Original Article Efficacy and safety of cangrelor for patients with coronary artery disease: a meta-analysis of four randomized trials

Yong Tang, Ya-Chen Zhang, Yu Chen, Yin Xiang

Division of Cardiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China

Received September 15, 2014, Accepted December 1, 2014; Epub January 15, 2015; Published January 30, 2015

Abstract: Background: The efficacy and safety of new intravenous P2Y12 inhibitor (cangrelor) for patients with coronary artery disease (CAD) remain unclear. Methods and Results: Trials were identified in PubMed, Web of Science, Embase, and Cochrane Database searches. We included four randomized, placebo-controlled reports in the meta-analysis. The database consisted of 36, 081 patients on cangrelor compared with clopidogrel or placebo. Major adverse cardiac events (MACE) were defined as the primary efficacy endpoint and major or severe bleeding at 48 hours was defined as the primary safety endpoint. Cangrelor significantly decreased risk of MACE (OR: 0.87, P = 0.002) and stent thrombosis (OR: 0.53, P < 0.001). However, at the same time, an increase in TIMI minor bleeding (OR: 1.49, P = 0.04) and in GUSTO moderate bleeding (OR: 1.43, P = 0.04) were observed by cangrelor. Conclusions: Intravenous administration of cangrelor is benefit to reduce risk of MACE and stent thrombosis in patients with CAD excepting for increased minor bleeding events.

Keywords: Cangrelor, coronary artery disease, meta-analysis

Introduction

Dual antiplatelet therapy with clopidogrel and aspirin has been the standard antiplatelet therapy for acute coronary syndromes (ACSs) since 2001 [1], given its clear superiority in reducing myocardial infarction (MI),composite risk for death and stent thrombosis in comparison to aspirin alone [2, 3]. Clopidogrel, an irreversible antagonist of the P2Y12 adenosine-diphosphate (ADP) platelet receptor, has a highly variable effect on platelet inhibition [4]. Though increased loading doses is an alternative choice [5], recent papers have indicated that doubling dose of clopidogrel has no evident benefit on mortality in patients with percutaneous coronary intervention [6, 7].

Emerging P2Y12 inhibitors, such as prasugrel, ticagrelor, cangrelor and elinogrel, have faster onset of action and are more potent than clopidogrel, showing better antiplatelet effects for coronary artery disease (CAD) patients. According to individual properties, new P2Y12 inhibitors can be classified as intravenous drugs (cangrelor and elinogrel) and oral (ticagrelor and prasugrel). Some studies have indicated the superior antiplatelet effects of new oral P2Y12 inhibitors compared with clopidogrel [8, 9]. However, the benefit of the new intravenous P2Y12 inhibitor (cangrelor) still remains unclear. So the goal of this study is to synthesize the available prospective data to help evaluate the impact of cangrelor on risk of ischemic and bleeding events in patients with CAD.

Methods

Search strategy

We conducted PubMed, Web of Science, Embase, and Cochrane Database searches (until March 2014) using medical subject heading and keyword terms included the following terms: (cangrelor) AND (acute coronary syndromes OR myocardial infarction OR angina OR coronary artery disease OR percutaneous coronary intervention OR PCI). No language restrictions were applied. Randomized controlled trials (RCT), cohort studies, case series and case control studies were included. Review articles, meeting abstracts, individual case reports and

editorials were excluded. Literatures were reviewed by two researchers (Tang and Chen) independently of each other.

Study selection and data extraction

Studies were extracted if they met the following criteria: 1) RCT enrolling patients with CAD or ACS; 2) studies compare cangrelor with clopidogrel; 3) the study supplied data on ischemic and bleeding events. Two researchers (Tang and Chen) extracted data independently. In case of disagreements, a third investigator (Zhang) made a decision by discussion. Data extraction included: study name, publication year, population, the length of follow-up, characteristics of participants, efficacy and safety outcomes.

Endpoints and definitions

The primary efficacy end point was major adverse cardiac events (MACE). We also exam-

ined all-cause death, myocardial infarction (MI) and stent thrombosis. MI was defined according to American College of Cardiology/American Heart Association definitions [10, 11] or the universal definition of MI [12]. Definitions of stent thrombosis were refereed to Academic Research Consortium definitions [13]. The primary safety end point for this meta-analysis was the rate of major bleeding defined by TIMI or GUSTO criteria [14]. All endpoints were checked at the points of 48 hours after PCI procedure in every study.

Quality assessment

The quality assessment of enrolled studies was performed by risk of bias in line with the Cochrane Collaboration methods [15]. Specifically, sources of sequence generation, incomplete outcome data, selective outcome reporting, allocation concealment, masking of outcome assessors, and other bias were

Table 1. Main features of included studies

Study year	n	Population	PCI	Follow-up	Intervention	Reference LD/MD	MACEs definitions	Major bleeding
Bhatt 2009	5362	NSTEMI: 60% UA: 35% SCAD: 5%	99%	30 days	Cangrelor IV 30 ug/kg bolus, 4 ug/kg/min 2-4 h, then clopidogrel then clopidogrel 600 mg	Placebo + clopidogrel 600 mg at the end of PCI	Death/MI/IDR	TIMI
Harrington 2009	8877	STEMI: 11% NSTEMI: 49% UA: 25% SCAD: 15%	100%	30 days	Cangrelor IV 30 mg/kg bolus and 4 mg/kg/min 2 h	Placebo + clopidogrel 600 mg 30 min before PCI	Death/MI/IDR	TIMI
Leonardi 2012	10900	STEMI: 0% NSTEMI: 57% UA: 31% SCAD: 12%	100%	48 h	Cangrelor IV 30 mg/kg bolus and 4 mg/kg/min 2-4 h	Placebo + clopidogrel 600 mg at the end of PCI	Death/MI/IDR	TIMI
Bhatt 2103	10942	STEMI: 18% NSTEMI: 26% SCAD: 56%	100%	48 h	Cangrelor IV 30 mg/kg bolus and 4 mg/kg/min 2-4 h	Clopidogrel 600 or 300 mg LD	Death/MI/IDR/ST	TIMI

PCI, percutaneous coronary intervention; NSTEMI, none ST elevation myocardial infarction; STEMI, ST elevation myocardial infarction; UA, unstable angina; SCAD, stable coronary artery disease; LD, loading dose; MD, maintenance dose; MACCE, major adverse cardiac and cerebrovascular events; IV: intravenous; MI: myocardical infarction; IDR, ischemia-driven revascularization; ST, stent thrombosis; TIMI, thrombolysis in myocardial infarction criteria.

assessed in detail. Two independent reviewers (Tang, Chen) carried out the quality assessment, and any disagreements were settled by consensus or adjudicated by a third reviewer (Zhang).

Statistical analysis

Review Manager 5.2 (Copenhagen: The Nordic Cochrane Centre, The Cochrane Collaboration, Denmark) was used for analysis. The measure of treatment effect for each study was the odds ratio (OR) with 95% confidence interval (CI). Heterogeneity was quantified by using the I² statistic: low, moderate and high represented I² values of 25, 50 and 75%, respectively. In case of high heterogeneity, sensitivity analyses were conducted by removing each study individually to explore possible reasons and to compare the influence of various exclusion criteria on overall risk estimate. In addition, subgroup analysis was conducted if significant heterogeneity was identified. A two-tailed P value < 0.05 was considered statistically significant for each test.

Results

The search strategy revealed 374 potentially eligible study reports. Totally, 216 irrelevant citations and 152 duplicates were excluded by evaluating title and abstract. When abstracts for inclusion and exclusion criteria were reviewed, there were 6 studies requiring further review. Among these, 2 studies were missed for not getting necessary data by communicating with authors. Finally, 4 RCTs were selected in the meta-analysis referring to the review process in Figure 1 [10, 11, 16, 17]. The database consisted of 36,081 patients on cangrelor compared with clopidogrel or placebo. Clopidogrel loading doses ranged from 300 mg to 600 mg. The endpoints were observed at 48 hours after randomization. Characteristics of the trials included in the analysis are shown in Table 1.

