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Quantitative proteomic analysis reveals a simple
strategy of global resource allocation in bacteria
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Abstract

A central aim of cell biology was to understand the strategy of
gene expression in response to the environment. Here, we study
gene expression response to metabolic challenges in exponentially
growing Escherichia coli using mass spectrometry. Despite enor-
mous complexity in the details of the underlying regulatory
network, we find that the proteome partitions into several
coarse-grained sectors, with each sector’s total mass abundance
exhibiting positive or negative linear relations with the growth
rate. The growth rate-dependent components of the proteome
fractions comprise about half of the proteome by mass, and their
mutual dependencies can be characterized by a simple flux
model involving only two effective parameters. The success and
apparent generality of this model arises from tight coordination
between proteome partition and metabolism, suggesting a princi-
ple for resource allocation in proteome economy of the cell. This
strategy of global gene regulation should serve as a basis for
future studies on gene expression and constructing synthetic
biological circuits. Coarse graining may be an effective approach
to derive predictive phenomenological models for other ‘omics’
studies.
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Introduction

One of the most extensively studied questions in biology is how

cells alter gene expression to deal with changes in their environ-

ment. A widely held view, supported by a mountain of observa-

tions, is the idea that cells handle challenges to growth-limiting

perturbations, for example, nutrient limitation, by increasing the

amount of enzymes devoted to overcoming the limited process, in

analogy with ‘supply and demand’ (Hofmeyr & Cornish-Bowden,

2000). This qualitative picture has been widely articulated in

conceptual models from early on (Hinshelwood, 1944) to the pres-

ent and is supported by analyses of 2D gel experiments (O’Farrell,

1975), microarrays (Brown & Botstein, 1999), deep sequencing

(Ingolia et al, 2009), mass spectrometry (Aebersold & Mann, 2003),

and other high-throughput measurements of gene expression

(Ghaemmaghami et al, 2003; Taniguchi et al, 2010). For example,

cells grown in minimal media increase the level of amino acid

synthesis enzymes compared to rich media, and cells grown in the

presence of translation inhibitors increase the synthesis of ribo-

somes (Dennis, 1976; Tao et al, 1999; Boer et al, 2003). Despite

these results, there is little in the way of a quantitative understand-

ing of resource allocation even in the simplest cells (Chubukov &

Sauer, 2014).

Recently, it was shown that simple genetic circuits respond to

changes in the physiological state of a cell in different ways,

based upon the details of their defined regulation (Klumpp et al,

2009). At the molecular level, a cell’s response to an applied

limitation is the outcome of a complex interaction of metabolites,

transcription factors, promoters, and other factors, conspiring to

produce the observed pattern of gene expression. It is therefore

unclear how the behavior of single genes under defined and

specific regulation can be generalized to shifts in global gene

expression arising from environmental changes. Many elementary

questions remain unaddressed. In response to a growth-limiting

perturbation, by how much does the cell adjust its composition

to deal with the limiting process(es)? Does the cell handle limita-

tion in the supply of a given nutrient by adjusting operons

related to the specific shortage, or is gene expression organized

according to some higher schema? Can the effect of different

types of growth limitations be meaningfully compared? From the

perspective of analysis, can cellular response, with changes in

thousands of quantities as revealed by ‘omics’ experiments, be

summarized by simple quantitative measures beyond statistical

analysis? In characterizing the state of a gas, useful quantitative
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measures are macroscopic quantities such as pressure and

temperature, not the statistical clustering of the trajectories of

molecules in the gas. In systems biology, might similar measures

exist to provide meaningful quantitative characterization of cellu-

lar responses?

Early studies of bacterial physiology identified a number of

relations between the cell growth rate and quantities such as

chromosome copy number, cell mass, and ribosome content

(Schaechter et al, 1958; Bremer & Dennis, 2009). Despite the

incredible complexity of ribosome biogenesis and its regulation,

the proportion of translational machinery among all proteins can

be captured by a simple linear relation with the cell growth rate

(Bennett & Maaloe, 1974). These observations hint to a quantita-

tive framework underlying the intuitive ‘supply and demand’

picture. The hint is the balance between the flux of amino acids

synthesized into proteins by ribosomes and the flux of molecular

building blocks from catabolic and biosynthetic reactions culmi-

nating in amino acids that are consumed by the ribosomes. This

highlights an attractive possibility. If enzymes are regulated as

subsets according to their shared purpose, as the hundred or so

genes involved in translation are, it may be possible to capture

their collective behavior quantitatively as is possible for the

translational machinery. Rather than focusing upon the molecular

details of hundreds of enzymes as they facilitate myriad reac-

tions, the enzymes of a functional group might instead be profit-

ably viewed as a single effective coarse-grained enzyme that

catalyzes interconversion between major metabolic pools, such as

carbon precursors to amino acids. In this view, proteome-wide

response to nutrient limitations may be characterized quantita-

tively as adjustments to the concentrations of coarse-grained

enzymes. This coarse-grained view of the proteome yields a

simple picture that is amenable to mathematical analysis.

Recently, the coarse-graining approach has been used to address

the effects of protein overexpression (Scott et al, 2010), cAMP-

mediated catabolite repression (You et al, 2013), growth bistability

in response to antibiotics (Deris et al, 2013), and methionine

biosynthesis (Li et al, 2014). But these studies focused on the

expression of only a few genes, declared to be proxies for

hundreds of proteins (Scott et al, 2010; You et al, 2013), or

isolated in a backdrop of changing proteome (Deris et al, 2013;

Li et al, 2014). There has been no study of its global applicability

and, indeed, no work to predict quantitative proteome composi-

tion from physiological state.

Toward this end, it is our aim to quantitatively characterize

global gene expression under various modes of growth limitation

and to interrogate the intuitive ideas regarding resource allocation

quantitatively. Samples were collected for E. coli cells growing expo-

nentially in a variety of growth conditions: under titration of carbon

import and nitrogen assimilation, and in the presence of varying

amounts of translation inhibitor. Using quantitative mass spectro-

metry, the relative concentrations of ~1,000 enzymes were

measured across the set of growth-limiting conditions. Analysis of

the enzyme concentrations reveals six groups of enzymes with

distinct modes of gene expression in response to the applied limita-

tions. An enrichment analysis of gene ontology terms appearing in

these groups shows that each group consists of enzymes with

uniform purpose, such as translation and catabolism. The cell

up-regulates relevant groups to counteract the imposed limitation,

confirming the qualitative expectations based on supply and

demand. A key to this analysis is the concept of an ‘effective

concentration’ for each coarse-grained enzyme, obtained as the frac-

tional abundance of the sum of all its enzyme components among

all expressed proteins in each condition. The concentration of the

coarse-grained enzymes was estimated using coarse-grained spectral

counts as a proxy for protein abundance (Malmström et al, 2009).

Strikingly, the concentrations of these coarse-grained enzymes

correlated linearly with the growth rate. These data, together with

the intrinsic constraints of finite resource allocation, led to the

construction of a self-consistent, flux-matching model of the prote-

ome that not only quantitatively accounts for all the observed data

but also predicts proteome composition in novel environments

involving combinatorial modes of growth limitation.

