footprint density due
to RPF accumulation at start and stop codons (8,23), we
additionally restrict the region where RPFs are counted by
excluding the 15 nucleotides following each start codon and
15 nucleotides preceding each stop codon. For each tran-
script, the ribosomal footprint count is normalized based
on the CDS length for which RPFs are taken into account
(total CDS length — 30 bps). In order to identify the actual
translated transcript isoforms, we examine the normalized
footprint coverage of each of their exons. A transcript is de-
noted as truly translated if at least 85% of its exons have
a coverage higher than or equal to a predetermined thresh-
old. This transcript-specific threshold was set at an intuitive
and robust value, namely, its mean exonic footprint cover-
age divided by 5. This excludes non-translated transcripts
isoforms as well as allows (to some extent) possible variabil-
ity in the ribosomal footprint density of real translated tran-
scripts. Only transcripts that hold a fairly uniform footprint

density throughout their CDS are subsequently classified as
truly translated.

TIS calling

The mapped profiles from the initiating ribosomes, ob-
tained after harringtonine (HARR) or lactimidomycin
(LTM) treatment, are accumulated at AUG or near-cognate
start codons using a £1 nt window, hence tackling the
subcodon resolution issue (8,10). Profiles that do not map
within this window relative to the first position of a start
codon are disregarded during TIS calling. These accumu-
lated peak positions have to comply with a number of cri-
teria in order to be withheld as a true translation start site
(10): (1) the identified TIS should have the maximal num-
ber of reads (HARR and/or LTM) within a window of 7
nucleotides (i.e. one codon up- and downstream), (ii) the
combined number of ribosome profiles for the TIS should
exceed a minimal profile count threshold and (iii) the TIS
should have a Ry7aymarr — Reny value equal or higher
than a certain threshold, where

R = (Xi/Ni) x 10 (k= LTMor HARR, CHX)
X = number of reads on position X for data k

Ny = total number of reads on transcript for data k

We opted for a categorized approach based on TIS lo-
calization; 5 UTR, aTIS, CDS, 3’ UTR and no transla-
tion (TIS within non-protein-coding transcripts). aTIS that
do not comply with the aforementioned criteria are also
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taken into account if the Ensembl transcript shows elon-
gating ribosome occupancy. Hence, aTIS identifications are
further divided in three subcategories; (i) those demon-
strating accumulated TIS LTM/HARR coverage and com-
pliant with all rules (TRUE), (ii) those having accumu-
lated TIS LTM/HARR coverage, but not compliant with
all rules (FALSE) and (iii) those without accumulated TIS
LTM/HARR coverage (NO DATA). TIS in the other four
categories that do not comply with these rules are discarded.

SNP calling

Variants are extracted from the mapped RIBO-seq reads us-
ing SAMtools (24) (v.0.1.19) and by comparing the read
mismatches to the NCBI dbSNP (25) data (build 137).
The Picard toolkit (v.1.102: http://picard.sourceforge.net) is
used to remove duplicates. Next, the variants are extracted
using SAMtools mpileup coupled to BCFtools and the vc-
futils.pl tool (both part of the SAMtools toolkit). To re-
duce the chances of missing variants with SAMtools, we
also compare every mismatch in the mapped reads to the
variants in dbSNP and any mismatch found in dbSNP is
retained in the final set of variants. To keep the size of
the search database manageable, the number of dbSNP-
matched mismatches is calculated per transcript (based on
Ensembl annotation release 72 and 70 for mouse and hu-
man, respectively) and whenever this number is higher than
five, the mismatches in this transcript are removed from the
final variant list.

Translation assembly; PROTEOFORMER-DB construc-
tion and integration with a canonical protein database (e.g.
Swiss-Prot)

Fast assembly of the translated sequences is made pos-
sible by a binary reading technique; fetching the CDS
exon sequences from the corresponding chromosome se-
quence files (available from the iGenome repository). The
aforementioned proteoform information (transcript iso-
form, TIS, SNP) is translated into the resulting amino acid
sequence. Noteworthy is that only information on non-
synonymous variations is presented in the translation prod-
uct description. A custom, non-redundant translation prod-
uct database for MS/MS-based protein/peptide identifica-
tion is generated in FASTA format. The transcripts can
be mapped to a known canonical protein database (e.g.
Swiss-Prot) either by using the Biomart framework (26)
(ID-based mapping) or by Basic Local Alignment Search
Tool (BLAST) searching (sequence-based mapping).

