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ABSTRACT

Degenerate codon (DC) libraries efficiently address
the experimental library-size limitations of directed
evolution by focusing diversity toward the positions
and toward the amino acids (AAs) that are most likely
to generate hits; however, manually constructing DC
libraries is challenging, error prone and time con-
suming. This paper provides a dynamic program-
ming solution to the task of finding the best DCs
while keeping the size of the library beneath some
given limit, improving on the existing integer-linear
programming formulation. It then extends the algo-
rithm to consider multiple DCs at each position, a
heretofore unsolved problem, while adhering to a
constraint on the number of primers needed to syn-
thesize the library. In the two library-design problems
examined here, the use of multiple DCs produces li-
braries that very nearly cover the set of desired AAs
while still staying within the experimental size limits.
Surprisingly, the algorithm is able to find near-perfect
libraries where the ratio of amino-acid sequences to
nucleic-acid sequences approaches 1; it effectively
side-steps the degeneracy of the genetic code. Our
algorithm is freely available through our web server
and solves most design problems in about a second.

INTRODUCTION

In vitro evolution couples genetic diversity generation with
either a screen or a selection to identify proteins with some
desired phenotype. Although creating highly diverse DNA
libraries is trivial, the efficient isolation of the sought-after
phenotype presents a bottleneck, limiting the number of
DNA sequences that can be tested. Techniques for select-
ing crossover loci in gene shuffling (1–3), for open-reading-
frame selection (4,5), for screening neutral drift libraries (6)
and for screening restricted-alphabet libraries (7–9) all aim
to distill sequence space to a manageable size while maxi-

mizing the likelihood that the remaining sequences will yield
the desired phenotype.

Degenerate codon (DC) libraries are attractive in that
they focus diversity to regions the library designer thinks
will be most productive, they can be molded to include as
much or as little diversity at particular positions as is nec-
essary, and they are relatively inexpensive to make. Unfor-
tunately, canonical ‘NNN’ diversification (N = A, C, G or
T) can be used at only a small number of positions before
exceeding the experimental size limits. Take for example
the 107 diversity limit imposed by yeast surface display, a
rather middle-of-the road limit; >103 limit for 96-well for-
mat screening and <1013 limit for mRNA display. NNN di-
versification would exceed a 107 diversity limit if used at a
mere four positions. NNN is particularly inefficient since
it commits 64 DNA sequences to produce only 20 distinct
amino acid (AA) sequences. ‘NNK’ (K = G or T) is bet-
ter, since it uses only 32 DNA sequences for the same 20
AAs. There are more tricks to increase the AA:DNA ra-
tio: the ‘22c trick’ (10) uses three separate DCs to get all
20 AAs from only 22 DNA sequences, and the ‘small intel-
ligent libraries’ technique (11) uses four DCs to get all 20
AAs for exactly 20 DNA sequences. Still, using 20 DNA se-
quences allows full randomization at only five positions be-
fore bumping into a 107 diversity limit. To randomize more
positions requires limiting the AA diversity. The NDT DC
(D = A, G or T), which codes for 12 AAs using 12 DNA
sequences has been suggested as one way to reduce the AA
diversity (9). Multiple-sequence alignments (12) or compu-
tational protein design (13) have also been used to suggest
which AAs might be worth considering at each position.
However, having a set of candidate AAs at each position
leaves the library designer with deciding which DCs to use
so that diversity is spread out most productively while ad-
hering to the diversity limit. This paper presents an efficient
algorithm for making this decision.

Early work in automating DC optimization mostly fo-
cused on matching some target AA distribution by creat-
ing ‘spiked’ DCs, where the nucleotide ratios are not uni-
form (14–20). These efforts focused on single positions at
a time and made no attempt at trading off between posi-
tions. Firth, Patrick and Blackburn created and still host a
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web server for selecting DCs for a given set of AAs (21,22)
which is a significant boon to anyone looking to partially
automate the process of designing a DC library.

Mena and Daugherty introduced LibDesign, the first al-
gorithm we are aware of for whole library optimization (23).
It takes as input a set of sequences for the positions to be
randomized, taken either from protein design trajectories or
from multiple sequence alignments and tallies the AA fre-
quencies at each position. Starting with the (24 − 1)3 = 3375
possible DCs (24 representing the number of bit strings of
length 4 to give all combinations of A, C, G and T; the −1
to throw out the bit string where all four nucleotides are ab-
sent), LibDesign chooses small subsets (6 or 7 DCs) for each
position by choosing first the smallest DC that gives the
most commonly observed AA (really, just a single codon),
then the smallest DC that gives the two most commonly ob-
served AAs and so on, until it has a DC that covers all the
observed AAs. It then uses brute-force enumeration of all
codons in the subsets, looking for combinations with high
scores (more on this score later) and that stay below a spec-
ified diversity limit.

Treynor et al. (24) introduced a technique for building
DC libraries while considering energies computed by pro-
tein design software, treating the library optimization prob-
lem (‘what DC should be assigned to each position?’) as
a variant of the rotamer optimization problem (‘what ro-
tamer should be assigned to each position?’) and using pre-
viously developed dead-end elimination theorems to solve
it. (Briefly, rotamers or rotational isomers, represent dis-
crete side-chain conformations that differ from each other
only in their dihedral angles (25).) Instead of looking at
rotamer-pair energies, their optimization algorithm looks at
the average AA pair energies for a given pair of DCs; each
AA pair energy is taken simply as the rotamer interaction
energy between the two rotamers that interact most favor-
ably with the template structure (and sequence). One obvi-
ous drawback of this technique is that it does not consider
how the rotamers of two AAs might relax in each other’s
presence. It also lacks a way to limit the size of the result-
ing library and must be run repeatedly (requiring the user
to exclude AAs that might be responsible for producing too
much diversity) until a library of the right size is produced.