In this meta-analysis, all the included studies were double-blind, and almost all of the candidates received PCI procedure. Results were reported in **Figures 2**, **3**. There was no significant heterogeneity for the analyses of MACE, all-cause death, stent thrombosis, and major or minor bleeding endpoints (P > 0.1, and I² < 50%). No significant differences were observed in all-cause death (P = 0.08), MI (P = 0.13), TIMI major bleeding (P = 0.99) and GUSTO severe

bleeding (P = 0.49) between cangrelor group and clopidogrel group. There was a 13% decrease in MACE (OR: 0.87, 95% CI: 0.79-0.95, P = 0.002), and 47% decrease in stent thrombosis (OR: 0.53, 95% CI: 0.39-0.72, P < 0.01), along with a significant increase in TIMI minor bleeding (OR: 1.49, 95% CI: 1.02-2.17, P = 0.004) and GUSTO moderate bleeding (OR: 1.43, 95% CI: 1.02-2.00, P = 0.004).

Discussion

This meta-analysis systematically addresses the question that whether new intravenous P2Y12 inhibitor (cangrelor) is associated with decreased efficacy or safety end points. The main findings could be summarized as follows: 1) Comparing with clopidogrel, administration of cangrelor leads to a significant reduction in the incidence of major ischemic events (MACE, stent thrombosis and Q-wave MI) in patients with CAD. 2) Cangrelor significantly increases risk of minor bleeding in comparison with clopidogrel.

Although dual antiplatelet therapy is the cornerstone of treating CAD patients, responsiveness to clopidogrel varies obviously among individuals [18, 19]. Recent articles cannot reach an agreement about whether high-dose clopidogrel is benefit to reduce the risk of ischemic events in patients, without increasing rate of bleeding complications [5-7]. Some articles supported that high-dose clopidogrel inhibits platelet function effectively along with other effects, such as improving endothelial nitric oxide bioavailability and diminishing biomarkers of oxidant stress, and retarding the progression of established lesions and promotion of cell apoptosis [20, 21]. However, recent papers pointed that double dose of clopidogrel has no obvious benefit on mortality with standard dose of clopidogrel in patients [6, 7], and it did not reduce the incidence of major ischemic events, and it has no benefit effect on survival [22]. So, more rapid and stronger inhibition of platelet aggregation is necessary for emerging antiplatelet agents, with the expectation of further improving outcomes for patients with CAD.

The new P2Y12 inhibitor drugs with both intravenous (cangrelor and elinogrel) and oral (prasugrel and ticagrelor) formulations, have faster onset of action and greater potency than clopidogrel. Prasugrel is a kind of thienopyridine oral pro-drug, which can be changed into an irre-