Redundant sequences are eliminated based on the rank-
ing of the annotations (in decreasing order of likeliness
aTIS, 5 UTR, CDS, 3’ UTR, no translation). If two or
more transcript IDs have the same sequence, the transcript
ID with the most plausible annotation is retained. If SNP
information is included and two transcripts have the same
annotation type and sequence, then the transcript with SNP
information is retained. If two or more sequences satisfy
all the constraints then one is chosen randomly. All sub-
sequences (i.e. sequences completely contained in another
sequence) are also eliminated from the database.

The ID-based mapping only considers those transcripts
with annotation types aTIS or 5 UTR transcripts, the
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other annotation types (CDS, 3’ UTR, no translation) are
mapped by BLAST search. The ID-based mapping option
simply maps a given Ensembl transcript ID to a correspond-
ing canonical ID using the Biomart framework. If two or
more transcripts have the same sequence then the tran-
script with an existing canonical ID (Biomart-mapped) is
retained. If two or more transcripts have a Biomart map-
ping then one with a higher annotation ranking is retained.
The transcripts without any pre-mapped ID could then be
mapped by the sequence-based methods. In the sequence-
based mapping, redundant transcripts are removed based
on their annotation ranking and length. If two transcripts
have the same sequence then the one with the most highly
ranked annotation is retained and subsequently all subse-
quences are removed. The non-redundant sequences can
then be mapped to known canonical proteins by perform-
ing a BLAST search against the canonical protein database
(e.g. Swiss-Prot).

PROTEOFORMER implementation

All information on the different implementations of the
PROTEOFORMER method is available via http://www.
biobix.be/proteoformer. A script-based (Perl 5) version and
a Galaxy instance implementation are made available for
download. These can respectively be deployed on a Unix
system and implemented on a Galaxy instance (27). Fur-
thermore, a customized virtual machine (Ubuntu 12.04
LTS) with all script dependencies and a Galaxy server al-
ready installed can be downloaded. A manual describing
the aforementioned implementations (including prerequi-
sites and dependencies) is made available on the website and
as Supplementary Files S2 and S3.

Supplementary methods

Additional information on the experimental procedures,
MS data analysis and correlation analysis can be found in
Supplementary Methods S1.

RESULTS

In order to test the performance of the PROTEOFORMER
method, we optimized different modules (mapping, TIS
calling and SNP analysis) specifically toward the creation
of a protein-synthesis based sequence database, using avail-
able mouse embryonic stem cell (MESC) RIBO-seq data (8).
Matching shotgun and N-terminal COFRADIC (28) pro-
teomics data served to evaluate this setup. While the for-
mer proteomics strategy gives a global assessment of the ex-
pressed proteome, the latter technique enables the isolation
of N-terminal peptides, making it very appropriate for the
validation of the by RIBO-seq observed (alternative) TIS.

Optimization

Two different mapping tools (STAR (20) and TopHat2 (21))
were evaluated and both performed similarly in terms of
the percentage of reads mapped onto the reference genome
(Supplementary Table S2). However, STAR was selected for
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the rest of the analysis because it aligned slightly more rele-
vant RPFs (i.e. with length between 26 and 34 bases), pro-
viding an increase of 2.85% and 4.6% for RPF of elongating
and initiating ribosomes, respectively (Supplementary Fig-
ure S3). It also outperformed TopHat2 in terms of speed.