Results

Growth limitations

To probe gene expression, cell growth was perturbed by imposing

three different modes of growth limitation at crucial bottlenecks in

the metabolic network. A coarse-grained metabolic flow diagram

for protein production by E. coli growing in minimal medium is

shown in Fig 1. Four metabolic sections act in concert to convert

external carbon sources to proteins, incorporating nitrogen and

sulfur elements during the process. Following the work of You et al

(You et al, 2013), growth limitation was imposed on three of the

four metabolic sections. The limitation imposed on the catabolic

section (C-limitation or C-lim) was implemented by titrating the

expression of lactose permease for cells growing on lactose

(Supplementary Fig S1). The limitation on the anabolic section

(A-limitation or A-lim) was realized by titrating a key enzyme

(GOGAT) in the ammonia assimilation pathway (Supplementary

Fig S2). Such ‘titratable uptake systems’ have been characterized in

detail and found comparable to other modes of growth limitations

such as those derived from continuous culture or microfluidic

devices (You et al, 2013). To impose growth limitation on the poly-

merization sections, sublethal amounts of a translation inhibitor

antibiotic, chloramphenicol, were supplied to the growth medium

to inhibit translation by ribosomes (R-limitation or R-lim). The

collective response of the E. coli proteome to these applied growth

limitations was monitored using quantitative mass spectroscopy.

Quantitative proteomic mass spectrometry

Proteomic mass spectrometry is a powerful tool for quantifying

changes in global protein expression patterns (Aebersold & Mann,

2003; Ong & Mann, 2005; Bantscheff et al, 2007; Han et al, 2008).

As shown below, mass spectrometry also has the advantage of

reliably detecting small changes in protein levels, with precision

comparable to that of enzymatic assays. Metabolic labeling with
15N (Oda et al, 1999) provides relative quantitation of unlabeled

proteins with respect to labeled proteins across growth conditions

of interest. Each experimental sample in a series is mixed in equal

amount with a known labeled standard sample as reference, and

the relative change of protein expression in the experimental

sample is obtained for each protein.
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Accuracy and precision

The accuracy and precision of quantifying relative protein

expression levels was determined from a standard curve using

samples of unlabeled and 15N-labeled purified ribosomes. The

observed relative levels, measured by ratios of the labeled to the

unlabeled ribosomal proteins (or 15N/14N), agree extremely well

with the expected values over a range of about two orders of

magnitude (Fig 2A). To assess the accuracy and precision for a

whole-cell lysate with a much more complex proteome, labeled and

unlabeled cells were mixed in fixed ratios and measured with quanti-

tative mass spectrometry. The relative changes in protein levels can

be precisely determined over the range of ratios from 0.1 to 10, as

shown in Fig 2B. The effective precision of relative protein

quantification is �18%, based on analysis of the 1:1 sample

(Supplementary Fig S3). Thus, subtle changes in proteome

composition that are much < 2-fold can be precisely determined.

Furthermore, the relative quantitation using quantitative mass

spectrometry agrees extremely well with a traditional biochemical

measurement of ribosome content (Supplementary Fig S4A) and

also with quantitation of LacZ using a b-galactosidase assay

(Supplementary Fig S4B).

Datasets and protein coverage

For the C-, A-, and R-limitations, a series of cultures were prepared

with varying growth rates. For the C-limitation series, controlled

inducible expression of the lacY gene gave doubling times from 40

to 92 min (five conditions), for the A-limitation series, controlled

expression of GOGAT gave doubling times from 43 to 91 min (five

conditions), and for the R-limitation series, inhibition of protein

synthesis with chloramphenicol gave doubling times from 42 to

147 min (four conditions), as detailed in Supplementary Table S1.

Samples from each of the fourteen cultures were collected, and the

relative protein levels were determined using mass spectrometry, as

described in the Materials and Methods. For C-, A-, and R-limita-

tions, the numbers of proteins with reliable expression data are 856,

898, and 756, respectively. Most proteins present in one dataset are

present in others, with 616 proteins shared in all three datasets and

a total of 1,053 unique proteins in any dataset. Due to a highly non-

uniform distribution of protein abundance, our experiments are

estimated to cover ~80% of the total proteome by mass and are vali-

dated using absolute abundance estimated by a recent experiment

using ribosome profiling (Li et al, 2014); see Supplementary Fig S5.

For data analysis, the combined datasets were represented as

a matrix of 1,053 proteins across the 14 growth conditions

(Supplementary Table S2), graphically shown in Fig 2C.

Clustering analysis of protein expression trends

A qualitative global analysis of the data was performed with hierar-

chical clustering using the Pearson correlation as a distance metric

(Materials and Methods), and the resulting dendrogram is shown on

the expression matrix in Fig 2C. Five major clusters are apparent,

characterized by different trends in the three limitation series. The

cluster where protein levels increase as growth rate is reduced

under C-limitation, but decrease under A- and R-limitations, repre-

sents proteins that specifically respond to C-limitation and is

designated as the C-cluster. The A-cluster is defined by increased

protein levels under A-limitation, but decreased levels under C- and

R-limitations, responding specifically to A-limitation. Similarly, the

cluster where proteins levels increase in response to R-limitation,

but decrease under C- and A-limitations, specifically respond to

R-limitation and is designated as the R-cluster. The S-cluster is

defined by protein levels that increase under both A- and C-limita-

tions. Finally, the cluster for proteins that generally do not respond

specifically to any of the three modes of growth limitation is

designated as the U-cluster.

The clustering analysis is useful for providing an overview of the

trends in the proteomic data, and revealing the qualitative responses

of proteins to the different modes of growth limitation: Most

proteins respond specifically to a single mode of growth limitation

with the exception of the S-cluster. These clusters suggest that prote-

ome levels are strongly coordinated based on the environmental

Figure 1. Coarse-grained metabolic flow of protein production and the
three modes of growth limitation.
Through the (carbon) catabolic section, the cells take up external carbon sources
and break them down into the set of standard carbon skeletons (pyruvate,
oxaloacetate, etc.). The carbon skeletons are interconvertible through the central
metabolism section. The anabolic section synthesizes amino acids from the carbon
skeletons and other necessary elements such as ammonia and sulfur. The amino
acids are then assembled into proteins by the polymerization section. The three
modes of growth limitation were imposed on the metabolic sections as shown.
The C-limitation (C-lim) and A-limitation (A-lim) were carried out with strains
constructed for titrating the catabolic and anabolic flux, respectively; see
Supplementary Figs S1 and S2, and Supplementary Table S1. The R-limitation
(R-lim) was realized for the WT strain by supplying the growth medium with
various levels of an antibiotic, chloramphenicol.
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stress and that the response of the proteome to the environment

might be amenable to a quantitative coarse-graining analysis.

Coarse-grained proteome sectors

Extensive analysis of a number of exemplary reporters of catabolic

and biosynthetic gene expression revealed strikingly linear growth

rate dependence in the expression of these genes (You et al, 2013).

The prevalence of linear growth rate dependence has been described

in omics studies of both proteins (Pedersen et al, 1978) and mRNAs

(Brauer et al, 2008). Visual inspection of the expression data of indi-

vidual proteins in Fig 2C (see Supplementary Dataset S1 for individ-

ual plots) suggested that many exhibited a linear trend, and the

coefficient of determination (R2) for the expression of each protein

was calculated for each mode of growth limitations. The cumulative

distribution of R2 for each mode of growth limitation shows

that linear dependence on growth rate is widespread in our data

(Supplementary Fig S6A), and is further supported by comparison

with a quadratic fit of the data (Supplementary Fig S6B). Possible

causes for the occurrence of low R2 values include limited method

precision (Supplementary Fig S7A) and weak growth rate depen-

dence for some genes (Supplementary Fig S7B and C). The approxi-

mate linear nature of the protein abundance data suggests that the

results may be simplified using a coarse-grained analysis, by

summing over the absolute abundance of individual proteins in a

cluster (since the sum of linear functions is still linear).