Allen et al. (26) followed with another library design tech-
nique, CLEARSS. It begins by computing for every posi-
tion and for every AA-subset size the optimal AA subset as
defined by an input set of scored sequences (e.g. the 1000
lowest-energy sequences that emerged from a set of protein
design trajectories). It then enumerates all assignments of
per-position sizes so that the product of those sizes is within
a user-specified size range and picks the best assignment.
The algorithm’s reliance on brute-force enumeration means
that it is quite slow. It can be made to run quickly when the
number of AAs at each position is either very low or very
high so that there is little to enumerate, but it is much slower
when an intermediate number of AAs is used. Curiously,
the authors designed their algorithm to enumerate based
on the number of AA sequences instead of the number of
DNA sequences, which represents the actual experimental
constraint. They also incorrectly assert that the optimal set
of AAs for a particular position will be no larger than the
set that contains all of the AAs that appear in the input de-

signs; this would not be true if a DC pulled in AAs in addi-
tion to the desired ones, as DCs frequently do. Based on this
assertion, CLEARSS restricts the number of AA subsets it
examines and as a result may miss the optimal DC choice
in spite of the fact that it uses brute force enumeration.

Parker et al. (27) introduced both a dynamic program-
ming (DP) solution and an integer-linear programming
(ILP) solution to solve a DC library optimization problem
where the library is guided by sequence alignments only and
the designer has not even chosen which positions to ran-
domize. They make the very relevant observation that try-
ing to optimize the library so that pairwise information is
included (e.g. including PHE at residue 10 only if ARG is
included at position 20 because PHE10 is only ever seen
if ARG20 is also present) makes the library optimization
problem NP-Complete; thus the need for an ILP solution to
optimize their pairwise quality and novelty metrics. The DP
algorithm they give is quite different from the one presented
here; notably, it is unable to enforce a limit on the size of the
resulting library, merely a limit on the number of positions
which are randomized. Their ILP solution, in contrast, is
able to enforce a library size limit. Chen et al. (28) extended
this result in designing a DC library with ILP where multi-
ple DCs were allowed at a single position, with the restric-
tion that only one position among those that would be cov-
ered by the same primer––those that lie in a single stretch of
DNA––be allowed to use multiple DCs.

The DP algorithm presented here also allows multiple
DCs per position, but removes the restriction that only one
position per stretch use multiple DCs. Experimentally, the
construction of such a library would require purchasing
multiple primers to cover the stretch, where the number of
primers needed is the product of the number of DCs used
at each position within the stretch. The algorithm allows
the user to limit the total number of primers that could be
used and, with that limit, determines the optimal way to
distribute the use of those primers. Surprisingly, the use of
multiple DCs allows the algorithm to come up with very
efficient libraries where the degeneracy of the genetic code
can all but be avoided so that, at least for the test cases
examined here, the AA:DNA ratio approaches 1. The im-
plementation that we have deployed online, which we call
SwiftLib, offers an accessible alternative to the previously
published ILP approaches (27,28) because it requires no
back end. SwiftLib is implemented in only ∼2K lines of
JavaScript and runs inside web browsers; the code executes
on the user’s computer. It is, to our knowledge, the first web
server for optimizing DC libraries. SwiftLib is accessible at
http://rosettadesign.med.unc.edu/SwiftLib.

MATERIALS AND METHODS

DP for one degenerate codon

We have formulated the optimization of DC libraries with
a linearly-additive error function that we wish to minimize,
subject to the constraint that the library size not exceed a
given limit. This error function treats each residue sepa-
rately, omitting any consideration of residue-pair informa-
tion that might be present. Because it is linearly additive
and each of its errors are integers, its optimization admits a
rapid DP solution.

http://rosettadesign.med.unc.edu/SwiftLib
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The input for the problem is a 20 × n table of AA counts
for n designable residues and a diversity limit, L. The count
Ci(a) is the number of times that AA a ∈ A appeared in the
set of input sequences at position i, where A is the set of AA.
We define the error for choosing a particular DC d ∈ D at
position i as

Ei =
∑

a∈A

δ(a �∈ p(d))Ci (a) (1)

where p(d) is the set of AAs produced by d, and δ(x �∈ y) is
the delta function which yields a value of one if x is absent
from the set y and zero otherwise and D is the set of all 3375
DCs. Effectively, this objective function penalizes the exclu-
sion of AAs that were observed in the input sequences, with
greater penalties applied to AAs that appeared the most.
The error generated by an assignment D = {d1. . .dn} to all
n designable positions is simply the sum of the individual
errors:

E(D) =
n∑

i

Ei (di ). (2)

Let |d| represent the number of DNA sequences defined by a
particular DC d and |D| represent the product

∏n
i |di |. Then

the optimization problem can be formulated as:

min
D∈Dn

E(D)

subject to the constraint that |D| ≤ L.
This problem can be inverted so that instead we solve for

the smallest library that achieves any particular error level
e. If we have a list of these library sizes for all possible er-
rors, then we can simply pick out the smallest error that can
be generated with a library beneath the given limit. This op-
timization strategy mirrors the one that Bellman originally
described when inventing DP (29). Let se

i denote the small-
est size min|d| of all DCs that at position i generate a par-
ticular error level Ei(d) = e and infinity if there are no DCs
that produce that error level. Let Se

i−1 denote the size of the
smallest sub-library Di − 1 = {d1. . .di − 1} defined over the
range between the first designable position up to and includ-
ing position i − 1 that generates error E(Di − 1) = e. Se

i can
be expressed recursively as:

Se
i = min

0<e′≤e
Se−e′

i−1 × se′
i (3)

with the recursion bottoming out at Se
1 = se

1. Since the er-
ror is integral, we can turn this recursion on its head and
build up a table of partial solutions. If the maximum error
that can be produced at any position is m, then two n × nm
tables are needed to hold the solution. The DP algorithm is
as follows: For all 1 < i ≤ n and for all 0 ≤ e ≤ mi, compute

S[i, e] = min
0≤e′≤e∗

S[i − 1, e − e′] × si [e′] (4)

and

T[i, e] = arg min
0≤e′≤e∗

S[i − 1, e − e′] × si [e′]. (5)

where e′ represents the choice of error contributed by po-
sition i, e* is the smaller of e and m and T represents a
traceback table that can be used to reconstruct the optimal

degenerate-codon assignment after the smallest error that
satisfies the library size limit has been identified. This al-
gorithm populates the two tables in O(n2m2) time and the
traceback to reconstruct the optimal solution takes O(n)
time.

This solution can be trivially extended to place penalties
on AAs, including the STOP codon, that the user would
prefer to exclude (but not forbid) from the library, as long as
those penalties are also integral. It is also possible to forbid
or to require AAs by restricting the set of DCs from which
to chose; this is more of a preprocessing addition than it is
a modification to the DP algorithm.

DP for multiple degenerate codons

The DP algorithm can also be extended to allow multiple
DCs at a single position while constraining the total num-
ber of primers that must be purchased to accommodate the
extras. Using multiple DCs at a single position allows the
exploration of a wider set of AAs while keeping the size of
the library down; it is cheaper (in terms of library size) to
get the AA set {C,W,Y} using the two DCs TRT (R = A
or G) and TGG, with a DNA size of 3 than it is to use the
single DC TRK (K = G or T) with a DNA size of 4 and
this economy is especially important since TRK also pulls
in a STOP codon. Indeed, if the library-designer wishes to
forbid STOP codons entirely, then the AA set {C,W,Y} can
only be designed if multiple DCs are considered. However,
it is more expensive (in terms of money) to use multiple DCs
because more primers have to be purchased.

We assume that the primer boundaries are defined ahead
of time; this allows us to talk about a stretch of DNA that
contains a set of designable positions. (We do not consider
here the more challenging problem of trying to simultane-
ously optimize the DCs and the stretch boundaries, which
would require knowledge of the G/C content of the DNA
between the designable positions and the annealing temper-
ature for the polymerase chain reaction (PCR) used for gene
assembly.) For a single stretch, the number of primers that
must be purchased is the product of the number of DCs
chosen at each of its randomized positions; the cartesian
product of the selected DCs must be purchased to cover all
combinations.

The user may wish to constrain this problem by defining
limits on the number of DCs per position, Lp, on the num-
ber of primers to order per stretch, Ls and on the number of
primers to purchase total, LT. In the analysis that follows,
we consider the sensical assignment of values 1 ≤ Lp ≤ Ls
≤ LT only, and also assume that LT is at least as large as the
number of stretches.

The DP solution to this problem is similar to the one
given above; it again solves for the smallest library that pro-
duces a given error, but also pays attention to the primer
counts: at iteration i, DP solves for the smallest library con-
taining all positions up to and including position i given
that it produces an error level e, using j primers total and
using k primers to cover i’s stretch. Now, the number of ex-
tra primers required if j′ DCs are used at position i depends
on how many codons have already been used at all the other
positions on the same stretch. If k′ represents the product of
the number of DCs at all positions less than i that are on the
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same stretch as i, then using j′ DCs at position i means using
j′ × k′ primers for that stretch; if j′′ represents the number of
primers used total for all positions less than i, then using j′
DCs at position i will have one of two possible effects on the
total number of primers demanded, depending on whether
or not position i is the first position in a stretch: if i is the
first position in a stretch, it will mean using j′′ + j′ primers
total and if i is not the first position in a stretch, it will mean
using j ′′ + j ′−1

j ′ k′ primers total.
The DP solution for this problem is given by the following

two equations:

S[i, j, j ′, e] = min
1≤k′≤Ls

min
0≤e′≤e∗

S[i − 1, j − j ′, k′, e − e′] × si [ j ′, e′] (6)

if position i is the first randomized position for a stretch and

S[i, j, k, e] = min
1≤ j ′≤ j∗ | k/j ′∈I

min
0≤e′≤e∗

S[i − 1, j − j ′−1
j ′ k, k

j ′ , e − e′] × si [ j ′, e′] (7)

if position i is not the first randomized position for a stretch.
where j* is the smaller of j and Lp. The table si holds the
smallest-library sizes for position i for each error value be-
tween 0 and m, and for each number of DCs between 1 and
Lp. The equations for the traceback table are similarly con-
structed.

This DP algorithm runs in O(n2m2L2
s LT) time plus an

initial expense of computing the si tables, which requires
O(n3375Lp ) time to consider all combinations DCs. This ini-
tial expense can be shaved by first computing the subset of
DCs that produces the smallest error for each distinct cov-
erage of AAs that contribute to the error (either by their ab-
sence or their presence) and then enumerating combinations
of DCs from this subset. The speedup offered by this tech-
nique decreases as more and more AAs contribute to the
error. In our test cases, the sizes of these subsets are in the
range of 100–400, making the initial expense of populating
the si tables negligible. This algorithm requires O(n2mLsLT)
memory to store the S and T tables.