To optimize the PROTEOFORMER TIS calling algo-
rithm for aTIS transcripts, we varied the two main TIS
calling parameters: i.e. the minimum profile count (min
count) and the difference in the normalized reads between
the treated and untreated samples (Rrrm/HARR — Rchx). By
varying the min count and Ryrm/narr — Rcux values we
evaluated their impact on the downstream peptide identifi-
cation rates on the mESC data. To do this we compiled non-
redundant tryptic peptide search spaces for a range of dif-
ferent Rirm/uarr — Renx (0.01-0.15) and min count (1-20)
values and used these for spectral matching and database
searching. The best TIS calling parameters were selected
based on the number of confident tryptic peptides identi-
fied at a PEP (Posterior Error Probability) cutoff of 0.2 as
this corresponds to an False Discovery Rate (FDR) of 1%
(Figure 2a and b). With the min count set to 5 and the
Ritm/narr — Renx values varying from 0.01 to 0.15, we ob-
served that as the Ryrm/narr — Renx value decreased the
number of identified peptides increased and converged to a
maximum. Below an Ryrm/Harr — Reux value of 0.01 the
number of identifications started decreasing indicating that
more noise was allowed into the data and that it became
difficult for the peptide identification algorithm to clearly
distinguish the good hits from the bad ones. This was also
observed below a value of 5 when the min count varied from
1 to 20 while setting the Ryrm/HarR — Rcnx value fixed at a
constant value of 0.01. For these reasons, a combination of
Ritm/uarr — Reux = 0.01 and min count = 5 was used for
further analysis of aTIS transcripts. Furthermore, the rule-
based TIS calling clearly outperformed a Support Vector
Machine (SVM) algorithm (8) in compiling a comprehen-
sive list of TISs in our setup (Figure 2c¢).

For other TIS categories, more stringent threshold set-
tings were used in order to limit the amount of false-positive
RIBO-seq-derived transcripts. This is especially important
for downstream CDS TISs (using a rule-based TIS calling
approach), as this region is very prone to false positives be-
cause of high ribosomal occupancy levels. However, exclud-
ing less stringent CDS TISs does not have a great impact on
the final protein sequence database. During translation as-
sembly, and in order to eliminate redundancy, the majority
of CDS TIS-based transcripts are removed anyway (see Ma-
terials and Methods). Moreover, a more stringent approach
for non-annotated TISs also ensures that TISs, and subse-
quent transcripts, that still pass parameter settings have a
much greater chance to be true positives and are definitely
worth further investigation. Thresholds for a TIS located in
the 5" UTR were set to 10 (min count) and 0.05 (Rrrm/HARR
— Rcux); for a TIS located in the downstream CDS 15 and
0.15 were used; for a TIS within the 3’ UTR or a TIS within
a non-protein-coding transcript these thresholds were set to
10 and 0.05.

With the optimal parameters identified we then generated
varying non-redundant tryptic peptide databases based on
inclusion of non-synonymous mutation information ob-
tained from the RIBO-seq data using different strategies.
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These databases were compared alongside a tryptic pep-
tide database generated from the mouse Swiss-Prot pro-
tein sequences. A search space built from the combination
of RIBO-seq-derived sequences with mutation information
derived from SAMtools and Swiss-Prot performed better
than one derived from RIBO-seq, Swiss-Prot and muta-
tion information from dbSNP (25) in terms of the num-
ber of tryptic peptide identifications (Figure 2¢). This indi-
cated that SAMtools is able to capture mutation informa-
tion brought about by RIBO-seq, which is lacking in db-
SNP. These settings also proved optimal in analyzing the
human colorectal cancer cell line (HCT116) RIBO-seq data
(Figure 2d).

Evaluation on mESC and HCT116 cell line material

To evaluate the deep proteome coverage of the PROTE-
OFORMER pipeline, it was applied to the mESC and
HCT116 RIBO-seq data sets. Combining the RIBO-seq-
derived protein sequences with Swiss-Prot (mouse and hu-
man individually), 3771 mouse and 2853 human protein
identifications were obtained from the shotgun experiments
at a 1% FDR threshold (Figure 3a and b and Supple-
mentary Table Sla and b). The supplemental (RIBO-seq-
derived) sequences in the search space contributed to re-
spectively 323 and 20 (8.6% and 0.7%) new and 124 and
65 (3.3% and 2.3%) improved protein identifications for the
mouse and human data sets. These so-called new identi-
fications were not contained in Swiss-Prot and originated
from peptide identifications that (partly) overlapped an N-
terminal extension, an exon region of an alternative spliced
isoform, a mutation site or alternatively, an upstream open
reading frame (UORF) (Figure 3a and b and Supplementary
Figure S4a and b). Due to the increased protein coverage,
these phenomena also accounted for a substantial increase
of identifications with an improved protein score.