For a protein exhibiting linear growth rate dependence, a

negative slope corresponds to a higher expression level at slower

growth rate, referred to as the ‘upward’ response (↑), while a

positive slope corresponds to a lower expression level at slower

growth rate, referred to as the ‘downward’ response (↓). Given

that a protein has either upward or downward response under

each of the three modes of growth limitation (C-, A-, and

R-limitation), it has to belong to one of the 23 = 8 groups:

C↑A↓R↓, C↑A↑R↓, C↓A↑R↓, C↓A↑R↑, C↓A↓R↑, C↑A↓R↑, C↑A↑R↑, and

C↓A↓R↓, where the group names are indicated by the upward or

downward response under each of the three modes of growth

limitation. For example, the C↑A↓R↓ group consists of proteins that

have upward response under C-limitation and downward

responses under both the A- and R-limitation. The membership of

proteins in the resulting eight groups is given in Supplementary

Table S2 and graphically shown in Supplementary Fig S8. Due to

the precision limitations of the method, proteins exhibiting small

change under a specific growth limitation are subject to misclassi-

fication. To examine the effect of this misclassification on

our results, we carried out a probabilistic classification, by

assigning a protein to one of the eight groups according to a

probability (see Supplementary Text S2 for details). The analysis

shows a very limited effect misclassification has on the binary

classification.

The collective behavior of a protein group can be approxi-

mated by coarse graining, effectively summing the absolute

Figure 2. The quantitative protein mass spectrometry.

A Observed values versus real values for ratios of 15N ribosomal proteins to
14N ribosomal proteins. Black dots are the mean values, with error bars
representing the range of the values for all ribosomal proteins. The dashed
line represents perfect agreement between the observed values and real
values.

B Observed values versus real values for ratios of 15N proteins to 14N proteins
from whole-cell lysates. Black dots are the median values for more than
600 proteins. The error bar for each median value indicates the
quartiles. The dashed line represents perfect agreement between the
observed values and real values. Additional characterizations are shown in
Supplementary Figs S3 and S4.

C The expression matrix and clustering results. The matrix is composed of
1,053 proteins (rows) and 14 conditions (columns); see Supplementary
Table S2. The first five columns are for C-limitation, the next five columns
for A-limitation, and the last four columns for R-limitation. For each
mode of growth limitation, the growth rate increases from left to right.
The matrix is log2-transformed, with expression values at the standard
condition as zero (see Materials and Methods), represented as black color.
Red color indicates negative values, green color positive values, and gray
color missing entries. A dendrogram generated by clustering analysis is
shown on the left of the expression matrix (see Materials and Methods),
with the five major clusters shown on the right side of the matrix. The
data are estimated to cover ~80% of the proteome; see Supplementary
Fig S5.
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protein abundance of proteins in the same group. Among the

methods for quantifying absolute protein abundance from proteo-

mic mass spectrometry data (Beynon et al, 2005; Ishihama et al,

2005, 2008; Lu et al, 2006; Silva et al, 2006; Vogel & Marcotte,

2008; Schmidt et al, 2011; Muntel et al, 2014), the method of

spectral counting takes the number of peptides recorded for each

protein as proxy for the absolute abundance of the protein

(Malmström et al, 2009). While spectral counting provides a

crude estimate of the absolute protein abundance for individual

proteins (Bantscheff et al, 2007), it gives a much more reliable

approximation for groups of proteins. For a protein group

comprising more than ~5% of the total proteome, spectral

counting produces estimates with < 20% error (Supplementary

Fig S9A). The comparison of spectral counting data for ribosomal

proteins with estimates based on biochemical measurements and

the ribosome profiling results (Li et al, 2014) is in good agree-

ment (Supplementary Fig S9B). By applying the spectral counting

method, the proteome fractions for the nine protein groups

defined in Supplementary Table S2 were determined for each of

the three series of growth limitations (Supplementary Fig S10). It

is clear from Supplementary Fig S10 that some groups occupy

significant fractions of the proteome while others are minor

constituents. Ranked by the extent the fraction varies (indicated

by the difference between the maximal and minimal intercepts on

the y-axis), the top three groups are C↑A↓R↓, C↓A↑R↓, and C↓A↓R↑.

These consist of proteins that only respond upward to the C-, A-,

and R-limitation and are referred to as the C-, A-, and R-sector,

respectively (Fig 3A–C). The C↓A↓R↓ group includes proteins that

are uninduced by any of the three applied limitations, and is

referred to as the U-sector (Fig 3D). Another significant protein

sector is the C↑A↑R↓ group, which is composed of proteins that

have upward response to both the A- and C-limitations, and

referred to as the S-sector for general starvation; see Fig 3E. The

three remaining groups (i.e., C↑A↑R↑, C↑A↓R↑, and C↓A↑R↑ groups)

are small, with most of the data at or below 5% of the

proteome, below the accuracy of the spectral counting method

(Supplementary Fig S9A). The three small groups were placed

together into the O-sector (Fig 3F). In summary, the proteome is

coarse-grained into 6 ‘sectors’: C-, A-, R-, U-, S-, and O-sectors

with distinct growth rate dependences as shown in Fig 3, with

complete data for all fractions shown in Supplementary Table S3.

In contrast, the results obtained for randomly shuffled expression

matrices do not show significant growth rate dependence (Supple-

mentary Fig S11).

Qualitative proteome responses to growth limitations

To elucidate the biological functions for each proteome sector, a

Gene Ontology (GO) analysis was carried out using an abundance-

based GO term enrichment to identify a small number of GO terms

that best represent the abundant proteins in a sector. To reach such

a list of GO terms, instead of calculating a single score of one

measure (e.g., enrichment) for each GO term as in many GO

analyses, we have taken a multi-step procedure to search for the

best representing GO terms by examining a number of different

measures such as coverage and overlap. The procedure leads to

only a few GO terms accounting for more than 60% of the proteome

in the sector; see Supplementary Text S3.

The results of the analysis are summarized in Fig 4A, with each

bar graph describing the major proteome composition for each

sector. Sixty percent of the mass fraction of each sector could be

accounted for by at most three terms, providing a simple interpreta-

tion of the functional significance of the sectors. For example, a

single GO term, ‘translation’, describes more than 70% of the

proteins in the R-sector. Since the R-limitation inhibits translation

rate, the term suggests a strategy by which the cell specifically coun-

teracts the applied growth limitation by increasing the abundance of

‘translational’ proteins (Scott et al, 2010).

The GO terms best describing the C-sector are ‘ion transport’,

‘tricarboxylic acid cycle’, and ‘locomotion’, pointing to a mode of

carbon scavenging (by moving and increasing carbon uptake) and

carbon saving (by increasing the efficiency of energy generation

using the tricarboxylic acid cycle) to counteract the imposed

carbon limitation. For the A-sector, the most abundant term is

‘organonitrogen compound biosynthetic process’. A closer look

reveals that most of the terms are related to biosynthesis of

amino acids (Supplementary Table S5). Again, similar to the

A

C

B

E

D

F

Figure 3. The coarse-grained proteome sectors.

A–F Coarse-grained responses of the C-, A-, R-, U-, S-, and O-sectors to the
three modes of growth limitation. As indicated in (A), the red symbols in
each panel are for C-limitation, the blue for A-limitation, and the green
for R-limitation. The error bars indicate the standard deviation of
triplicate mass spectrometry runs. Error bars smaller than the
corresponding symbols are not shown (see Supplementary Fig S10 on the
different degrees of variability associated with different sectors.) On each
plot, the number in the title indicates the number of proteins in that
sector, and colored lines are best linear fits of the data represented by
symbols of the same colors; see Supplementary Table S3 for the data on
proteome fraction and Supplementary Table S4 for parameters of the
fitted lines.
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responses to R- and C-limitations, the finding here suggests that

the cell tries to counteract the imposed A-limitation, which specif-

ically limits the biosynthesis of amino acids (Supplementary Fig

S2). Interestingly, ‘glucose metabolic process’ proteins also consti-

tute a significant fraction (~15%) of the A-sector, possibly reflect-

ing the important role of glycolysis in generating precursors for

amino acid biosynthesis.