In both DP solutions, a very simple speedup can be
obtained if one is only interested in knowing about the
minimum-error library or about the N lowest-error libraries
with sizes less than the given diversity limit: if the total li-
brary error is iterated over in the outermost loop (instead
of the position), one may stop as soon as the first library of
size less than L is found or as soon as the first N libraries of
size less than L are found. This output-sensitive algorithm
runs in O(n(k + 1)2L2

s LT) time, where k is the total error for
the worst library sought (i.e. the smallest total error if only
one library is sought). For this reason, SwiftLib runs fastest
when it is able to find a low-error solution. Furthermore, the
use of a sparse array can reduce the memory overhead sig-
nificantly; since SwifLib is implemented in JavaScript, the
JavaScript interpreter has this option.

RESULTS

Library designs

We chose two library design test cases where manual solu-
tions had been created before our DP algorithm was imple-
mented. In both cases, Rosetta (30–32) was used to simulta-
neously redesign several positions, and these redesigns were
used to guide the manually selected DCs. or each test case,
we used DP to design three DC libraries with three different
library design goals: (i) allowing only one DC per position,
(ii) allowing at most two DCs per position allowing twice
as many primers as there are stretches and (iii) allowing at
most three DCs per position and increasing the limit on the
total number of primers. The libraries were assessed only on
how well they capture the sought-after sequence diversity;
the DP libraries have not been synthesized or screened.

We compared the results from DP to the previously pub-
lished LibDesign algorithm (23). This algorithm is a natural
comparison for ours as its inputs and goals are nearly identi-
cal. LibDesign takes a set of input sequences, selects a small
set of DCs for each position based on the AA counts from
the input sequences and then enumerates all combinations
of DCs. The LibDesign score for a library is the number
of sequences in the input set that are generated by the li-
brary: every AA in a particular sequence has to be encoded
in the library in order for that sequence to contribute to the
score. LibDesign attempts to maximize its score (in contrast
to SwiftLib which minimizes its error metric). This score is
at the furthest end of the spectrum from our error metric
in complexity: our error term treats each position indepen-
dently, Parker et al.’s ILP alogirthm is more complex since it
considers residue-pair information, but LibDesign captures
higher-order inter-residue dependencies still.

The AA counts for Problem 1 are given in Table 1. These
counts came from 200 protein design trajectories at nine po-
sitions in a particular protein. The designed libraries are
given in Table 2. The manual solution was produced by
a novice library designer who focused only on the most-
commonly observed AAs at each of the designable posi-
tions and sought out DCs that were capable of covering
these AAs. For this reason, the library contains much higher
per-position error than the DP libraries. For this problem,
the third DP solution was constrained to use 15 or fewer
primers.

The DP solutions to Problem 1 have much lower er-
rors than the manual solution. DP solution 1, which like
the manual solution uses only a single DC per position,
achieves a considerably lower error. It also produces a li-
brary with twice as much AA diversity (the number of
unique protein sequences), while actually decreasing the
DNA diversity. DP solution 2, using at most four primers
and two DCs, decreases the error still further from DP so-
lution 1, choosing to use two DCs at positions 269 and 331,
where both the manual solution and DP solution 1 had the
highest per-position error and a low AA:DNA ratio. It also
delivers four times the AA diversity as the manual solu-
tion. DP solution 3 chooses to divide its 15 primers into
one group of 9, using three DCs for both positions 268 and
269 and one group of 6, using three DCs for position 330
and two DCs for position 331. As a result, its error drops to
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Table 1. Problem 1: Rosetta (30–32) was used to generate 200 designs for a set of surface residues in a protein-interface-design application using the 1XBI
PDB

pos 268 269 270 271 272 276 330 331 332

A 3 8 1 81 4 105 10 2 1
C 0 0 0 0 0 0 0 0 0
D 8 5 0 0 0 0 29 7 9
E 23 7 0 0 0 0 21 23 17
F 0 0 0 0 0 0 0 0 0
G 0 0 0 1 0 59 4 1 5
H 1 0 0 0 0 0 0 1 9
I 10 2 98 0 0 0 0 0 1
K 22 0 0 0 0 0 5 4 9
L 17 8 5 0 0 0 0 14 0
M 13 9 5 0 2 0 3 7 4
N 6 4 0 0 0 0 8 19 15
P 0 0 0 0 0 0 0 0 0
Q 42 2 0 0 1 0 6 29 18
R 35 4 0 0 0 0 27 12 21
S 7 44 8 113 43 36 45 34 29
T 6 58 23 4 30 0 42 46 57
V 7 49 60 1 120 0 0 0 5
W 0 0 0 0 0 0 0 1 0
Y 0 0 0 0 0 0 0 0 0

These are the AA counts for each of the nine designed positions. The designable positions are contained in two stretches, divided by the vertical bar.