Correlation of the translational outcome based on ri-
bosome profiling (RPF count) with the label-free protein
abundance measures of the shotgun experiments (emPAI
and NSAF) demonstrated that these technologies are highly
complementary. Positive Pearson’s correlation coefficients
reaching up to 0.714 and 0.643 were obtained for mouse
and human (18), respectively (Supplementary Figures S5
and S6), exceeding the correlation of the same MS spec-
tral count-based measures with mRNA FPKM counts
(1,6,29,30).

The N-terminal COFRADIC experiments resulted in
the identification of different classes of N-termini (Figure
3c and d and Supplementary Table Slc and d). The ma-
jority of peptides mapped canonical start sites or Swiss-
Prot database annotated TIS (dbTIS): 1346 mouse and
1089 human N-termini (i.e. 84.7% and 83.0% of all iden-
tified N-termini), 223 and 213 (14.0% and 16.2%) started
downstream of the annotated TIS (dTIS; past protein po-
sition 2 in reference to Swiss-Prot). Interestingly, 18 and
11 peptides pointed to N-terminally extended proteoforms
in mouse and human. Another two N-terminal peptides
pointed to the translation of uORF (completely within
the 5 UTR or out-of-frame and overlapping with canon-
ical CDS) for mouse. Moreover, analysis of N-terminal
COFRADIC data using the PROTEOFORMER pipeline



e29 Nucleic Acids Research, 2015, Vol. 43, No. 5 PAGE 6 OF 10

a.
(=]
(=3
o
I /
o — R=0.01
8 — R=0.025
=] — R=0.05
. — R=0.075
S — R=0.15
@
r T T 1
0.0 0.2 0.4 0.6 0.8 1.0
b.
(=3
(=3
o
A
§ —— Min Count 1
3 =] —— Min Count 5
O o —— Min Count 10
'-S_ S —— Min Count 20
[0) ©
o r T T T 1
o] 0.0 0.2 0.4 0.6 0.8 1.0
2
=
=
c
(]
ie]
bS] c.
.
(o) o
28
=]
=z
=4 .
8 —— Swissprot
N —— RIBO-seq Derived
—— RIBO-seq Derived (Samtools)
—— RIBO-seq Derived (Samtools) + Swissprot
’ —— RIBO-seq Derived (Samtools) + dbSNP
S Ingolia et al. (2011)
3 T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
d.
o
(=3
(=3
©
o =
(=3
o
o
—— Swissprot
—— RIBO-seq Derived (Samtools)
o —— RIBO-seq Derived (Samtools) + Swissprot
8
@©
r T T T 1
0.0 0.2 0.8 1.0

0.4 0.6
Posterior Error Probability

Figure 2. PEP distributions of the number of identified tryptic peptides from shotgun proteome analyses. The searches were performed on a database
holding a non-redundant set of tryptic peptides based on the RIBO-seq-derived sequences having annotated TIS (aTIS). These plots demonstrate the
impact of the database creation parameters of PROTEOFORMER on downstream MS/MS identification. The cumulative number of peptides identified
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effect of ‘minimum profile count” on the number of identified tryptic peptides at constant Ryrm/HARR — Rcux of 0.01. The number of highly confident
identifications decreases with increasing number of ‘minimum profile count’. At a confidence of about 80% (PEP < 0.2) the number of identified peptides
is about the same for ‘minimum profile count’ 1 and 5. (¢) mESC shotgun data: Comparison of the peptide identification numbers using different database
versions. From the PEP distributions it is clear that searches using the RIBO-seq-derived database outperformed those using solely Swiss-Prot. With
SNP information (RIBO-seq (SAMtools)) included, the number of identification increases even more, with the best result obtained using a search space
combining RIBO-seq-derived sequences (SNP information inclusive) and Swiss-Prot entries at an 80% confidence validation threshold. It is also clear that
the rule-based algorithm outperformed the SVM-algorithm applied in Ingolia ez al. (8). (d) HCT116 shotgun data: The number of peptide identifications
using only RIBO-seq-derived sequences as a search space is lower than searching Swiss-Prot. Yet a significant increase is notable when searching against
a combined database (RIBO-seq derived + Swiss-Prot).
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Figure 3. PROTEOFORMER enables deep proteome coverage. Pie charts
representing the number of protein and peptide identifications obtained
from the shotgun proteomics and N-terminal COFRADIC experiments
based on searching the PROTEOFORMER + Swiss-Prot database for
both mouse ESC cells and human HCT116 cells using a 1% FDR thresh-
old. Execution times of the different modules used in order to arrive
at these results can be found in Supplementary Table S3. (a) Shotgun
proteomics results (mouse). A total of 3771 proteins were identified. (b)
Shotgun proteomics results (human), identifying a total of 2853 proteins.
For the shotgun experiments, a categorization was made based on the
fact that the protein can be picked up using the PROTEOFORMER
and/or Swiss-Prot sequence database. Also, the improved and new protein
identifications were further classified into the following categories: new,
isoform/homolog, SNP variant, 5" extension and uORF. (c) N-terminal
COFRADIC (mouse) experiment resulting in 1589 N-terminal peptide
identifications. (d) N-terminal COFRADIC results (human). Here, 1312
N-termini were identified. The N-termini were categorized as either dbTIS
(database annotated TIS), dTIS (downstream TIS), 5’ extension or uORF.