The U-sector consists of proteins that are not up-regulated by any

of the growth limitations. More than one-third of the U-sector is

accounted for by the term ‘cellular amino acid biosynthetic process’.

The categories of proteins associated with this term are primarily

related to cysteine, methionine, and tryptophan biosynthesis

(Supplementary Table S5). This is not surprising for cysteine and

methionine synthesis since sulfur is not limited in any of the growth

limitations imposed here. The same logic applies to the case of tryp-

tophan synthesis enzymes because tryptophan biosynthesis is not

directly affected by the particular mode of A-limitation that was

applied (trans-amination, see Supplementary Fig S2), nor by the

other two limitations. The second abundant term of the U-sector is

‘purine ribonucleotide biosynthetic process’, which is again not

targeted by our mode of A-limitation. The third term is ‘regulation

of translation’, where a single ribosomal protein RpsA accounts for

the majority of the mass fraction. It is surprising that unlike most of

other ribosomal proteins, RpsA was not grouped into the R-sector.

This is likely a misclassification due to statistical fluctuation. In

summary, the U-sector is composed of enzymes that make up a

diverse group of building blocks including some amino acids and

purine ribonucleotides, with the common trait that they were not

specifically limited by the three growth limitations tested.

The major term of the S-sector is ‘carbohydrate metabolic

process’, revealing the sector’s role in central metabolism- and

energy-related activities. The other two terms are ‘response to stress’

and ‘organic substance transport’. These terms suggest the possible

‘multiple-purpose’ nature of the S-sector proteins that are mobilized

in response to starvation conditions via either C- or A-limitation.

This notion is best illustrated by the term ‘organic substance trans-

port’, consisting mostly of transporters for peptides and amino acids

which can clearly be used to counteract both C- and A-limitations

(Supplementary Table S5). The interpretation of the O-sector is less

obvious, with the top three terms as ‘macromolecule biosynthetic

process’, ‘small molecule biosynthetic process’, and ‘organic

substance transport’, reflecting diverse activities of proteins in this

sector. Due to the way the O-sector is defined (it results from

lumping together three small groups), it is likely that it also includes

proteins with weak growth rate dependencies.

In summary, the GO analysis reveals that the R-sector consists

mostly of the translational machinery, the C-sector engages in

carbon scavenging and saving, the A-sector makes nitrogen-contain-

ing building blocks consisting mostly of amino acids, and the

U-sector produces other building blocks including sulfur-containing

amino acids and purine nucleotides. In exponentially growing cells,

these coarse-grained enzymes carry steady fluxes of biomass. As

illustrated in Fig 4B, these four metabolic fluxes are denoted as JR,

JC, JA, and JU, respectively, representing a coarse-grained metabo-

lism. The S-sector shares functions with both the C- and A-sectors,

thus carrying both JC and JA fluxes.

Flux matching

The growth rate dependences of the proteome sectors shown in

Fig 3 are well described by linear relations (Supplementary Table

S4). Closer scrutiny of the data and the fits in Fig 3 suggests addi-

tional simplicity in the structure of the responses. In particular, the

downward responses in Fig 3 (positive slopes) are similar for each

sector, and such responses are referred to as ‘general’ responses as

they are not distinguishable between at least two different modes of

limitations. On the other hand, the upward response of each of the

B

A

Figure 4. Abundance-based GO analysis.

A Composition of proteome sectors. Each bar graph shows the results of the
abundance-based Gene Ontology analysis for each of the six sectors. Each
bar indicates the mass fraction the corresponding GO term accounts for
within a sector. The empty bar in each graph indicates the remaining
fraction of the sector not accounted for by the GO terms listed. The results
were calculated based on triplicate runs of all samples. Each bar height
indicates the mean result and the standard deviation is shown as the error
bar. See Supplementary Table S9 for the list of proteins represented by each
bar in each sector, and Supplementary Text S3 for details of the method.

B Association between metabolic fluxes and proteome sectors. There are four
fluxes JC, JA, JU, and JR, represented by the arrows, replenishing the pools of
carbon precursors, amino acids, other building blocks, and macromolecules,
respectively. The /s on top of the fluxes represents the corresponding
proteome fractions that carry the fluxes. Note that the S-sector proteins
contribute to both JC and JA.
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C-, A-, and R-sectors is specific to only the C-, A-, and R-limitation,

respectively, and such a response is referred to as a ‘specific’

response. The only exception is the S-sector, which has similar

upward responses to both C- and A-limitations, and the O-sector,

which is essentially growth rate-independent. These features suggest

that there is a fundamental principle underlying the proteome

response to environmental challenges.

As summarized in Fig 4B, the GO analysis provides a strong

motivation to construct a quantitative flux model for the growth rate

dependence of the fluxes associated with each of the proteome

sectors. Based on the analysis of the data in Fig 3, the proteome is

partitioned into six sectors, or ‘coarse-grained enzymes’, φr, each of

which is comprised of a basal level, φr,0, and a growth rate-

dependent component, Dφr(k), that is,

/rðkÞ ¼ /r;0 þ D/rðkÞ: (1)

In our flux model, we make the central assumption that the flux

processed by a proteome sector r, Jr, is proportional to the growth

rate-dependent component of the corresponding proteome fraction,

Dφr, that is,

Jr ¼ kr � D/r (2)

where kr is a coarse-grained kinetic coefficient describing the effi-

ciency of the metabolic sector r. The model is an extension of a

similar model proposed in a previous work based on the growth

rate dependences of a few reporter genes (You et al, 2013). The

flux of a sector can be defined as the sum of the metabolic prod-

ucts that flow out from the terminal enzymes per unit time, multi-

plied by a stoichiometric factor that reflects the composition of the

material. For the collection of enzymes that we term the R-sector,

the flux is clearly the proteins translated by ribosomes, while for

the A-sector, it is largely amino acids. Some proteins, such as those

involved in chemotaxis, do not directly handle flux in batch culture

but are nonetheless coregulated as part of the C-sector, presumably

reflecting their role in facilitating carbon flux in E. coli’s natural

environment. As shown below, the model comprising of

equations (1, 2) can quantitatively account for all of the observa-

tions summarized in Fig 3.

The ‘downward’ general responses in Fig 3 can be exemplified

by the R-sector, where the total protein synthesis flux through the

ribosomes is given by JR. The R-sector fraction of the proteome (φR)

is given by

JR ¼ kR � D/R; (3)

where kR is the corresponding enzyme kinetic parameter (given by

the peptide elongation rate (Scott et al, 2010)). In combination

with the stoichiometric requirement of the flux for cell growth,

cR � JR = k, where cR is the stoichiometric coefficient (Varma &

Palsson, 1994), the growth rate-dependent proteome fraction for

the R-sector is given by

D/RðkÞ ¼ k=mR; (4)

where mR = kRcR is an effective rate constant for the R-sector. Upon

applying the C- or A-limitation, the peptide elongation is not

affected, mR is constant and equation (4) describes a linear relation

between φR and k, which is the ‘general response’. Note that this

model explicitly predicts identical general responses for the

R-sector under C- and A- limitations (equation S1 of Supplementary

Table S6), in good agreement with the data of Fig 3.