A All-cause death

Study of Subgroup Events Total Weight M.H., Fixed, 95% Cl M.H., Fixed, 95% Cl Bhatt 2013 18 6470 18 5464 28.1% 0.33 (0.13, 0.83) Harrington 2009 8 3889 5 3865 7.8% 1.59 (0.52, 4.87) Harrington 2009 8 3889 5 3865 7.8% 1.59 (0.52, 4.87) Leonardi 2012 14 6543 23 6506 36.0% 0.60 (0.31, 1.18) Total (95% Cl) 18556 18481 100.0% 0.72 [0.49, 1.05] 0.01 0.1 100 Fortal (95% Cl) 18556 18481 100.0% 0.72 [0.49, 1.05] 0.01 0.1 100 Batt 2013 46 64 120 Pavours [experimental] Favours [control] 0.01 0.1 100 Fatt 2013 41 5470 69 5469 57.3% 0.59 [0.40, 0.87] Pavours [experimental] Favours [control] Bhatt 2013 21 52654 16 2641 <t< th=""></t<>	
Bhatt 2009 6 2654 18 2641 28.1% 0.33 [0.13, 0.83] Bhatt 2013 18 5470 18 5469 28.0% 1.00 [0.52, 1.82] Harrington 2009 8 3889 5 3865 7.8% 1.59 [0.52, 4.87] Leonardi 2012 14 6543 23 6506 36.0% 0.60 [0.31, 1.18] Total (95% Cl) 18556 18481 100.0% 0.72 [0.49, 1.05] Total events 46 64 Heterogeneity: Chi ² = 5.90, df = 3 (P = 0.12); P = 49% Odds Ratio Odds Ratio Stent thrombosis Experimental Control Odds Ratio Odds Ratio Bhatt 2009 5 2654 16 2641 13.4% 0.31 [0.11, 0.5] Hered, 95% Cl Bhatt 2013 41 5470 69 52.92% 0.63 [0.24, 1.63] Hered, 95% Cl Leonardi 2012 11 15100 24 5087 0.59 [0.40, 0.87] Hered, 95% Cl Bhatt 2009 7 3889 11 3865 9.2% 0.1% 0.10.1 Favours [control] Ueonardi 2012 <	
Bhatt 2013 18 5470 18 5469 28.0% 1.00 [0.52, 1.92] Harrington 2009 8 3889 5 3865 7.8% 1.59 [0.52, 4.87] Leonardi 2012 14 6543 23 6506 36.0% 0.60 [0.31, 1.18] Total (95% Cl) 18556 18481 100.0% 0.72 [0.49, 1.05] Total events 46 64 Heterogeneity: Chi ² = 5.90, df = 3 (P = 0.12); P = 49% 0.01 0.1 10 Test for overall effect: Z = 1.73 (P = 0.08) Experimental Control Odds Ratio Stent thrombosis Experimental Control Odds Ratio Odds Ratio Bhatt 2013 41 5470 69 57.3% 0.59 [0.40, 0.87] Image: 40.95% Cl Harrington 2009 7 3889 11 3865 9.2% 0.63 [0.24, 1.63] Image: 40.95% Cl Hatrington 2009 7 3889 11 3865 9.2% 0.63 [0.24, 1.63] Leonardi 2012 11 5100 24 5067 20.1% 0.45 [0.22, 0.93] Total (95% Cl) 17113	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
Total events 46 64 Heterogeneity: Ch ² = 5.90, df = 3 (P = 0.12); P = 49% Test for overall effect: Z = 1.73 (P = 0.08) Batt 2009 5 2654 16 2641 13.4% 0.31 [0.11, 0.85] Bhatt 2009 5 2654 16 2641 13.4% 0.31 [0.11, 0.85] Bhatt 2013 41 5470 69 5469 57.3% 0.59 [0.40, 0.87] Harrington 2009 7 3889 11 3865 9.2% 0.63 [0.24, 1.63] Leonardi 2012 11 5100 24 5067 20.1% 0.45 [0.22, 0.93] Total events 64 120 Heterogeneity: Ch ² = 1.71, df = 3 (P = 0.63); P = 0% Test for overall effect: Z = 4.09 (P < 0.0001) C MI Experimental Control Odds Ratio Study or Subgroup Events Total Events Total Veight M-H, Fixed, 95% CI Heterogeneity: Ch ² = 1.71, df = 3 (P = 0.63); P = 0% Test for overall effect: Z = 4.09 (P < 0.0001) C MI Experimental Control Odds Ratio Study or Subgroup Events Total Events Total Events Total Veight M-H, Fixed, 95% CI Heterogeneity: Ch ² = 1.71, df = 3 (P = 0.63); P = 0% Test for overall effect: Z = 4.09 (P < 0.0001) C MI Experimental Control Odds Ratio MI Experimental Control Odds Ratio Odds Ratio MI Experimental Events 806 863 Heterogeneity: Ch ² = 5.46, df = 3 (P = 0.14); P = 45% Test for overall effect Z = 1.52 (P = 0.14); P = 45% Test for overall effect Z = 1.52 (P = 0.14); P = 45% Test for overall effect Z = 1.52 (P = 0.14); P = 45% Test for overall effect Z = 1.52 (P = 0.14); P = 45% Test for overall effect Z = 1.52 (P = 0.14); P = 45% Test for overall effect Z = 1.52 (P = 0.14); P = 45% Test for overall effect Z = 1.52 (P = 0.14); P = 45% Test for overall effect Z = 1.52 (P = 0.14); P = 45% Test for overall effect Z = 1.52 (P = 0.14); P = 45% Test for overall effect Z = 1.52 (P = 0.14); P = 45% Test for overall effect Z = 1	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
Interlogeneity. Chi ² = 0.08) 0.01 0.1 1 10 100 Favours [experimental] Stent thrombosis Stent thrombosis Stent thrombosis B Stent thrombosis Dotto Subgroup Events Total Weight M-H, Fixed, 95% CI Heterogeneity: Chi ² = 1.71, df = 3 (P = 0.63); I ² = 0% Total events 64 120 Heterogeneity: Chi ² = 1.71, df = 3 (P = 0.63); I ² = 0% Total events 64 120 Heterogeneity: Chi ² = 1.71, df = 3 (P = 0.63); I ² = 0% <td co<="" td=""></td>	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
Stent thrombosis Experimental Control Odds Ratio Study or Subgroup Events Total Events Total Weight M-H, Fixed, 95% CI M-H, Fixed, 95% CI Bhatt 2009 5 2654 16 2641 13.4% 0.31 [0.11, 0.85] M-H, Fixed, 95% CI Bhatt 2013 41 5470 69 5469 57.3% 0.59 [0.40, 0.87] Harrington 2009 7 3889 11 3865 9.2% 0.63 [0.24, 1.63] Leonardi 2012 11 5100 24 5067 20.1% 0.45 [0.22, 0.93] Total (95% CI) 177113 17042 100.0% 0.53 [0.39, 0.72] Total events 64 120 0.01 0.1 1 10 100 Fastor overall effect Z = 4.09 (P < 0.0001)	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
Study or Subgroup Events Total Weight M-H, Fixed, 95% C1 M-H, Fixed, 95% C1 Bhatt 2009 5 2654 16 2641 13.4% 0.31 [0.11, 0.85] Bhatt 2013 41 5470 69 5469 57.3% 0.59 [0.40, 0.87] Harrington 2009 7 3889 11 3865 9.2% 0.63 [0.24, 1.63] Leonardi 2012 11 5100 24 5067 20.1% 0.45 [0.22, 0.93] Total (95% CI) 17113 17042 100.0% 0.53 [0.39, 0.72] • Heterogeneity: Chi ² = 1.71, df = 3 (P = 0.63); l ² = 0% Total 10 100 Favours [experimental] Control Odds Ratio Odds Ratio Test for overall effect: Z = 4.09 (P < 0.0001)	
Bhatt 2009 5 2654 16 2641 13.4% 0.31 [0.11, 0.85] Bhatt 2013 41 5470 69 5469 57.3% 0.59 [0.40, 0.87] Harrington 2009 7 3889 11 3865 9.2% 0.63 [0.24, 1.63] Leonardi 2012 11 5100 24 5067 20.1% 0.45 [0.22, 0.93] Total (95% Cl) 17113 17042 100.0% 0.53 [0.39, 0.72] • Heterogeneity: Chi ² = 1.71, df = 3 (P = 0.63); I ² = 0% 0.01 0.1 1 10 100 Favours [experimental] 64 120 100.0% 0.53 [0.39, 0.72] • <t< td=""></t<>	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
Leonardi 2012 11 5000 11 5000 0.11 % 5000 0.11 % 5000 0.14 % 5000 0.14 % 5000 0.14 % 5000 0.14 % 5000 0.14 % 5000 0.14 % 5000 0.14 % 5000 0.14 % 5000 0.14 % 5000 0.14 % 5000 0.14 % 5000 0.45 [0.22, 0.93] Total (95% CI) 17113 17042 100.0% 0.53 [0.39, 0.72] 0.01 0.1 1 10 100 Heterogeneity: Chi ² = 1.71, df = 3 (P = 0.63); P = 0% Total Control Odds Ratio Odds Ratio Odds Ratio MI Experimental Control Odds Ratio Odds Ratio M-H, Fixed, 95% CI M-H, Fixed, 95% CI M-H, Fixed, 95% CI Bhatt 2009 177 2654 191 2641 21.8% 0.92 [0.74, 1.13] M-H, Fixed, 95% CI M-H, Fixed, 95% CI Bhatt 2013 207 5470 255 5469 29.9% 0.80 [0.67, 0.97] Harrington 2009 278 3889 256 3865 29.1% 1.09 [0.91, 1.29] Integraterotation of the table foretatatatatatatatata	