Table 2. Solutions to library design problem 1: the manual solution to the first library design problem, along with the best solution produced by LibDesign
(23) and three solutions produced by DP

Solution pos 268 269 270 271 272 276 330 331 332 Totals

Manual DCs VDR RBT RYY KCT RBT RVT RVW VNW VVW 105a

AAs EGIKLM AGIS AITV AS AGIS ADGN ADEGKN ADEGHIKL ADEGHK
QRV TV TV ST RST NPQRSTV NPQRST

#NAs 18 6 8 2 6 6 12 24 18 3.2 × 108

#AAs 9 6 4 2 6 6 9 15 12 2.5 × 107

%Des 89 83 100 100 67 50 100 75 89 16.5
Error 29 39 18 6 3 0 9 8 10 122

LibDesign DCs VNK DYG RYA KCA DYG KSA VVK VNK VNK 75a

AAs ADEGHIKLM ALM AITV AS ALM AGS ADEGHKN ADEGHIKL ADEGHIKL
NPQRSTV STV STV STOP PQRST MNPQRSTV MNPQRSTV

#NAs 24 6 4 2 6 4 18 24 24 2.9 × 108

#AAs 16 6 4 2 6 3 12 16 16 5.7 × 107

%Des 83 100 100 100 83 75 83 79 83 28.6
Error 0 24 18 6 1 0 3 1 0 53

DP Sol. 1 DCs VNS DYG DYA KCA DYG RSC RVM VNS VNS 157a

AAs ADEGHIKL ALM AIL AS ALM AG ADEG ADEGHIKL ADEGHIKL
MNPQRSTV STV STV STV ST KNRST MNPQRSTV MNPQRSTV

#NAs 24 6 6 2 6 4 12 24 24 2.9 × 108

#AAs 16 6 4 2 6 4 12 16 16 6.4 × 107

%Des 83 100 100 100 83 75 100 79 83 34.4
Error 0 24 5 6 1 0 9 1 0 46

DP Sol. 2 DCs VNS DBG, RAM DYA KCA DYG RSC RVM VAM, WBG VNS 173a

AAs ADEGHIKL ADEGKL AIL AS ALM AG ADEG DEHKLM ADEGHIKL
MNPQRSTV MNRSTVW STV STV ST KNRST NQRSTW MNPQRSTV

#NAs 24 13 6 2 6 4 12 12 24 2.9 × 108

#AAs 16 13 6 2 6 4 9 12 16 1.0 × 108

%Des 83 77 100 100 83 75 100 100 83 33.4
Error 0 4 5 6 1 0 9 3 0 28

DP Sol. 3 DCs MKC, RYG, VAM AKS, RMC, SWA DYA DCA DYG RSC ADG, RVC, SAA DBG, VAM VNS 192a

AAs ADEHIKLM ADEILM AIL AST ALM AGST ADEGKM ADEGHKLM ADEGHIKLM
NQRSTV NQRSTV STV STV NQRST NQRSTVW NPQRSTV

#NAs 14 12 6 3 6 4 11 15 24 2.9 × 108

#AAs 14 12 6 3 6 4 11 15 16 1.9 × 108

%Des 100 100 100 100 83 75 100 93 83 48.6
Error 0 0 5 2 1 0 0 0 0 8

The table reports the chosen DCs at each position, the AAs produced by those DCs, the number of nucleic-acid sequences the DCs prescribe (#NA), the number of unique AAs and AA sequences the DCs
produce (#AA), the percentage of codons that produce desired AAs and the percentage of library members that contain only desired AAs (%Des), the error as calculated from Equations 1 and 2 and the
LibDesign scorea. DP solution 1 used one DC per position, solution 2 considered two DCs per position with a limit of 4 primers total and solution 3 considered three DCs per position with a limit of 15
primers total. The automated solutions were restricted to a diversity limit of 3.2 × 108, the size of the manually designed library. The maximum achievable LibDesign score for this problem is 200 (higher is
better). The manual solution took several hours. LibDesign took 18 min 51 s. The three dynamic-programming solutions took 0.15, 0.28 and 13.57 s.
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8 while its AA:DNA ratio increases to 2:3; at only a single
position does it use more than one codon for an AA. It de-
livers nearly 10× the AA diversity as the manual solution.
The fraction of AA sequences also increases as the number
of DCs increases so that nearly half of all sequences in DP
solution 3 contain only desired AAs, in contrast to one-sixth
in the manually constructed library. The DP algorithm was
much faster than the manual process; the manual solution
took hours to generate but DP solutions 1, 2 and 3 took
0.15, 0.28 and 13.57 s.

The AA counts for Problem 2 are given in Table 3. These
counts came from 1000 protein design trajectories at 12 po-
sitions in a particular protein. The designed libraries are
given in Table 4. The manual solution came from an expert
library designer and took advantage of two techniques: the
ISOR technique for ensuring that the native AA is present
in the library (33) and the use of multiple DCs. Briefly, ISOR
ensures that the WT AAs are present in the library by cre-
ating extra ‘primers’ by partial digestion of the WT gene.
The designer of this library made two mistakes. First, the
library’s intended size was 109, but it came out more than
10× smaller at just under 108. Second, the library designer
meant to use a codon for leucine (‘CTG’) at position 520,
but mistakenly chose (and subsequently ordered) the codon
‘CAG’, which codes for glutamine, instead. The error of 61
reported in Table 3 for the manual library was calculated as
if ‘CTG’ had been ordered.×

In the automated solutions for this design problem, the
libraries were forced to include the wild-type AA at each
position, mimicking the use of the ISOR technique in the
manually-constructed library. DP solutions 1 and 2 were
similarly constrained as in Problem 1. DP solution 3 was
constrained to use at most 25 primers. The automated so-
lutions were limited to a 109 library size, since that was the
intended size for this library, even though the manual solu-
tion was an order of magnitude smaller. DP solutions 4–6,
constructed with a diversity of 108, are given in Table S1.