Similarly, for the U-sector:

D/UðkÞ ¼ k=mU : (5)

The downward lines of the U-sector in Fig 3 are produced by

equation (5) as long as none of the growth limitations affects the

value of mU, and none of the metabolic processes catalyzed by the

U-sector is affected. Thus, the model predicts identical general

responses for the U-sector under C-, A-, and R- limitations (equation S2

of Supplementary Table S6), which is consistent with the data in

Fig 3.

The responses of the C-, A-, and S- sectors are more complex

since the S-sector is composed of proteins that provide both JC and

JA fluxes (Fig 4). This effect is modeled by considering two lists of

proteins, called ~C and ~A , each responding specifically to C- and

A-limitation, respectively. We apply the same linear relation

between proteome fractions /~C , / ~A and with the fluxes, that is,

/~CðkÞ ¼ /~C;0 þ k=mC

/ ~AðkÞ ¼ / ~A;0 þ k=mA
;

Then S-sector proteins are composed of those proteins that are

common to both ~C and ~A , while C- and A-sector proteins are

those unique in ~C and ~A , respectively (see Supplementary Fig

S12). This is modeled as the follows,

D/CðkÞ ¼ ð1� fÞ � k=mC ;
D/AðkÞ ¼ ð1� f Þ � k=mA;
D/SðkÞ ¼ f � ½k=mC þ k=mA�;

(6)

with f being the fraction of ~C- and ~A-sector proteins that are in

common (see Supplementary Fig S12). These relations describe the

general responses of the C-, A-, and S-sectors (equations S3–S5 of

Supplementary Table S6), for growth limitations that do not affect

vC or mA. Note that in a previous proteome partition model (You

et al, 2013) based on measurements of a few reporter genes, the

hypothesized C- and A-sectors correspond respectively to the
~C- and ~A-sectors here, whereas the possibility of the S-sector was

not anticipated. Finally, we assume the existence of a growth rate-

independent sector and identify it with the O-sector, that is,

φO(k) = φO,0 (equation S6 of Supplementary Table S6) with

D/OðkÞ ¼ 0: (7)

Constraint of finite proteome resources

A striking result of this flux model is that the ‘specific’ upward

responses of the C-, A-, R-, and S-sectors in Fig 3 can also be

produced by equations (4–7), without introducing any additional

parameters. For example, under R-limitation, the value of mR
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changes in response to the limitation, and consequently, the growth

rate dependence of φR can no longer be obtained from equation (4).

However, DφR(k) can be obtained from the important constraintP
r
/rðkÞ ¼ 1; or equivalently

X
r

D/rðkÞ ¼ /max; (8)

where /max � 1�P
r
/r;0. Since under R-limitation only mR is

reduced, all other sectors still follow the general responses. Using

equations (4–8), the expression for the specific response of the

R-sector becomes:

D/RðkÞ ¼ /max � k=jR; (9)

with j�1
R � m�1

C þ m�1
A þ m�1

U (equation S7 of Supplementary Table

S6). Note that both parameters appearing in equation (9) are deter-

mined completely in terms of the parameters already introduced,

and an important feature of the flux model is that there is no addi-

tional parameter for the specific responses once the general

responses are established. In a similar manner, the specific

responses of the C-, A-, and S-sectors are obtained in terms of /max

and the ms, with no additional parameters; see equations (S8–S10)

of Supplementary Table S6 with derivation given in Supplementary

Fig S12.

In summary, the linear equations in Supplementary Table S6

describe the prediction of the simple flux model (equations 1, 2) on

the partitioning of the proteome as a function of growth rate under

the three different modes of growth limitation. Although the model

contains only 10 adjustable parameters, the quality of the fit of the

model to the data (lines in Fig 5; Supplementary Table S7) is

comparable to the 24-parameter fit for each individual response

(Fig 3; Supplementary Table S4).

Two global parameters

The straightforward meanings of the remaining 10 parameters are

illustrated by the cartoon in Fig 6. The top pie chart in Fig 6 repre-

sents the proteome fractions for the sectors under the glucose

standard condition, with the growth rate-independent fraction of

the proteome, φQ (gray area in the top pie chart) being

/Q ¼ P
r /r;0 ¼1� /max . The growth rate-dependent component

includes the remainder of every sector, shown as colored wedges,

whose proteome fractions make up the rest of the pie, φmax.

The bottom three pie charts in Fig 6 describe the responses of

the proteome to each of the three modes of growth limitation in

the extreme case k ? 0 according to the model. Under extreme

R-limitation, the R-sector fraction DφR approaches φmax, while under

C-limitation, φmax is partitioned into DφC,max = (1 � f) � φmax and

DφS,max = f � φmax, and under A-limitation, φmax is partitioned into

DφA,max = (1 � f) � φmax and DφS,max = f � φmax. Note that the

growth rate-dependent responses Dφr(k) are described effectively by

only two parameters, φmax and f. φmax provides a cap on the magni-

tude of the growth rate-dependent component of each sector. The

best-fit value, φmax � 40%, is in quantitative agreement with previ-

ous estimates based on the ribosomal content (Scott et al, 2010) and

a few reporters (You et al, 2013).

Model prediction and testing

Among the 10 parameters of the model, the four values of mrs are

dependent on the growth medium, while the φr,0s as well as the

constant f � 0.32 are expected to be medium independent for a

given strain. All of the data described so far (summarized in Fig 3)

were obtained using glucose minimal medium as the standard

condition (with the mrs taking on the values m�r), with each mode of

growth limitation corresponding to varying one of the mrs away from

m�r . The proteome flux model also makes explicit predictions on the

response of the proteome under combinatorial modes of growth

limitation, corresponding to varying multiple mrs. The effect of vary-

ing multiple mrs can be treated as simply repeating the single mode

of growth limitations for different standard conditions. This predic-

tion was tested by repeating the proteomic experiments under

C- and A-limitations using a different standard condition, for growth

in the glycerol minimal medium (Supplementary Table S8).

Compared to the standard condition with glucose minimal medium,

the glycerol minimal medium should differ by only the value of mC,
which is fixed by the growth rate for the glycerol standard condition

(Supplementary Table S7). Using this new value of mC, together with

the values of the other nine parameters obtained from the glucose

data, the model describes the new data remarkably well

(Fig 7; Supplementary Table S9). Thus, the model can describe

Figure 5. Performance of the proteome-based flux model.
The data points are identical to those in Fig 3. The lines here are the result of a
global fit to the predictions of the flux-based proteome model (Supplementary
Table S6). The growth rate-independent component of each sector (φr,0) is
represented as the height of the filled area in the corresponding plot. See
Supplementary Table S7 for parameters of the fitted lines.
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experiments in different standard conditions, an important bench-

mark for its ability to capture proteome responses to combinatorial

limitations.

As a further test of the model, and specifically, the notion of

general response, we studied another way of growth limitation by

expressing useless proteins (Scott et al, 2010), which reduces the

proteome fraction available for the six sectors, that is, it reduces

φmax. This was achieved by using a LacZ-overexpressing strain

(NQ1389) grown on glucose minimal medium (Supplementary

Table S8). Since the applied growth limitation does not single out

any metabolic sector, our model predicts that every proteome sector

except the O-sector should exhibit general responses (equations 4–7),

with the same slope mrs as those obtained from C-, A-, and

R-limitations. In addition, the y-offset of every sector, φr,0 in equa-

tion (1), should remain unchanged. (Mathematically, we expect

only φmax to be reduced while all other nine model parameters to

remain constant.)

The proteome fraction data (Supplementary Table S9) in

response to LacZ overexpression are shown as the black triangles in

Fig 7. We see that there is generally a congruence of the black trian-

gles and the black solid lines (general responses with glucose mini-

mal medium as the standard condition) as predicted, except for the

O-sector which also showed substantial reduction as growth rate is

decreased. This suggests that perhaps a good share of the proteins

that got classified into the O-sector actually exhibit growth

rate dependence which were obscured by noise under C, A-, and

R-limitations.