Total (95% Cl) 171 13 17042 100.0% 0.53 [0.39, 0.72] Total events 64 120 Heterogeneity: Chi ² = 1.71, df = 3 (P = 0.63); I ² = 0% 0.01 0.1 1 10 100 Test for overall effect: Z = 4.09 (P < 0.0001)	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	
Interform Interform Interform Interform Interform Total events 64 120 Heterogeneity: Chi ² = 1.71, df = 3 (P = 0.63); P = 0% 0.01 0.1 1 10 100 Test for overall effect: Z = 4.09 (P < 0.0001)	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c} \mbox{Test for overall effect: } Z = 4.09 \ (P < 0.0001) \\ \mbox{Test for overall effect: } Z = 4.09 \ (P < 0.0001) \\ \mbox{Test for overall effect: } Z = 4.09 \ (P < 0.0001) \\ \mbox{Test for overall effect: } Z = 4.09 \ (P < 0.0001) \\ \mbox{Test for overall effect: } Z = 4.09 \ (P < 0.0001) \\ \mbox{Test for overall effect: } Z = 4.09 \ (P < 0.0001) \\ \mbox{Test for overall effect: } Z = 4.09 \ (P < 0.0001) \\ \mbox{Test for overall effect: } Z = 4.09 \ (P < 0.0001) \\ \mbox{Test for overall effect: } Z = 4.09 \ (P < 0.0001) \\ \mbox{Test for overall effect: } Z = 4.09 \ (P < 0.0001) \\ \mbox{Test for overall effect: } Z = 4.09 \ (P < 0.0001) \\ \mbox{Test for overall effect: } Z = 4.09 \ (P < 0.0001) \\ \mbox{Test for overall effect: } Z = 4.09 \ (P < 0.0001) \\ \mbox{Test for overall effect: } Z = 1.52 \ (P = 0.13) \\ Test for ove$	
Favours [experimental] Favours [control] Study or Subgroup Events Total Weight M-H, Fixed, 95% CI Bhatt 2009 177 2654 191 2641 211 2641 201 M-H, Fixed, 95% CI Bhatt 2009 27 5460 2664 29.9% 0.80 [0.67, 0.97] Harrington 2009 278 3889 29.9% 0.89 [0.70, 1.11] Total (95% CI) 177113 17042 100.0% 0.93 [0.84, 1.02] Total events 806 8633 Heterogeneity: Chi [#] = 5.46, df = 3 (P = 0.14); I [#] = 45% Colspan="2" Favours [control]	
C Experimental Control Odds Ratio Odds Ratio Study or Subgroup Events Total Events Total Weight M-H, Fixed, 95% CI M-H, Fixed, 95% CI Bhatt 2009 177 2654 191 2641 21.8% 0.92 [0.74, 1.13] Image: Control of the state	
Study or Subgroup Experimental Control Odds Ratio Odds Ratio Study or Subgroup Events Total Events Total Weight M-H, Fixed, 95% CI M-H, Fixed, 95% CI Bhatt 2009 177 2654 191 2641 21.8% 0.92 [0.74, 1.13] Image: Control of the state of the sta	
Study or Subgroup Events Total Events Total Weight M-H, Fixed, 95% Cl M-H, Fixed, 95% Cl Bhatt 2009 177 2654 191 2641 21.8% 0.92 [0.74, 1.13] Image: Comparison of the comparison of th	
Bhatt 2009 177 2654 191 2641 21.8% 0.92 [0.74, 1.13] Bhatt 2013 207 5470 255 5469 29.9% 0.80 [0.67, 0.97] Harrington 2009 278 3889 256 3865 29.1% 1.09 [0.91, 1.29] Leonardi 2012 144 5100 161 5067 19.2% 0.89 [0.70, 1.11] Total (95% Cl) 17113 17042 100.0% 0.93 [0.84, 1.02] Total events 806 863 Heterogeneity: Chi ²⁺ 5.46, df = 3 (P = 0.14); I ² = 45% 0.01 0.1 1 10 100 Test for overall effect: Z = 1.52 (P = 0.13) Favours [eventral] Favours [eventral] Favours [eventral] Favours [eventral]	
Bhatt 2003 207 5470 255 5469 29.9% 0.80 [0.67, 0.97] Harrington 2009 278 3889 256 3865 29.1% 1.09 [0.91, 1.29] Leonardi 2012 144 5100 161 5067 19.2% 0.89 [0.70, 1.11] Total (95% Cl) 17113 17042 100.0% 0.93 [0.84, 1.02] Total events 806 863 Heterogeneity: Chi ^a = 5.46, df = 3 (P = 0.14); I ^a = 45% 0.01 0.1 1 10 100 Test for overall effect: Z = 1.52 (P = 0.13) Favours [eventrol] Favours [eventrol] Favours [eventrol]	
Harrington 2009 278 3889 256 3865 29.1% 1.09 [0.91, 1.29] Leonardi 2012 144 5100 161 5067 19.2% 0.89 [0.70, 1.11] Total (95% Cl) 17113 17042 100.0% 0.93 [0.84, 1.02] Total events 806 863 Heterogeneity: Chi [#] = 5.46, df = 3 (P = 0.14); I [#] = 45% 0.01 0.1 1 10 100 Test for overall effect: Z = 1.52 (P = 0.13) Favours [eventmental] Favours [eventmental] Favours [eventmental] Favours [eventmental]	
Leonardi 2012 144 5100 161 5067 19.2% 0.89 [0.70, 1.11] Total (95% Cl) 17113 17042 100.0% 0.93 [0.84, 1.02] Total events 806 863 Heterogeneity: Chi ² = 5.46, df = 3 (P = 0.14); l ² = 45% Test for overall effect: Z = 1.52 (P = 0.13) Test for overall effect: Z = 1.52 (P = 0.13)	
Total (95% Cl) 17113 17042 100.0% 0.93 [0.84, 1.02] Total events 806 863 Heterogeneity: Chi² = 5.46, df = 3 (P = 0.14); l² = 45% 0.01 0.1 1 10 100 Test for overall effect: Z = 1.52 (P = 0.13) Eavours (experimental) Eavours (control) Eavours (control)	
Total (95% Cl) 17113 17042 100.0% 0.93 [0.84, 1.02] Total events 806 863 Heterogeneity: Chi² = 5.46, df = 3 (P = 0.14); l² = 45% 0.01 0.1 1 10 100 Test for overall effect: Z = 1.52 (P = 0.13) Eavours (experimental) Eavours (control) Eavours (control)	
Total events 806 863 Heterogeneity: Chi² = 5.46, df = 3 (P = 0.14); l² = 45% 0.01 0.1 1 10 100 Test for overall effect: Z = 1.52 (P = 0.13) Favours (experimental) Favours (experimental) Favours (control)	
Heterogeneity: Chi² = 5.46, df = 3 (P = 0.14); l² = 45% Image: Heterogeneity = 10 (P = 0.13)	
Test for overall effect: Z = 1.52 (P = 0.13) Eavours [control]	
D	
MACE	
Experimental Control Odds Ratio Odds Ratio	
<u>Study or Subgroup</u> Events Total Events Total Weight M-H, Fixed, 95% Cl M-H, Fixed, 95% Cl	
Bhatt 2009 190 2654 226 2641 20.6% 0.82 [0.67, 1.01]	
Bhatt 2013 257 5470 322 5469 30.1% 0.79 [0.67, 0.93]	
Harrington 2009 297 3889 287 3865 26.1% 1.03 (0.87, 1.22) 🕈	
Harrington 2009 297 3889 287 3865 26.1% 1.03 [0.87, 1.22]	
Harrington 2009 297 3889 287 3865 26.1% 1.03 [0.87, 1.22] Leonardi 2012 202 6543 244 6506 23.2% 0.82 [0.68, 0.99]	
Harrington 2009 297 3889 287 3865 26.1% 1.03 [0.87, 1.22] Leonardi 2012 202 6543 244 6506 23.2% 0.82 [0.68, 0.99] Total (95% CI) 18556 18481 100.0% 0.87 [0.79, 0.95]	
Harrington 2009 297 3889 287 3865 26.1% 1.03 [0.87, 1.22] Leonardi 2012 202 6543 244 6506 23.2% 0.82 [0.68, 0.99] Total (95% CI) 18556 18481 100.0% 0.87 [0.79, 0.95] Total events 946 1079	
Harrington 2009 297 3889 287 3865 26.1% 1.03 [0.87, 1.22] Leonardi 2012 202 6543 244 6506 23.2% 0.82 [0.68, 0.99] Total (95% CI) 18556 18481 100.0% 0.87 [0.79, 0.95] Total events 946 1079 Heterogeneity: Chi ² = 5.89, df = 3 (P = 0.12); I ² = 49%	