Compared against the manual solution, the DP solutions
to Problem 2 were mixed. The manual solution itself in-
cluded the use of multiple DCs at some positions and took
advantage of the ISOR technique, which likely explains why
it achieved a lower error than DP solution 1, which used
only a single DC per position. DP solution 2, however,
does produce a lower error than the manual solution, even
though it does not use the ISOR technique. It chooses to
place two DCs at the same positions that the manual so-
lution does and two more in the other two stretches that
the manual-library’s designer chose not to explore. As a re-
sult, it achieves a slightly larger AA diversity, though, at the
cost of almost 10× higher DNA diversity. Now, we have
calculated the AA diversity for the manual library by treat-
ing the wild-type AA––which the ISOR technique adds––as
if it were encoded by a second (or third) DC at each posi-
tion. This overestimates the manual library’s diversity, since
if one position receives its wild-type AA, then its adjacent
positions will also receive their wild-type AAs. In spite of
this overestimation, DP solution 2 exceeds the manual li-
brary’s AA diversity.

DP solution 3 reduces the error still further. It achieves
an error of 1, missing only the lysine at position 531 that
appeared once in the Rosetta simulations. It also achieves a

14:15 AA:DNA ratio, coding for a single AA at position 377
with two codons and all others at all positions with only a
single codon. DP solution 3 included several AAs that were
not observed in the Rosetta designs; we cannot conclude,
then, that the use of multiple DCs is perfectly molding the
DNA to the desired set of AAs. The error function offers
no penalty for including unobserved AAs (simply no bonus
for doing so), so the DP algorithm’s inclusion of extra un-
observed AAs in attempting to cover all the observed AAs is
expected. However, the high AA:DNA ratio is not expected
since this ratio is not directly optimized. The unobserved
AAs can be squeezed out if the diversity limit is dropped,
at the expense of increasing the resulting error. A seventh
DP solution (Table S1) which was constrained in the same
ways that DP solution 3 was, except that its diversity limit
was 107, defines a library with an error of 69––similar to
that produced by the manual solution––and which contains
only six AAs that were unobserved in the original designs.
DP solution 7 achieves a perfect 1:1 AA:DNA ratio.

For problem 2, the DP solutions were completed much
more quickly than the manual one. The manual solution
took many hours to construct, whereas DP solutions 1, 2
and 3 took 1.40, 0.23 and 0.89 s.

In both problems, the DP solutions achieved lower error
levels than the LibDesign solutions, which is not unexpected
given that LibDesign was not optimizing our error metric.
What was unexpected, however, was that the DP solutions
as well as the manual solutions achieved a better (higher)
LibDesign score than LibDesign did. Since LibDesign re-
lies on exhaustive enumeration of the codons it chose at
the beginning, this result suggests that the original choices
for which codons to consider were sub-optimal. The ability
of the dynamic-programming libraries to achieve such high
LibDesign scores (the highest possible score for Problem 1
was 200, the highest possible score for Problem 2 was 1000;
the third DP solutions achieved scores of 192 and 999) is the
result of having achieved such low errors; almost all of the
AAs that came out of the computational designs were cov-
ered, resulting in very high LibDesign scores. It is likely that
it would have produced much worse LibDesign scores if its
best solution had a much higher error. LibDesign’s reliance
on brute force enumeration meant that it took much longer
to produce its libraries than the DP algorithm; at Problem
1, it took 18 min and 51 s, at Problem 2, it took 52 min 37 s.

The Supplemental Material presents the results from an
additional 798 library design problems from 38 proteins
where we selected subsets of residues of varying sizes and
redesigned those residues with Rosetta. We report the error
level (Table S3) and running time (Table S4) as we varied (i)
the diversity limit, (ii) the number of DCs per position and
(iii) the primer limit. These results show that if one started
from a DC library using only a single DC per position and
had the choice between either making the library 10× larger
or allowing two DCs per position and 10 primers total, that
the error reduction is much greater for the latter rather than
the former (23% reduction versus 75% reduction; P-value <
0.00001, 1-tailed t-test). The median running time for these
798 jobs was 0.61 s, with the longest job taking 104 s.
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Table 3. Problem 2: Rosetta was used to generate 1000 sequences on residues near the J� helix of the Avena sativa LOV2 domain (PDBid 2V0U)

413 475 477 479 493 495 514 520 528 529 531 532

A 990 3 1 21 323 1 0 0 934 115 0 992
C 0 0 0 0 0 0 0 0 0 0 0 0
D 0 0 0 0 0 0 0 0 0 0 0 0
E 0 0 0 0 0 0 0 0 0 0 0 0
F 1 0 460 0 0 964 3 0 0 0 0 0
G 9 0 390 349 351 23 45 0 17 5 0 0
H 0 0 34 0 257 12 2 0 0 498 0 0
I 0 0 1 630 2 0 86 0 0 0 0 1
K 0 559 0 0 0 0 0 0 0 0 1 0
L 0 0 0 0 11 0 10 349 0 110 14 0
M 0 0 5 0 10 0 16 8 49 197 4 4
N 0 0 0 0 0 0 0 0 0 0 0 0
P 0 0 0 0 0 0 0 0 0 0 0 0
Q 0 0 0 0 0 0 0 0 0 0 0 0
R 0 438 0 0 0 0 0 0 0 74 91 0
S 0 0 0 0 0 0 0 0 0 0 0 0
T 0 0 0 0 0 0 0 0 0 0 0 0
V 0 0 0 0 46 0 0 643 0 0 0 3
W 0 0 109 0 0 0 640 0 0 1 890 0
Y 0 0 0 0 0 0 198 0 0 0 0 0

The table below gives the AA counts for each position. The library was constructed using five separate DNA stretches, divided by vertical bars, which
contained 12 randomized positions. The counts for the native AAs are shown in bold.