provided us with evidence of translation initiation at near-
cognate start sites (non-AUG codons recoded to initiator
methionines. Peptide-to-spectrum matches (PSMs) corre-
sponding to peptides located in a uORF region were man-
ually validated (Supplementary File S1) and possibly hint
at true translation of these uORFs, although it cannot be
ruled out that an unpredicted extended proteoform exists
comprising this translated uORF sequence.

Interestingly, refined gene models can be built based on
novel peptide identifications resulting from our PROTEO-
FORMER approach. These can be categorized into new
exons (pointing to new isoforms, see Supplementary Table
Sla and b), N-terminal extensions (see Supplementary Ta-
ble S1 and examples of the human dcaf13 and the ortholo-
gous hdgf gene illustrated in respectively Figure 4a and Sup-
plementary Figure S7) and translation of uORFs (see the
example of an uORF contained in the Slc35a4 gene shown
in Figure 4b). This uORF could also be categorized as a new
gene product (resulting in a translation product of 103 AA,
see Supplementary File S1). These findings suggest that the
PROTEOFORMER approach can help to refine the anno-
tation of the genome.
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DISCUSSION

PROTEOFORMER is the first publicly available analysis
pipeline that provides a complete bioinformatics workflow
for the analysis of RIBO-seq NGS data and that enables
the construction of a customized protein sequence search
space to allow integration with MS facilitating the capture
of the proteome complexity. By combining the information
from elongating and initiating ribosomes, it is able to cre-
ate an optimal search space for matching MS experiments.
The integration of PROTEOFORMER within the Galaxy
framework provides a user-friendly interface for analysis of
RIBO-seq data (in combination with proteomics data), re-
sulting in new and improved identifications.

Noteworthy are the overall lower identification rates for
the human sample. This can be attributed to (i) the fact that
only heavy labeled peptides were considered in the human
MS setup (Supplementary Methods S1), (ii) the overall bet-
ter annotation of the human proteome (represented by the
lower number of new non-Swiss-Prot identifications) and
(ii1) the higher number of identifications not present in our
RIBO-seq-derived sequence pool (i.e. identifications match-
ing Swiss-Prot entries only) for the human sample. Whereas
only 148 (3.9%) identifications are not captured based the
RIBO-seq strategy for the mouse data, this number in-
creases to 253 (8.9%) for the human data. Inspection of
the metagenic RPF abundance plots (Supplementary Fig-
ure S2) shows an expected dynamic range of expression. The
quantitative correlation between RPF abundance and spec-
tral count-based measures for the non-custom Swiss-Prot
proteins (Supplementary Figure S8) demonstrates that this
lower performance is not attributable to the CHX-treated
HCT116 sample sequencing coverage. Finally, the distri-
bution of the Rirm/nar — Rcux values (used in the TIS
calling procedure, see Materials and Methods and Supple-
mentary Figure S9) pointed to an overall lower genome-
wide coverage of initiating ribosomes, attributable to either
biases introduced in the library preparation of the LTM-
treated HCT116 sample or suboptimal conditions of the
LTM treatment. Consequently, proteomics enables a qual-
ity assessment of RIBO-seq, which is typically lacking.