Figure 2. Effects of new intravenous P2Y12 inhibitor compared with clopidogrel on efficacy events in patients with CAD.

versible P2Y12 receptor inhibitor, while ticagrelor is a kind of oral, direct acting, and reversible P2Y12 inhibitor. Previous researches revealed that both drugs showed superior antiplatelet effects compared with standard or higher doses of clopidogrel, with features of inhibiting platelet aggregation more rapidly and consistently [9, 23, 24]. However, to our knowledge, few meta-analysis systematically evaluates the impact of new intravenous P2Y12 inhibitor (cangrelor) on risk of ischemic and bleeding events in patients with CAD. Cangrelor is an intravenous, direct-acting and reversible P2Y12 inhibitor. And elinogrel, which can be administration by either intravenously or orally, is a direct-acting, competitive and reversible inhibitor of the P2Y12 receptor. These features may offer specific theoretical advantages on safety and efficacy. In our meta-analysis, 13% significantly decrease in MACE and 47% significantly decrease in stent thrombosis were observed with cangrelor compared with clopidogrel.

New intravenous P2Y12 inhibitor could decrease the primary end point including MACE and stent thrombosis, and there was no differ-

A TIMI major bleeding

	in major biceding	Experim	ental	Contr	ol		Odds Ratio	Odds Ratio
	Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
	Bhatt 2009	4	2662	9	2650	32.2%	0.44 [0.14, 1.44]	
	Bhatt 2013	5	5529	5	5527	17.9%	1.00 [0.29, 3.45]	
	Harrington 2009	19	4374	14	4365	49.9%	1.36 [0.68, 2.71]	
	Total (95% CI)		12565		12542	100.0%	1.00 [0.59, 1.69]	+
	Total events	28		28				
	Heterogeneity: Chi ² =	2.59, df =	2 (P = 0.	27); I ² = 2	3%			
	Test for overall effect:	Z = 0.01 (P = 0.99)	1			F	0.01 0.1 1 10 100
вт	MI minor bleeding							avours (experimental) i avours (control)
		Experin	nental	Cont	rol		Odds Ratio	Odds Ratio
	Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
	Bhatt 2009	22	2662	16	2650	35.6%	1.37 [0.72, 2.62]	
	Bhatt 2013	9	5529	3	5527	6.7%	3.00 [0.81, 11.10]	
	Harrington 2009	36	4374	26	4365	57.7%	1.38 [0.83, 2.30]	
	Total (95% CI)		12565		12542	100.0%	1.49 [1.02, 2.17]	◆
	Total events	67		45				
	Heterogeneity: Chi ² =	1.25, df=	2(P = 0	.54); 12 = 0	0%			
	Test for overall effect:	Z = 2.06 (P = 0.04)				avours (experimental) Eavours (control)
С								avours (experimental) in avours (control)
~	ICTO acuero blace	dian at						
G	US IO severe bleed	ling						
G	US TO severe bleed	Experin	nental	Cont	rol		Odds Ratio	Odds Ratio
G	Study or Subgroup	Experin Events	nental Total	Cont Events	rol Total	Weight	Odds Ratio M-H, Fixed, 95% Cl	Odds Ratio M-H, Fixed, 95% Cl
G	<u>Study or Subgroup</u> Bhatt 2009	Experin Events 9	nental <u>Total</u> 2662	Cont Events 6	rol <u>Total</u> 2650	Weight 26.1%	Odds Ratio <u>M-H, Fixed, 95% CI</u> 1.49 [0.53, 4.21]	Odds Ratio M-H, Fixed, 95% Cl
G	<u>Study or Subgroup</u> Bhatt 2009 Bhatt 2013	Experin Events 9 9	nental <u>Total</u> 2662 5529	Cont Events 6 6	rol <u>Total</u> 2650 5527	Weight 26.1% 26.1%	Odds Ratio <u>M-H, Fixed, 95% Cl</u> 1.49 [0.53, 4.21] 1.50 [0.53, 4.22]	Odds Ratio M-H, Fixed, 95% Cl
G	<u>Study or Subgroup</u> Bhatt 2009 Bhatt 2013 Harrington 2009	Experin Events 9 9 10	nental Total 2662 5529 4374	Cont Events 6 6 11	rol <u>Total</u> 2650 5527 4365	Weight 26.1% 26.1% 47.8%	Odds Ratio <u>M-H, Fixed, 95% Cl</u> 1.49 [0.53, 4.21] 1.50 [0.53, 4.22] 0.91 [0.38, 2.14]	Odds Ratio M-H, Fixed, 95% Cl
G	Study or Subgroup Bhatt 2009 Bhatt 2013 Harrington 2009 Total (95% CI)	Experin Events 9 9 10	nental <u>Total</u> 2662 5529 4374 12565	Cont Events 6 6 11	rol 2650 5527 4365 12542	Weight 26.1% 26.1% 47.8% 100.0%	Odds Ratio <u>M-H, Fixed, 95% Cl</u> 1.49 (0.53, 4.21) 1.50 (0.53, 4.22) 0.91 (0.38, 2.14) 1.22 (0.70, 2.11)	Odds Ratio M-H, Fixed, 95% Cl
G	Study or Subgroup Bhatt 2009 Bhatt 2013 Harrington 2009 Total (95% CI) Total events	Experin Events 9 9 10 28	nental <u>Total</u> 2662 5529 4374 12565	Cont Events 6 6 11 23	rol 2650 5527 4365 12542	Weight 26.1% 26.1% 47.8% 100.0%	Odds Ratio <u>M-H, Fixed, 95% CI</u> 1.49 (0.53, 4.21) 1.50 (0.53, 4.22) 0.91 (0.38, 2.14) 1.22 (0.70, 2.11)	Odds Ratio M-H, Fixed, 95% Cl
G	Study or Subgroup Bhatt 2009 Bhatt 2013 Harrington 2009 Total (95% CI) Total events Heterogeneity: Chi ² =	Experin Events 9 10 28 0.76, df=	nental 2662 5529 4374 12565 2 (P = 0	Cont <u>Events</u> 6 6 11 23 .68); I ² =	rol 2650 5527 4365 12542 0%	Weight 26.1% 26.1% 47.8% 100.0%	Odds Ratio <u>M-H, Fixed, 95% CI</u> 1.49 [0.53, 4.21] 1.50 [0.53, 4.22] 0.91 [0.38, 2.14] 1.22 [0.70, 2.11]	Odds Ratio M-H, Fixed, 95% Cl
G	Study or Subgroup Bhatt 2009 Bhatt 2013 Harrington 2009 Total (95% CI) Total events Heterogeneity: Chi ² = Test for overall effect:	Experin Events 9 9 10 28 0.76, df= : Z = 0.69 (nental Total 2662 5529 4374 12565 2 (P = 0 (P = 0.49	Cont <u>Events</u> 6 6 11 23 .68); I ² =	rol <u>Total</u> 2650 5527 4365 12542 0%	Weight 26.1% 26.1% 47.8% 100.0%	Odds Ratio <u>M.H, Fixed, 95% CI</u> 1.49 [0.53, 4.21] 1.50 [0.53, 4.22] 0.91 [0.38, 2.14] 1.22 [0.70, 2.11]	Odds Ratio M-H, Fixed, 95% Cl 0.01 0.1 1 10 100 Favours [experimental] Favours [control]
D	Study or Subgroup Bhatt 2009 Bhatt 2013 Harrington 2009 Total (95% CI) Total events Heterogeneity: Chi ² = Test for overall effect:	Experin Events 9 9 10 28 0.76, df = 2 = 0.69 (nental Total 2662 5529 4374 12565 2 (P = 0 (P = 0.49	Cont <u>Events</u> 6 6 11 23 .68); I ² = 1	rol <u>Total</u> 2650 5527 4365 12542 0%	Weight 26.1% 26.1% 47.8%	Odds Ratio <u>M.H, Fixed, 95% CI</u> 1.49 [0.53, 4.21] 1.50 [0.53, 4.22] 0.91 [0.38, 2.14] 1.22 [0.70, 2.11]	Odds Ratio M-H, Fixed, 95% CI
D G	Study or Subgroup Bhatt 2009 Bhatt 2013 Harrington 2009 Total (95% CI) Total events Heterogeneity: Chi ² = Test for overall effect: USTO moderate ble	Experin Events 9 9 10 28 0.76, df= Z = 0.69 eeding	nental Total 2662 5529 4374 12565 2 (P = 0 (P = 0.49	Cont <u>Events</u> 6 6 11 23 .68); ² =	rol <u>Total</u> 2650 5527 4365 12542 0%	Weight 26.1% 26.1% 47.8% 100.0%	Odds Ratio <u>M-H, Fixed, 95% CI</u> 1.49 [0.53, 4.21] 1.50 [0.53, 4.22] 0.91 [0.38, 2.14] 1.22 [0.70, 2.11]	Odds Ratio M-H, Fixed, 95% Cl 0.01 0.1 10 100 avours [experimental] Favours [control]