Discussion

Understanding the principles of the global regulation of gene expres-

sion is a major goal of systems biology. However, the intricacy of

genetic regulatory networks makes this goal difficult to realize

through bottom-up analysis. Quantitative measurements of the

concentrations of thousands of proteins, mRNA, and metabolites in

cells have recently become possible. These techniques invite reveal-

ing measurements of the differential composition of the cell as a

C
A

R

U

S

O

S,0

U,0

R,0

A,0 C,0

Q

C

S
Q

A

S
Q

R

Q

C-lim A-lim R-lim

Glucose
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(  = *)
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Figure 6. Representation of the proteome responses under extreme
growth limitations and interpretation of the model parameters.
The growth rate-independent component of the protein is represented as/Q (the
entire gray area), which is composed of the growth rate-independent
components of the C-, A-, R-, U-, and S-sectors, and the O-sector. See
Supplementary Table S7 for their values. The growth rate-dependent part of a
sector r is labeled as Dφr, distinguished by the different colors. The colored
wedges in the top pie chart show the sizes of these sectors, Dφr(k*), under the
glucose standard condition (with growth rate k*). Their values are as follows:
2φC = 0.07, 2φA = 0.06, 2φR = 0.13, 2φU = 0.07, and 2φS = 0.06. The pie charts at
the bottom show the sizes of these sectors under the three modes of growth
limitations in the extreme limit k ? 0. Theses sizes are governed by two
parameters, φmax = 1 � φQ and f � 0.32.

Figure 7. Proteome fractions under growth limitations with respect to
the glycerol standard condition, and under growth limitation by
expressing useless proteins.
Proteome fractions φr for C- and A-limitation under glycerol standard condition
are shown as the red and blue circles, respectively, for each of the six sectors; see
Supplementary Table S9 for values. All thick lines are model predictions for
responses under the glycerol standard condition. Thick solid lines describe
responses which are predicted to be unchanged between the glucose and
glycerol standard conditions, because these lines do not involve the parameter
mC, which has a new value for the new standard condition according to themodel.
Thick dashed lines describe responses which are predicted to be unique for the
glycerol standard condition, due to their dependence on the value of parameter
mC. See Supplementary Fig S12 describing the dashed lines for the C-, A-, R-, and
S-sectors. For comparison, the four respective proteome responses under glucose
standard condition are also shown as thin solid lines. All solid lines are from Fig 5.
Note that the new value of mC is determined from the growth rate of cells in
glycerol standard condition (Supplementary Table S7). Thus, all predictions for
the glycerol standard condition were generated with no adjustable parameters.
Proteome fractions under growth limitation by LacZ overexpression are shown as
the black triangles for the six sectors; see Supplementary Table S9 for values.
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function of growth condition, as well as a framework capable of

describing the resource allocation of the cell. Coarse-graining proce-

dures offer a means to capture the allocation of proteome resources

by the cell using such data, without detailed knowledge of thousands

of enzyme rates, binding constants, and regulatory relationships.

Here, we measured the quantitative response of ~1,000 proteins

in E. coli as cells are progressively limited in three broad manners:

limiting carbon uptake through the lactose importer, limiting nitro-

gen assimilation through the GS-GOGAT pathway, and limiting

protein translation using sublethal amounts of chloramphenicol.

Analysis of the individual protein concentrations in the three limita-

tion series suggests six distinct sectors of the proteome, and abun-

dance-based GO term enrichment reveals a functional coherence

across the enzymes of each sector that is largely orthogonal to the

functions of the other sectors. Note that the sectors are revealed by

the nature of growth limitations applied and we expect other sectors

to emerge under other growth limitations.

Coarse-grained proteome sectors

During balanced exponential growth, a constant flux of matter from

environmental nutrients cascades through the metabolic network of

the cell to form biomass. In contrast to bottom-up descriptions of

the metabolic network as an object of great complexity (e.g., the

KEGG map), our results reveal an enzymatic network that is simply

coarse-grained according to the functional grouping of the proteome

sectors. Strikingly, the mass fractions of the various proteome

sectors increase or decrease in approximately linear fashion with

the change in cell growth rate, which serves as a quantitative

measure of the degree of the applied limitation. For instance, the

C-sector, consisting mostly of carbon catabolic proteins, increases

linearly in response to the limitation of carbon influx.

The control of proteome partition is likely orchestrated by

sophisticated regulatory networks that integrate information from

multiple signaling molecules. Some of these signals are well known,

for example, ppGpp directs ribosome synthesis in accordance with

the level of amino acid depletion (Ross et al, 2013), cAMP-Crp coor-

dinates catabolic protein expression in accordance with the avail-

ability of alpha-keto acids (You et al, 2013), and the PII/NtrBC

system determines the degree of nitrogen assimilation in accordance

with the availability of glutamine (Reitzer, 2003). However, many

mysteries remain. The coherent response of the proteins in the

anabolic sector is well beyond what is known to be controlled by

nitrogen regulatory system, and the enzymes for amino acid synthe-

sis and nucleic acid synthesis are clearly distinguished in their

responses. Further, a substantial number of proteins are in the

S-sector which responds to both C- and A-limitations; yet little

similarity can be seen based on their promoter regions. It is possible

that major pleiotropic regulators are yet to be discovered or that the

roles of some existing pleiotropic regulators are to be reappraised

(as has been done recently for cAMP-Crp (You et al, 2013), a well-

characterized regulator whose function was long thought to be

understood). The simple behaviors of the proteome sectors revealed

in this work are molecular phenotypes that can be relied upon in

future studies to identify the coordinators of such coherent

responses. Importantly, a number of high abundance proteins of as

yet unknown function reside within the coarse-grained functional

sectors we identified.

In recent years, a number of studies have characterized the

growth rate dependence of relative mRNA abundance in Baker’s

yeast under various nutrient-limiting conditions in chemostat

(Regenberg et al, 2006; Castrillo et al, 2007; Levy et al, 2007; Brauer

et al, 2008; Airoldi et al, 2009). Brauer et al, Castrillo et al, and

Regenberg et al report a large group of mRNA that increase with

carbon limitation, and are characterized by the enriched GO terms

cellular carbohydrate metabolism, cellular macromolecule catabo-

lism, transport, and response to stress, recalling our C- and S-sectors

(Regenberg et al normalize their data such that 42 ORFs with nega-

tive correlations with the growth rate become growth rate indepen-

dent. With this in mind, growth rate-independent groups should

obtain negative k dependence.). Notably, Levy et al report a

decrease in ribosomal protein mRNA synthesis as the cell exits

exponential growth, while Airoldi et al successfully predict growth

rate in S. cerevisaiae from the behavior of a few reporter mRNA,

which comports with our finding that the majority of proteins

change with growth rate in a characteristic fashion (Supplementary

Text S4).