RIBO-seq-based studies also showed ribosome occu-
pancy of long ncRNAs (IncRNAs) (8), possibly hinting to-
ward their protein coding potential. However, most IncR-
NAs do not function through encoded proteins (31) demon-
strating that RIBO-seq on its own is not a perfect proxy
for protein synthesis and that MS validation is often indis-
pensable (13). New RIBO-seq approaches as the Fragment
Length Organization Similarity Score (32) and Ribosome
Release Score (33) in combination with MS validation us-
ing, for example, PROTEOFORMER, will prove very use-
ful in RIBO-seq-based protein identification (18).

By increasing the size of the sequence search space (e.g.
a database derived from a six-frame translation of nu-
cleotide sequences (based on mRNA-seq)), MS database
search engines will underestimate the confidence assigned
to the PSMs leading to fewer identifications at the estimated
FDR and PEP thresholds (34) using a typical target-decoy
approach. PROTEOFORMER only requires one-reading-
frame translation in contrast to methods based on regular
mRNA sequencing, thus limiting the search space explo-
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Figure 4. Examples of new proteoforms. (a) N-terminal extension of DCA13_ HUMAN and (b) translated uORF of S35A4_ MOUSE that were picked
up by the proteogenomics analysis and validated by N-terminal COFRADIC. The UCSC genome browser was used to create a view of the RIBO-seq
and COFRADIC data. The different tracks are from top to bottom: CHX-treated RIBO-seq data, LTM/HARR-treated RIBO-seq data, N-terminal
COFRADIC data, UCSC genes, RefSeq genes and mRNA. The zoomed-in images show the alternative start site (i, alternative start site; ii, canonical start
site), while the MS/MS spectra and sequence fragmentation plots display the confidence and quality of the N-terminal peptide identifications.
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sion and keeping the confidence distribution of the search
against the PROTEOFORMER database similar to stan-
dard Swiss-Prot searches (Figure 2c and d). We also envi-
sion that more efficient MS scoring algorithms (9) will be set
in place to even better cope with the increasing search space
sizes inherent to next-generation sequencing-based meth-
ods.

Through user-definable parameter settings, PROTEO-
FORMER provides the flexibility to tailor the creation
of a translatome-based sequence database to the research
question at hand. Downstream TIS identification or un-
biased TIS calling are, for example, possible, but would
need appropriate optimization for the different TIS cate-
gories. PROTEOFORMER makes use of iGenomes refer-
ence sequences and annotation from Ensembl for mapping,
and custom Ensembl SQLite annotation databases (avail-
able on the PROTEOFORMER web page). It can already
handle RIBO-seq-derived sequencing data of Mus muscu-
lus, Homo sapiens, Drosophila melanogaster and Arabidop-
sis thaliana, and we are currently working on incorporating
other species. This is done on a case-by-case basis as species-
specific adaptations, for example, to RPF parsing (23), are
often desired. Furthermore, we are also continuously im-
proving our pipeline including other TIS calling algorithms
(8), SNP calling tools (35) and RIBO-seq specific measures
(32,36).

In conclusion, we developed a new analysis pipeline,
termed PROTEOFORMER. It enables the processing of
RIBO-seq data and can be optimized based on user-
definable parameter settings in order to be useful in an-
swering a plethora of different research questions. The tool
includes a mapping module enabling genome-wide visual-
ization of ribosome occupancy on a genome browser of
choice. It also includes a TIS calling algorithm that al-
lows for the delineation of the ORFs of all translation
products, based on initiating ribosome footprint accumu-
lation obtained upon LTM/HARR treatment. A complete
translatome-based sequence database, also including SNP
information, can thus be compiled, for spectral database
matching. We further showed that optimization toward the
use of PROTEOFORMER in a proteogenomic approach,
enables deep proteome coverage (including 5" extended pro-
teoforms, alternative spliced isoform and uORFs) result-
ing in an increase in overall protein identification rate when
searching matching MS data sets.

A stand-alone version (Supplementary File S2) and a
galaxy implementation (Supplementary File S3 and Sup-
plementary Figure S10) of our approach are available at
http://www.biobix.be/proteoformer next to all relevant in-
formation on the installation and underlying requirements.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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