Comparison with ILP

This section concludes with a comparison between our DP
algorithm and the previously-published ILP formulations
of the problem. ILP, sometimes called mixed integer pro-
gramming, is an NP-Complete problem (34) where many
problem instances admit a rapid solution. Indeed, the fre-
quency with which ILP problems present themselves in pro-
cess optimization has led to a wide availability of commer-
cial ILP solvers, including the free GLPK solver, used in
Chen et al. (28) and which we have used here. When an ILP
solver produces a solution, which is not guaranteed, it pro-
duces the exact solution and so it is a natural comparison
point for our DP algorithm which also produces an exact
solution.

In the Supplemental Materials, we give a reformulation of
the previously published ILP solutions for a single DC per
position that optimizes our error metric and a novel ILP for-
mulation to allow multiple DCs per position. The multiple
DC formulation requires computing the sum of a product
of variables, which is challenging to do with ILP and so it
runs slowly.

There are four principle advantages that DP has over ILP:
DP runs in polynomial time whereas ILP is NP-complete,
DP is faster, a single DP execution can provide more than
a single solution and DP is more easily implemented than
ILP. To show that DP is faster, we compared ILPs running
time against DP’s running time for the two problems pre-
sented above and in the Supplemental Materials for 268 ad-
ditional jobs. The running times for problems 1 and 2 are
given in Table 5. In five of the six cases, DP completed in
less time than ILP. Library design jobs where multiple DCs
were allowed degraded the ILP running time substantially.
For 192 of the 220 jobs using multiple DCs from the Sup-
plemental Materials, DP completed in less time than ILP.
In 107 of those cases, no ILP solution was obtained in 1000
min at which point we killed the ILP solver. Assuming these

jobs had finished in exactly 1000 min, the median speedup
for DP over ILP when using multiple DCs was 5752.

A single execution of DP produces more than just a single
library. The DP algorithm computes the size of the smallest
library capable of achieving every error level starting at 0
and building upward until it finds a library that is beneath
the given size limit. As a result, it can report each of those
library sizes as a function of error level to give the user in-
sight into how the error changes as a function of library
size. Without having to re-run the algorithm, they can see
what would happen to the error as they increased the size of
their library. Furthermore, DP can provide the codons that
comprise the larger libraries if the user is interested in them
in O(n) time. SwiftLib presents users with a scatter plot of
the Pareto-optimal libraries––scored by library size and er-
ror level––with the log-library size given on the x-axis and
the error level on the y-axis. They can then click on any of
the dots in the plot to display the codons that make up the
library that it corresponds to.

The fourth advantage, that DP has a simpler implemen-
tation than ILP, means that we are able to create a website
that has no back end. This site simply serves up the code to
run DP (which can be downloaded from the website or from
github: https://github.com/aleaverfay/swiftlib javascript)
and the code is executed within the user’s web browser; the
heavy computation is performed on the user’s own com-
puter. In contrast, a website that relied on an ILP solution
would have to queue ILP jobs to be performed on a back
end server and then delivered results as they completed.
Even if ILP were as fast as DP, such a server might accu-
mulate a heavy backlog of work. SwiftLib, needing only to
deliver the DP source code, could accommodate many more
users before it started to slow down.

The largest drawback of DP in comparison to ILP is in
its restricted objective function. With ILP, one is able to for-
mulate more complicated functions to optimize, such as the
pairwise quality and novelty metrics presented by Parker
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Table 4. Problem 2 solutions: the manual library was created by an expert library designer using DCs to cover the AAs selected by Rosetta, along with the
ISOR technique (33) for ensuring that the native AAs (shown in bold) were present; the library’s size and error are computed as if an extra codon for the
native AA (given in parentheses) were present at each position, though the ISOR technique does not guarantee that adjacent randomized positions will
achieve full diversity

Solution Pos 413 475 477 479 493 495 514 520 528 529 531 532 Totals

Manual DCs GCC, ARA, KGG, RBA, SNC, KKC, DDC, CTG, RYG, CDT, WGG, GCC, 955a

(AAA) (GAG) YWC, (CAG) (TTG) (CAT) WKG, (GTG) (GGG) RYG, (CTG) (ATT)
(ACC) (CTG) (GTG)

AAs AK EKR FGHL AGIQ ADGH CFGHV CDFGILM LV AGM AHLMR LRW AI
TWY RTV LPRV NRSVWY TV TV

#NAs 2 3 7 7 9 5 14 2 5 8 3 2 8.9 × 107

#AAs 2 3 7 7 9 5 13 2 5 7 3 2 6.4 × 107

%Des 100 100 71 57 67 60 57 100 60 86 100 100 4.9
Error 10 3 7 0 12 1 2 8 0 6 5 7 61

LibDesign DCs RMA RRA NNK VNA SNC YWC TDK KTA GSA VNK TKG RYA 81a

AAs AEKT EGKR ACDEFGHIKLM AEGIKL ADGHL FHLY CFLWY LV AG ADEGHIK LW AITV
NPQRSTVWY PQRTV PRV STOP LMNPQR
STOP STV

#NAs 4 4 32 12 8 4 6 2 2 24 2 4 9.1 × 108

#AAs 4 4 21 11 8 4 6 2 2 16 2 4 3.6 × 108

%Des 50 75 34 33 63 50 67 100 100 54 100 75 0.4
Error 10 3 0 0 12 24 149 8 49 1 96 4 356