DG	Study or Subgroup Bhatt 2009 Bhatt 2013 Harrington 2009 Total (95% CI) Total events Heterogeneity: Chi ² = Test for overall effect: USTO moderate blo	Experin <u>Events</u> 9 9 10 28 0.76, df= : Z = 0.69 (eeding Experin	nental Total 2662 5529 4374 12565 2 (P = 0 (P = 0.49 ental	Cont <u>Events</u> 6 6 11 23 .68); I ² = 1) Contr	rol Total 2650 5527 4365 12542 0%	Weight 26.1% 26.1% 47.8% 100.0%	Odds Ratio <u>M-H, Fixed, 95% CI</u> 1.49 [0.53, 4.21] 1.50 [0.53, 4.22] 0.91 [0.38, 2.14] 1.22 [0.70, 2.11] Odds Ratio	Odds Ratio M-H, Fixed, 95% Cl 0.01 0.1 10 100 avours [experimental] Favours [control] Odds Ratio
DG	Study or Subgroup Bhatt 2009 Bhatt 2013 Harrington 2009 Total (95% CI) Total events Heterogeneity: Chi ² = Test for overall effect: USTO moderate blo Study or Subgroup	Experin Events 9 9 10 28 0.76, df= 2 = 0.69 eeding Experim Events	nental <u>Total</u> 2662 5529 4374 12565 2 (P = 0 (P = 0.49 (P = 0.49 ental <u>Total</u>	Cont <u>Events</u> 6 6 11 23 .68); I ² = 1) Contr <u>Events</u>	rol <u>Total</u> 2650 5527 4365 12542 0% ol <u>Total</u>	Weight 26.1% 26.1% 47.8% 100.0%	Odds Ratio <u>M-H, Fixed, 95% CI</u> 1.49 [0.53, 4.21] 1.50 [0.53, 4.22] 0.91 [0.38, 2.14] 1.22 [0.70, 2.11] Odds Ratio <u>M-H, Fixed, 95% CI</u>	Odds Ratio M-H, Fixed, 95% Cl
D G	Study or Subgroup Bhatt 2009 Bhatt 2013 Harrington 2009 Total (95% CI) Total events Heterogeneity: Chi ² = Test for overall effect: USTO moderate blo Study or Subgroup Bhatt 2009	Experin Events 9 9 10 28 0.76, df= 27 = 0.69 (eeding Experim Events 20 20	rental Total 2662 5529 4374 12565 2 (P = 0 (P = 0.49 ental Total 2662 5529 2 (P = 0	Cont <u>Events</u> 6 6 11 23 .68); ² = 1) Contr <u>Events</u> 12 12	rol <u>Total</u> 2650 5527 4365 12542 0% ol <u>Total</u> 2650 5527 2650 5527 2650 5527	Weight 26.1% 26.1% 47.8% 100.0% Weight 20.7%	Odds Ratio <u>M-H, Fixed, 95% CI</u> 1.49 [0.53, 4.21] 1.50 [0.53, 4.22] 0.91 [0.38, 2.14] 1.22 [0.70, 2.11] Odds Ratio <u>M-H, Fixed, 95% CI</u> 1.66 [0.81, 3.41] 4.04 [0.41, 3.24]	Odds Ratio M-H, Fixed, 95% CI 0.01 0.1 1 10 100 Favours [experimental] Favours [control] Odds Ratio M-H, Fixed, 95% CI
D G	Study or Subgroup Bhatt 2009 Bhatt 2013 Harrington 2009 Total (95% CI) Total events Heterogeneity: Chi ² = Test for overall effect: USTO moderate blo Study or Subgroup Bhatt 2009 Bhatt 2013 Useriente 2000	Experin Events 9 9 10 28 0.76, df = 27 20 20 22 41	rental Total 2662 5529 4374 12565 2 (P = 0 (P = 0.49 ental Total 2662 5529 4374	Contt <u>Events</u> 6 6 11 23 .68); ² = 1) Contr <u>Events</u> 12 12 22	rol <u>Total</u> 2650 5527 4365 12542 0% ol <u>Total</u> 2650 5527 4265	Weight 26.1% 26.1% 47.8% 100.0% Weight 20.7% 20.8%	Odds Ratio <u>M-H, Fixed, 95% CI</u> 1.49 [0.53, 4.21] 1.50 [0.53, 4.22] 0.91 [0.38, 2.14] 1.22 [0.70, 2.11] Odds Ratio <u>M-H, Fixed, 95% CI</u> 1.66 [0.81, 3.41] 1.84 [0.91, 3.71] 4.24 [0.91, 3.71]	Odds Ratio M-H, Fixed, 95% CI 0.01 0.1 1 10 100 Favours [experimental] Favours [control] Odds Ratio M-H, Fixed, 95% CI
DG	Study or Subgroup Bhatt 2009 Bhatt 2013 Harrington 2009 Total (95% CI) Total events Heterogeneity: Chi ² = Test for overall effect: USTO moderate blo Study or Subgroup Bhatt 2009 Bhatt 2013 Harrington 2009	Experin Events 9 9 10 28 0.76, df = 27 = 0.69 (eeding Experim Events 20 22 41	rental Total 2662 5529 4374 12565 2 (P = 0 (P = 0.49 ental Total 2662 5529 4374	Contt <u>Events</u> 6 6 11 23 .68); ² = 1) Contr <u>Events</u> 12 12 34	rol <u>Total</u> 2650 5527 4365 12542 0% ol <u>Total</u> 2650 5527 4365	Weight 26.1% 26.1% 47.8% 100.0% Weight 20.7% 20.8% 58.5%	Odds Ratio <u>M-H, Fixed, 95% CI</u> 1.49 [0.53, 4.21] 1.50 [0.53, 4.22] 0.91 [0.38, 2.14] 1.22 [0.70, 2.11] 0.000 Ratio <u>M-H, Fixed, 95% CI</u> 1.66 [0.81, 3.41] 1.84 [0.91, 3.71] 1.21 [0.76, 1.90]	Odds Ratio M-H, Fixed, 95% CI 0.01 0.1 1 10 100 Favours [experimental] Favours [control] Odds Ratio M-H, Fixed, 95% CI
D G	Study or Subgroup Bhatt 2009 Bhatt 2013 Harrington 2009 Total (95% CI) Total events Heterogeneity: Chi ² = Test for overall effect: USTO moderate blo Study or Subgroup Bhatt 2009 Bhatt 2013 Harrington 2009 Total (95% CI)	Experin Events 9 10 28 0.76, df= Z = 0.69 Experim Events 20 22 41	rental Total 2662 5529 4374 12565 2 (P = 0 (P = 0.49 ental Total 2662 5529 4374 12565	Contr <u>Events</u> 6 6 11 23 .68); ² = 1)) Contr <u>Events</u> 12 12 34	rol 2650 5527 4365 12542 0% 0 50 <u>Total</u> 2650 5527 4365 12542	Weight 26.1% 26.1% 47.8% 100.0%	Odds Ratio <u>M-H, Fixed, 95% CI</u> 1.49 [0.53, 4.21] 1.50 [0.53, 4.22] 0.91 [0.38, 2.14] 1.22 [0.70, 2.11] 0 Odds Ratio <u>M-H, Fixed, 95% CI</u> 1.66 [0.81, 3.41] 1.84 [0.91, 3.71] 1.21 [0.76, 1.90] 1.43 [1.02, 2.00]	Odds Ratio M-H, Fixed, 95% CI 0.01 0.1 10 100 Favours [experimental] Favours [control] Odds Ratio M-H, Fixed, 95% CI
D G -	Study or Subgroup Bhatt 2009 Bhatt 2013 Harrington 2009 Total (95% CI) Total events Heterogeneity: Chi ² = Test for overall effect: USTO moderate blo Study or Subgroup Bhatt 2009 Bhatt 2013 Harrington 2009 Total (95% CI) Total events	Experin <u>Events</u> 9 9 10 28 0.76, df= Z = 0.69 eeding Experim <u>Events</u> 20 22 41 83	rental Total 2662 5529 4374 12565 2 (P = 0 (P = 0.49 ental Total 2662 5529 4374 12565	Contr <u>Events</u> 6 6 11 23 .68); ² = 1) Contr <u>Events</u> 12 12 34 58	rol 2650 5527 4365 12542 0% 0 50 <u>Total</u> 2650 5527 4365 12542	Weight 26.1% 26.1% 47.8% 100.0%	Odds Ratio <u>M-H, Fixed, 95% CI</u> 1.49 [0.53, 4.21] 1.50 [0.53, 4.22] 0.91 [0.38, 2.14] 1.22 [0.70, 2.11] 1.22 [0.70, 2.11] Odds Ratio <u>M-H, Fixed, 95% CI</u> 1.66 [0.81, 3.41] 1.84 [0.91, 3.71] 1.21 [0.76, 1.90] 1.43 [1.02, 2.00]	Odds Ratio M-H, Fixed, 95% Cl 0.01 0.1 1 10 100 Favours [experimental] Favours [control] Odds Ratio M-H, Fixed, 95% Cl
D G	Study or Subgroup Bhatt 2009 Bhatt 2013 Harrington 2009 Total (95% CI) Total events Heterogeneity: Chi ² = Test for overall effect: USTO moderate blo Study or Subgroup Bhatt 2019 Bhatt 2019 Harrington 2009 Total (95% CI) Total events Heterogeneity: Chi ² =	Experin <u>Events</u> 9 9 10 28 0.76, df= Z = 0.69 eeding Experim <u>Events</u> 20 22 41 83 1.19, df=	rental Total 2662 5529 4374 12565 2 (P = 0 (P = 0.49 ental Total 2662 5529 4374 12565 2 (P = 0.	Contr <u>Events</u> 6 6 11 23 .68); I ² = 1) Contr <u>Events</u> 12 12 12 34 58 55); I ² = 0	rol Total 2650 5527 4365 12542 0% ol Total 2650 5527 4365 12542 %	Weight 26.1% 26.1% 47.8% 100.0% Weight 20.7% 20.8% 58.5% 100.0%	Odds Ratio <u>M-H, Fixed, 95% CI</u> 1.49 [0.53, 4.21] 1.50 [0.53, 4.22] 0.91 [0.38, 2.14] 1.22 [0.70, 2.11] 1.22 [0.70, 2.11] 0dds Ratio <u>M-H, Fixed, 95% CI</u> 1.66 [0.81, 3.41] 1.84 [0.91, 3.71] 1.21 [0.76, 1.90] 1.43 [1.02, 2.00]	Odds Ratio M-H, Fixed, 95% Cl 0.01 0.1 10 100 Favours [experimental] Favours [control] Odds Ratio M-H, Fixed, 95% Cl 0.01 0.1 10 100