Proteome fraction as a quantitative measure

The similarities mentioned above suggest that the principles we

uncover here may be fundamental to metabolism in a variety of cell

types. However, we question the effectiveness of using mRNA

measurements to infer protein concentrations which protein activi-

ties depend on (see Supplementary Text S5). A primary lesson

drawn from the linear relation between the ribosome and growth

rate is that cells operate at saturated translational capacity (Maaloe,

1979; Scott et al, 2010). As a result, mRNA and protein levels are

not expected to couple tightly due to mRNA competition for the

limited number of ribosomes, a phenomenon also known as ribo-

some queueing (Mather et al, 2013). Indeed, studies that compare

mRNA and protein levels from H. sapiens to E. coli generally report

poor correlations that fail to provide predictive power (Pearson

correlation rp � 0.5) (Maier et al, 2009; Taniguchi et al, 2010; Vogel

et al, 2010). Further, mRNA levels are typically reported as a frac-

tion of total fluorescence intensity, that is, as a fraction of total

mRNA, without keeping track of the change in total mRNA concen-

tration across different growth conditions [e.g., cell volume can

change many fold under nutrient limitation (Schaechter et al,

1958)], so that mRNA measurements do not necessarily correlate

with mRNA concentration (Klumpp et al, 2009). Also, coarse grain-

ing requires knowledge of absolute concentrations, as can be

provided by methods such as quantitative mass spectrometry and

ribosome profiling (Li et al, 2014; Muntel et al, 2014), without

which the true cost of gene expression is difficult to quantify. For

example, a 50% increase in proteome mass fraction from 20% to

30% should not be compared to a 50% increase from 0.1% to

0.15%.

So far, the cost associated with making proteins has been quanti-

fied mostly for useless proteins (Andrews & Hegeman, 1976; Dong

et al, 1995; Kurland & Dong, 1996; Scott et al, 2010; Shachrai et al,

2010) and, in some cases, proteins with specific functions (Dekel &

Alon, 2005). Several recent studies have found that the protein cost

plays a key role in understanding regulatory strategies in metabo-

lism (Molenaar et al, 2009; Wessely et al, 2011; Flamholz et al,

2013). Genomescale computational models that integrate protein
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resource allocation to existing constraint-based models (e.g.,

stoichiometry constrained models) have been proposed as a step

forward in unraveling intricate relations between growth, metabo-

lism, and gene expression (Goelzer & Fromion, 2011; O’Brien et al,

2013). The quantitative data provided in this study will hopefully

stimulate further quantitative studies along these directions.

Open questions on regulatory mechanisms

Though mass spectrometry and ribosome profiling are capable

of providing absolute abundances and are thus crucial to coarse-

graining analysis of the proteome, there are deeper, regulatory

layers to resource allocation (requiring other techniques) that remain

unaddressed. As mentioned above, one urgent question raised by

our results is the molecular basis for the coordination of genes in

the A- and S-sectors, which could be addressed by transcription

factor profiling and quantitative metabolomics. Significant action of

a riboswitch or small RNA in translational regulation would be

invisible to mass spectrometry and ribosome profiling; here, RNA-

seq would be an obvious method to use. Finally, growth conditions

with significant protein degradation (e.g., during growth transition;

Kuroda, 2001) would lead to chronic overestimates of protein level

by ribosome profiling and underestimates of translational cost by

mass spectrometry. In these conditions, both methods could be

rescued by an accurate determination of individual protein degrada-

tion rates (e.g., by pulse labeling).

Principles of resource allocation

Despite the lack of detailed regulatory information, we showed that

a phenomenological model that stipulates flux matching in the flow

of material between the sectors of the coarse-grained reaction

network, along with the constraint of a finite proteome, is sufficient

to quantitatively capture the observed sector behavior over a range

of growth rates, with only a few parameters. These governing prin-

ciples imply that the flux through each sector r is carried by a mass

fraction φr whose size is determined by the cost of supplying flux

through the given sector under the given mode of growth limitation,

which is given by m�1
r � @/r=@k . In this way, the cell’s proteome

management is analogous to the economic concept of ‘division of

labor’ (Hayek, 1945), with finite capital allocated according to an

effective pricing system given by the mrs (Lovell, 2004; Mankiw,

2011). When a sector is specifically challenged, such as the C-sector

under carbon uptake limitation, the price to carry flux through the

C-sector, @/C=@k , is increased while the price to carry flux through

the other sectors remains the same. This requires an increased

investment of capital, for example, proteome fraction, to carry the

requisite flux JC. These results provide a quantitative framework to

buttress the common depictions of cell metabolism, putting the

conceptual device of supply and demand on rigorous footing.

Possible origins of the growth rate-independent sectors

While the growth rate-dependent components (the 2φrs) closely

follow economic principles, much of the growth rate-independent

component (/Q) comprises of offsets of the identified proteome

sectors, that is, the φr,0s as shown in Fig 6. A variety of possible

mechanisms have been proposed for the R-sector offset: A favorite

early model was the existence of a fraction of non-translating ribo-

somes; see Scott et al (2010) and references there. Zaslaver et al

(2009) obtained an offset from ad hoc optimization scheme, while

Klumpp et al (2013) proposed another mechanism based on the

growth rate dependence of tRNA. For the offsets of the metabolic

sectors, the simplest mechanism could be the biophysical difficulty

to tightly repress gene expression, since a zero offset requires

protein synthesis to be completely turned off at zero growth rate. It

was shown that abundance in the growth rate-independent sector

directly diminishes the maximal growth rate (Scott et al, 2010).

However, this seemingly wasteful allocation of proteome resources

may serve a purpose that transcends the simple economics of

steady-state growth. For example, keeping substantial offsets on

hand may help bacteria adapt more quickly to varying nutrient

conditions (Kjeldgaard et al, 1958; Koch & Deppe, 1971; Dennis &

Bremer, 1974). Competing considerations may well arise at very

slow growth, or in starvation conditions, adding to the principles of

proteome management revealed by this work.

This work specifically examined cells kept at moderate growth

rates, and it is unclear when or whether the observed linear rela-

tions cease to hold at slower growth. We emphasize that our goal

here is to describe the data by a minimal model with predictive

power. We do not rule out nonlinear generalizations of the model

presented here.

Materials and Methods

Detailed bacterial growth protocol, procedures used for strain

construction, total RNA and total protein measurements, and

b-galactosidase assay are described in the Supplementary Text S1.

Growth conditions

All growth media used in this study were based on the MOPS-

buffered minimal medium used by Cayley et al (1989) with slight

modifications. See Supplementary Text S1 for the composition of

the base medium. The lactose minimal medium and the glucose

minimal medium had 0.2% (w/v) lactose and 0.2% (w/v) glucose

in addition to the base medium, respectively. For the C-limitation

growth, 1 mM isopropyl b-D-1-thiogalactopyranoside (IPTG) and

various concentrations (0–500 lM) of the inducer 3-methylbenzyl

alcohol (3MBA) were added to the lactose minimal medium. For the

A-limitation growth, various concentrations of IPTG (30–100 lM)

were added to the glucose minimal medium. Various concentrations

of chloramphenicol (0–8 lM) were used for the glucose minimal

medium for the R-limitation growth. For the C-limitation growth

with NQ399, 0.2% (w/v) glycerol was added to the MOPS base

medium, in addition to 1 mM IPTG and various concentrations

(0–500 lM) of 3MBA. The same glycerol minimal medium with no

3MBA and various amounts of IPTG was used for the A-limitation

on glycerol.

15N-labeled proteomic mass spectrometry

Sample preparation

1.8 ml of cell culture at OD600 = 0.4~0.5 during the exponential

phase of the experimental culture (defined above) was collected by
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centrifugation. The cell pellet was re-suspended in 0.2 ml water and

fast-frozen on dry ice.

Aliquot of the 15N reference cell sample (or labeled cell sample)

was mixed with each of the 14N cell samples (or non-labeled cell

samples), which contained the same amount of proteins. Each

aliquot of the 15N samples contained about 100 lg of proteins. Each

of the 14N cell samples also contained about 100 lg proteins. For

each mode of growth limitation, a 15N reference cell sample was

made in such a way that it contained cell samples from both the

fastest and slowest growth conditions under that growth limitation.

The mixed reference is used to avoid the composition of proteins in

the reference cell sample be biased by a particular growth medium.