DP Sol. 1 DCs RMA RRA DBS VDA SNC YWC WDS STA GSA VNS TKG RYA 795a

AAs AEKT EGKR ACFGIL EGIK ADGH FHLY CFIKLM LV AG ADEGHIK LW AITV
MRSTVW LQRV LPRV NRSWY LMNPQR

STOP STV
#NAs 4 4 18 9 8 4 12 2 2 24 2 4 7.6 × 108

#AAs 4 4 12 8 8 4 12 2 2 16 2 4 3.0 × 108

%Des 25 50 28 25 63 50 67 100 100 46 100 75 0.4
Error 10 3 34 21 12 24 47 8 49 1 96 4 309

DP Sol. 2 DCs AAA, RRA DSG VNA SNC CAC DKG, STA RBG CWC, WKG RYA 966a

GSA YWC KKC WWC RBG
AAs AGK EGKR AFGHL AEGIKL ADGHL CFG FGILMN LV AGM AGHLM LM AITV

RSTWY PQRTV PRV HV RVWY RTV RTV RW
#NAs 3 4 10 12 8 5 10 2 6 8 4 4 8.9 × 108

#AAs 3 4 10 11 8 5 10 2 6 8 4 4 8.1 × 108

%Des 100 75 60 33 63 60 70 100 50 87 100 75 1.3
Error 1 3 6 0 12 1 2 8 0 1 1 4 39

DP Sol. 3 DCs AAA, RVA DBG, ATA, ATR, GSA ATR, VTG ATG, DKG, WKG ATR, 999a

GSA, HWC CAA, SNC YWC KGG, GSA SMC GYA
TTC GSA YWC

AAs AFGK AEG AFGHILMN AGIQ ADGHI AFG FGHIL LMV AGM ADGHLM LM AI
KRT RSTVWY LMPRV HLY MWY PRVW RW MV

#NAs 4 6 15 4 10 6 8 3 3 10 4 4 1.0 × 109

#AAs 4 6 14 4 10 6 8 3 3 10 4 4 9.3 × 108

%Des 100 67 53 100 70 67 100 100 100 80 100 100 13.3
Error 0 0 0 0 0 0 0 0 0 0 1 0 1

For the automated solutions, the library size was restricted to 109 and the wild-type AA was required to be covered by the DCs themselves. The maximum achievable LibDesign score for this problem is 1000
(higher is better). The three DP solutions represent allowing one DC per position, allowing two DCs per position restricted to 10 primers total and allowing three DCs per position restricted to 25 primers
total (though only 24 were chosen). See Table 2 for a description of row labels. The manual solution took hours to generate, LibDesign took 52 min 37 s and the three DP solutions took 1.40, 0.23 and 0.89 s.

Table 5. DP and ILP running times (s) for the three variations on the two
library design problems

Prob 1 Prob 1 Prob 1 Prob 2 Prob 2 Prob 2
1 DC 2 DCs 3 DCs 1 DC 2 DCs 3 DCs

DP 0.15 0.28 13.57 1.40 0.23 0.89
ILP 0.46 661.08

1607.67
0.09 46.86 4.09

The running times for the ILP solutions include only the amount of time
for the glpsol solver to run, and do not include the preprocessing step of ex-
amining DC combinations; the running times for the DP solutions include
both preprocessing and optimization steps. Running times were measured
on a 2013 MacBookPro with a 2.3 GHz i7 processor and 4 GB of RAM.
DP was run within Chrome version 34.0.1847.13.

et al. (27). It it our opinion, however, that the advantage of
being able to consider multiple DCs per position (within a
reasonable amount of time) outweighs the weakness in not
being able to incorporate pairwise data.

DISCUSSION

Directed evolution is rapidly becoming a standard com-
plement to computational protein design (13,24,26,28,35–
46). It allows protein designers to test vastly more designs
than could individually be expressed, purified and assayed.
As a result, shortcomings in the current generation of en-
ergy functions and sampling protocols can be overcome,
and useful proteins that vary only slightly in their sequences
from a starting design can be found. Since there are so many
ways for a design to fail, some of the best insight can come
from finding a successful design and contrasting it against
the sequences that the design score function most favors.
Directed evolution offers a mean to find such successful de-
signs.

DC libraries are a natural complement to computational
protein design as they allow a designer to focus diversity
to the active site or interface positions in ways that error-
prone PCR, for example, could not. However, DC libraries
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are quite difficult to optimize by hand; there are thousands
of possible DCs and so finding the best one that also of-
fers a reasonable compromise with the other positions be-
ing optimized while the whole library stays beneath a given
diversity limit is a daunting task at best. The task becomes
decidedly harder once the possibility of choosing multiple
DCs at a single position is introduced. Moreover, manually
designing DC libraries is highly error prone, as observed
in this study. It is no surprise that automated construction
of DC libraries has been the focus of several prior studies
(23–24,26–28). SwiftLib offers a rapid solution to the de-
sign of DC libraries. Because it expects as inputs a set of
AA counts for each position to be randomized, which are
readily derived from the outputs of protein design simula-
tions, it should fit naturally into the computational-protein
designer’s workflow.

SwiftLib was able to find libraries that covered nearly
every AA present in the input designs when it was al-
lowed to consider multiple DCs at each position. SwiftLib
could make it much easier to screen libraries that cover the
potentially-useful AAs as suggested by computational de-
sign or multiple-sequence alignments by reducing the num-
ber of sequences that have to be tested to achieve full cov-
erage.

SUPPLEMENTARY DATA

Supplementary data are available at NAR Online.
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