Figure 3. Effects of new intravenous P2Y12 inhibitor compared with clopidogrel on safety events in patients with CAD.

ence in major bleeding event between new intravenous P2Y12 inhibitors and clopidogrel. One previous meta-analysis about comparing cangrelor with clopidogrel or placebo for prevention of thrombotic complications during and after PCI, suggested that cangrelor reduced PCI periprocedural thrombotic complications at the expense of increased bleeding [25]. Dissimilarly, our pooled analysis consisted of 36,803 CAD patients, and we found that new intravenous P2Y12 inhibitor was only related to increase minor bleeding in patients with CAD.

It is well known that new oral P2Y12 antagonists (prasugrel and ticagrelor) provide more rapid and consistent platelet inhibition than clopidogrel, especially for patients with STEMI. However, these oral agents still require hours to reach effective function of platelet inhibition, and moreover they are limited by the uncontrollable bleeding profile [8, 26, 27]. While the plasma half-life of cangrelor is approximately several minutes, so platelet function can be restored within 1 hour after stop of the infusion [28]. Based on these points, our meta-analysis supported that cangrelor is superior for clinical implications, in spite of further investigation are still required.

There are several limitations in our systemic review. Firstly, as with any meta-analysis, it is limited by the follow-up period of the enrolled trials and the sample sizes, along with other substrate-modifying strategies. For example, in this meta-analysis, the method of agents' administration in each trial were not completely consistent, and this may induce bias in results. And there was disparity in the definition of some outcome events among the enrolled trials (myocardial infarction and MACE). Secondly, in most of the included trials, it was hard to delineate the two separate subtypes of stroke clearly (hemorrhagic and ischemic), because of a lack of clinical information in detail. So we did not include this important indicator. Thirdly, heterogeneity caused by different factors is an unavoidable limitation. Fortunately, the heterogeneities of clinical outcomes in our meta-analysis can be identified, and did not influence our overall conclusion.

Conclusions

In this updated analysis, new intravenous P2Y12 inhibitor (cangrelor) is associated with a reduced risk for MACE and stent thrombosis in patients with CAD, at the expense of increased minor bleeding.

Disclosure of conflict of interest

None.

Address correspondence to: Dr. Ya-Chen Zhang, Division of Cardiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 1665 Kong Jiang Road, Shanghai 200092, China. Tel: +86-21-25078999; Fax: +86-21-6515398; E-mail: zhangyachen1965@ 163.com

References

- [1] Yusuf S, Zhao F, Mehta SR, Chrolavicius S, Tognoni G, Fox KK; Clopidogrel in Unstable Angina to Prevent Recurrent Events Trial Investigators. Effects of clopidogrel in addition to aspirin in patients with acute coronary syndromes without st-segment elevation. N Engl J Med 2001; 345: 494-502.
- [2] Chen ZM, Jiang LX, Chen YP, Xie JX, Pan HC, Peto R, Collins R, Liu LS; COMMIT (ClOpidogrel and Metoprolol in Myocardial Infarction Trial)

collaborative group. Addition of clopidogrel to aspirin in 45, 852 patients with acute myocardial infarction: randomised placebo-controlled trial. Lancet 2005; 366: 1607-1621.

- [3] Lotrionte M, Castagno D, Agostoni P, Abbate A, Sangiorgi G, Sheiban I, Biondi-Zoccai GG. Long-term effect of chronic oral anticoagulation: focus on coronary artery disease. Future Cardiol 2009; 5: 259-271.
- [4] Serebruany VL, Steinhubl SR, Berger PB, Malinin Al, Bhatt DL, Topol EJ. Variability in platelet responsiveness to clopidogrel among 544 individuals. J Am Coll Cardiol 2005; 45: 246-251.
- [5] Chen Y, Zhang Y, Tang Y, Huang X, Xie Y. Highmaintenance-dose clopidogrel in patients undergoing percutaneous coronary intervention: a systematic review and meta-analysis. PLoS One 2013; 8: e78549.
- [6] Mehta SR, Tanguay JF, Eikelboom JW, Jolly SS, Joyner CD, Granger CB, Faxon DP, Rupprecht HJ, Budaj A, Avezum A, Widimsky P, Steg PG, Bassand JP, Montalescot G, Macaya C, Di Pasquale G, Niemela K, Ajani AE, White HD, Chrolavicius S, Gao P, Fox KA, Yusuf S; CUR-RENT-OASIS 7 trial investigators. Double-dose versus standard-dose clopidogrel and highdose versus low-dose aspirin in individuals undergoing percutaneous coronary intervention for acute coronary syndromes (currentoasis 7): a randomised factorial trial. Lancet 2010; 376: 1233-1243.
- [7] Price MJ, Berger PB, Teirstein PS, Tanguay JF, Angiolillo DJ, Spriggs D, Puri S, Robbins M, Garratt KN, Bertrand OF, Stillabower ME, Aragon JR, Kandzari DE, Stinis CT, Lee MS, Manoukian SV, Cannon CP, Schork NJ, Topol EJ; GRAVITAS Investigators. Standard-vs high-dose clopidogrel based on platelet function testing after percutaneous coronary intervention: the gravitas randomized trial. JAMA 2011; 305: 1097-1105.
- [8] Wiviott SD, Braunwald E, McCabe CH, Montalescot G, Ruzyllo W, Gottlieb S, Neumann FJ, Ardissino D, De Servi S, Murphy SA, Riesmeyer J, Weerakkody G, Gibson CM, Antman EM; TRI-TON-TIMI 38 Investigators. Prasugrel versus clopidogrel in patients with acute coronary syndromes. N Engl J Med 2007; 357: 2001-2015.
- [9] Wallentin L, Becker RC, Budaj A, Cannon CP, Emanuelsson H, Held C, Horrow J, Husted S, James S, Katus H, Mahaffey KW, Scirica BM, Skene A, Steg PG, Storey RF, Harrington RA; PLATO Investigators, Freij A, Thorsén M. Ticagrelor versus clopidogrel in patients with acute coronary syndromes. N Engl J Med 2009; 361: 1045-1057.
- [10] Bhatt DL, Lincoff AM, Gibson CM, Stone GW, McNulty S, Montalescot G, Kleiman NS, Goodman SG, White HD, Mahaffey KW, Pollack CV

Jr, Manoukian SV, Widimsky P, Chew DP, Cura F, Manukov I, Tousek F, Jafar MZ, Arneja J, Skerjanec S, Harrington RA; CHAMPION PLAT-FORM Investigators. Intravenous platelet blockade with cangrelor during pci. N Engl J Med 2009; 361: 2330-2341.