Proteins were precipitated by adding 100% (w/v) trichloroacetic

acid (TCA) to 25% final concentration. Samples were let stand on

ice for a minimum of 1 h. The protein precipitates were sped down

by centrifugation at 16,000 g for 10 min at 4°C. The supernatant

was removed and the pellets were washed with cold acetone. The

pellets were dried in a Speed-Vac concentrator.

The pellets were dissolved in 80 ll 100 mM NH4HCO3 with

5% acetonitrile (ACN). Then, 8 ll of 50 mM dithiothreitol (DTT)

was added to reduce the disulfide bonds before the samples were

incubated at 65°C for 10 min. Cysteine residues were modified

by the addition of 8 ll of 100 mM iodoacetamide (IAA) followed

by incubation at 30°C for 30 min in the dark. The proteolytic

digestion was carried out by the addition of 8 ll of 0.1 lg/ll
trypsin (Sigma-Aldrich, St. Louis, MO) with incubation overnight

at 37°C.

The peptide solutions were cleaned by using the PepClean C-18

spin columns (Pierce, Rockford, IL). After drying in a Speed-Vac

concentrator, the peptides were dissolved into 10 ll sample buffer

(5% ACN and 0.1% formic acid).

Mass spectrometry

The peptide samples were analyzed on an AB SCIEX TripleTOF

5600 system (AB SCIEX, Framingham, MA) coupled to an Eksigent

NanoLC Ultra system (Eksigent, Dublin, CA). The samples (2 ll)
were injected using an autosampler. The samples were first loaded

onto a Nano cHiPLC Trap column 200 lm × 0.5 mm ChromXP C18-

CL 3 lm 120 Å (Eksigent) at a flow rate of 2 ll/min for 10 min. The

peptides were then separated on a Nano cHiPLC column

75 lm × 15 cm ChromXP C18-CL 3 lm 120 Å (Eksigent) using a

120-min linear gradient of 5–35% ACN in 0.1% formic acid at a flow

rate of 300 nl/min. MS1 settings: mass range of m/z 400–1,250 and

accumulation time 0.5 s. MS2 settings: mass range of m/z 100–

1,800, accumulation time 0.05 s, high sensitivity mode, charge state

2–5, selecting anything over 100 cps, maximal number of candi-

date/cycle 50, and excluding former targets for 12 s after each

occurrence.

Protein identification

The raw mass spectrometry data files generated by the AB SCIEX

TripleTOF 5600 system were converted to Mascot generic format

(mgf) files, which were submitted to the Mascot database searching

engine (Matrix Sciences, London, UK) against the E. coli SwissProt

database to identify proteins. The following parameters were used

in the Mascot searches: maximum of two missed trypsin cleavage,

fixed carbamidomethyl modification, variable oxidation modifica-

tion, peptide tolerance � 0.1 Da, MS/MS tolerance � 0.1 Da, and

1+, 2+, and 3+ peptide charge. All peptides with scores less than the

identity threshold (P = 0.05) were discarded.

Relative protein quantitation

The raw mass spectrometry data files were converted to the .mzML

and .mgf formats using conversion tools provided by AB Sciex.

The .mgf files were used to identify sequencing events against the

Mascot database. Finally, spectra for peptides from the Mascot

search were quantified using least-squares Fourier transform convo-

lution implemented in house (Sperling et al, 2008). Briefly, data

were extracted for each peak using a retention time and m/z

window enclosing the envelope for both the light and heavy peaks.

The data are summed over the retention time, and the light and

heavy peaks amplitudes are obtained from a fit to the entire isotope

distribution, yielding the relative intensity of the light and heavy

species. The ratio of the non-labeled to labeled peaks was obtained

for each peptide in each sample.

The relative protein quantitation data for each protein in each

sample mixture was then obtained as a ratio by taking the median

of the ratios of its peptides. No ratio (i.e., no data) was obtained if

there was only one peptide for the protein. The uncertainty for each

ratio was defined as the two quartiles associated with the median.

To filter out data with poor quality, the ratio was removed for the

protein in that sample if at least one of its quartiles lied outside of

50% range of its median; Furthermore, ratios were removed for a

protein in all the sample mixtures in a growth limitation if at least

one of the ratios has one of its quartiles lying outside of the 100%

range of the median.

Since the ratios are all defined relative to the same reference

sample, they represent the relative change of the expression of the

protein across all the non-labeled cell samples and are referred as

‘relative expression data’.

Absolute protein quantitation

The spectral counting data used for absolute protein quantitation

were extracted from Mascot search results. For our 15N and 14N

mixture samples, only the 14N spectra were counted. The absolute

abundance of a protein was calculated by dividing the total number

of spectra of all peptides for that protein by the total number of 14N

spectra in the sample.

Data availability

The mass spectrometry proteomics data have been deposited to the

ProteomeXchange Consortium (Vizcaı́no et al, 2014) via the PRIDE

partner repository with the dataset identifier PXD001467. Plots of

individual proteins under the three growth limitations are available

as in Supplementary Dataset S1.

Data analysis

Expression matrices

For each of the growth limitation, the relative expression data can

be represented in the form of an expression matrix. For example,

under C-limitation, the expression matrix is N × 5, where N is the

number of proteins and 5 is the number of growth rates. To focus

on proteins with high-quality data, a protein entry (i.e., a row in the

matrix) is removed if the number of nonempty data elements for the

protein is < 3. As described in the main text, the sizes of the three
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final expression matrices are 856 × 5, 898 × 5, and 756 × 4, respec-

tively, for the C-, A-, and R-limitation.

Scaling of the expression matrices

Because different 15N reference samples were used for different

modes of growth limitation, it is convenient to rescale the relative

expression data, so that for each protein the value is set to 1

under a ‘glucose standard condition’, which was the condition of

WT NCM3722 cells growing in glucose minimal medium. Note

that for both the A-limitation and R-limitation, the unlimited

condition (or the fastest growth condition) was exactly the stan-

dard condition. For the C-limitation, however, the standard condi-

tion was not one of the growth conditions. The growth rate of

the standard condition was between the fastest growth condition

(with a doubling time of 40 min) and the second fastest growth

condition (with a doubling time of 48 min). Assuming protein

expression follows a linear relation under C-limitation, the expres-

sion level for the standard condition was determined by extrapo-

lating the expression levels for the two neighboring growth rates.

Clustering analysis of the expression data

After scaling, the three expression matrices were merged into a

1,053 × 14 expression matrix, with 14 ( = 5 + 5 + 4) for the total

number of growth conditions and 1,053 for the total number of

unique proteins. The pairwise distance (d) used for clustering was

defined as d = 1 � q, where q is the Pearson correlation:

q ¼
P

i Xi � YiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i X

2
i

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiP
i Y

2
i

q ;

where Xi and Yi are the log2-transformed relative expression data

for two proteins at same growth condition i. The Matlab (The

Mathworks, Natick, MA) function ‘linkage.m’ was used to carry

out a hierarchical clustering with the option of ‘unweighted aver-

age distance’. The results were written in the format for the cluster

viewing software Java TreeView (Saldanha, 2004).

Measure of the quality of a fit

We used the coefficient of determination, R2 as a measure of fit

quality. Assuming a dataset has values yi, and the predicted values

fi based on the fit, R2 is defined as R2 � 1�P
i ðyi � fiÞ2=P

i ðyi � �yÞ2, where �y is the mean of the values yi. The value of R2

ranges from 0 to 1, with larger number meaning high quality of fit.

For a linear fit, R2 indicates the degree of linearity of the data.

Supplementary information for this article is available online:

http://msb.embopress.org
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