- [11] Bhatt DL, Stone GW, Mahaffey KW, Gibson CM, Steg PG, Hamm CW, Price MJ, Leonardi S, Gallup D, Bramucci E, Radke PW, Widimský P, Tousek F, Tauth J, Spriggs D, McLaurin BT, Angiolillo DJ, Généreux P, Liu T, Prats J, Todd M, Skerjanec S, White HD, Harrington RA; CHAM-PION PHOENIX Investigators. Effect of platelet inhibition with cangrelor during pci on ischemic events. N Engl J Med 2013; 368: 1303-1313.
- [12] White HD, Chew DP, Dauerman HL, Mahaffey KW, Gibson CM, Stone GW, Gruberg L, Harrington RA, Bhatt DL. Reduced immediate ischemic events with cangrelor in pci: a pooled analysis of the champion trials using the universal definition of myocardial infarction. Am Heart J 2012; 163: 182-190.
- [13] Cutlip DE, Windecker S, Mehran R, Boam A, Cohen DJ, van Es GA, Steg PG, Morel MA, Mauri L, Vranckx P, McFadden E, Lansky A, Hamon M, Krucoff MW, Serruys PW; Academic Research Consortium. Clinical end points in coronary stent trials: a case for standardized definitions. Circulation 2007; 115: 2344-2351.
- [14] Chesebro JH, Knatterud G, Roberts R, Borer J, Cohen LS, Dalen J, Dodge HT, Francis CK, Hillis D, Ludbrook P, et al. Thrombolysis in Myocardial Infarction (TIMI) Trial, Phase I: A comparison between intravenous tissue plasminogen activator and intravenous streptokinase. Clinical findings through hospital discharge. Circulation 1987; 76: 142-154.
- [15] Higgins JP, Green S. (2013) Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 [updated March 2011]. The Cochrane Collaboration. Retrieved onpublished at whilst December year 1111 from www.cochrane-handbook.org.
- [16] Leonardi S, Mahaffey KW, White HD, Gibson CM, Stone GW, Steg GW, Hamm CW, Price MJ, Todd M, Dietrich M, Gallup D, Liu T, Skerjanec S, Harrington RA, Bhatt DL. Rationale and design of the Cangrelor versus standard therapy to achieve optimal management of platelet inhibition phoenix trial. Am Heart J 2012; 163: 768-776.
- [17] Harrington RA, Stone GW, McNulty S, White HD, Lincoff AM, Gibson CM, Pollack CV Jr, Montalescot G, Mahaffey KW, Kleiman NS, Goodman SG, Amine M, Angiolillo DJ, Becker RC, Chew DP, French WJ, Leisch F, Parikh KH, Skerjanec S, Bhatt DL. Platelet inhibition with cangrelor in patients undergoing PCI. N Engl J Med 2009; 361: 2318-2329.

- [18] Ferguson AD, Dokainish H, Lakkis N. Aspirin and clopidogrel response variability. Tex Heart Inst J 2008; 35: 313-320.
- [19] Bonello L, Tantry US, Marcucci R, Blindt R, Angiolillo DJ, Becker R, Bhatt DL, Cattaneo M, Collet JP, Cuisset T, Gachet C, Montalescot G, Jennings LK, Kereiakes D, Sibbing D, Trenk D, Van Werkum JW, Paganelli F, Price MJ, Waksman R, Gurbel PA; Working Group on High On-Treatment Platelet Reactivity. Working Group on High On-Treatment Platelet Reactivity. Consensus and future directions on the definition of high on-treatment platelet reactivity to adenosine diphosphate. J Am Coll Cardiol 2010; 56: 919-933.
- [20] Ren H, Li M, Feng L, Jiang J, Zhang Y, Zhang Y, Zhu X. Effects of clopidogrel on vascular proliferation and apoptosis in an atherosclerotic rabbit model. J Cardiovasc Pharmacol 2010; 55: 617-624.
- [21] Heitzer T, Rudolph V, Schwedhelm E, Karstens M, Sydow K, Ortak M, Tschentscher P, Meinertz T, Böger R, Baldus S. Clopidogrel improves systemic endothelial nitric oxide bioavailability in patients with coronary artery disease: evidence for antioxidant and antiinflammatory effects. Arterioscler Thromb Vasc Biol 2006; 26: 1648-1652.
- [22] CURRENT-OASIS 7 Investigators, Mehta SR, Bassand JP, Chrolavicius S, Diaz R, Eikelboom JW, Fox KA, Granger CB, Jolly S, Joyner CD, Rupprecht HJ, Widimsky P, Afzal R, Pogue J, Yusuf S. Dose comparisons of clopidogrel and aspirin in acute coronary syndromes. N Engl J Med 2010; 363: 930-942.
- [23] Biondi-Zoccai G, Lotrionte M, Agostoni P, Abbate A, Romagnoli E, Sangiorgi G, Angiolillo DJ, Valgimigli M, Testa L, Gaita F, Sheiban I. Adjusted indirect comparison meta-analysis of prasugrel versus ticagrelor for patients with acute coronary syndromes. Int J Cardiol 2011; 150: 325-331.
- [24] Cannon CP, Husted S, Harrington RA. Safety, tolerability, and initial efficacy of AZD6140, the first reversible oral adenosine diphosphate receptor antagonist, compared with clopidogrel, in patients with non-ST-segment elevation acute coronary syndrome: primary results of the DISPERSE-2 trial. J Am Coll Cardiol 2007; 50: 1844-1851.
- [25] Steg PG, Bhatt DL, Hamm CW, Stone GW, Gibson CM, Mahaffey KW, Leonardi S, Liu T, Skerjanec S, Day JR, Iwaoka RS, Stuckey TD, Gogia HS, Gruberg L, French WJ, White HD, Harrington RA; CHAMPION Investigators. Effect of cangrelor on periprocedural outcomes in percutaneous coronary interventions: a pooled analysis of patient-level data. Lancet 2013; 382: 1981-1992.

- [26] Agrawal K, Bhatt DL. Antiplatelet therapy: does prasugrel or ticagrelor suffice in patients with STEMI? Nat Rev Cardiol 2013; 10: 121-122.
- [27] Alexopoulos D, Xanthopoulou I, Gkizas V, Kassimis G, Theodoropoulos KC, Makris G, Koutsogiannis N, Damelou A, Tsigkas G, Davlouros P, Hahalis G. Randomized Assess ment of ticagrelor versus prasugrel antiplatelet eff ects in patients with ST-segment-elevation myocardial infarction. Circ Cardiovasc Interv 2012; 5: 797-804.
- [28] Angiolillo DJ, Schneider DJ, Bhatt DL, French WJ, Price MJ, Saucedo JF, Shaburishvili T, Huber K, Prats J, Liu T, Harrington RA, Becker RC. Pharmacodynamic effects of cangrelor and clopidogrel: the platelet function substudy from the Cangrelor versus Standard Therapy to Achieve Optimal Management of Platelet Inhibition (CHAMPION) trials. J Thromb Thrombolysis 2012; 34: 44-55.