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Abstract The rostral ventrolateral medulla oblongata (RVLM) contains two functionally distinct
types of neurons that control and orchestrate cardiovascular and respiratory responses to hypo-
xia and hypercapnia. One group is composed of the central chemoreceptor neurons of the
retrotrapezoid nucleus, which provides a CO2/H+-dependent drive to breathe and serves as an
integration centre and a point of convergence of chemosensory information from other central
and peripheral sites, including the carotid bodies. The second cluster of RVLM cells forms a
population of neurons belonging to the C1 catecholaminergic group that controls sympathetic
vasomotor tone in resting conditions and in conditions of hypoxia and hypercapnia. Recent
evidence suggests that ATP-mediated purinergic signalling at the level of the RVLM co-ordinates
cardiovascular and respiratory responses triggered by hypoxia and hypercapnia by activating
retrotrapezoid nucleus and C1 neurons, respectively. The role of ATP-mediated signalling in the
RVLM mechanisms of cardiovascular and respiratory activities is the main subject of this short
review.
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Introduction

Respiratory chemoreception is the ability of an organism
to sense changes in blood gases (i.e. O2/CO2/H+) to
provide for the homeostatic control of respiratory and
cardiovascular systems and can be divided into central
and peripheral components. Central chemoreception
relies on specialized cells within the brainstem that
sense CO2/H+ and output to increase breathing and
sympathetic nerve activity (Guyenet et al. 2010; Moreira
et al. 2011). Peripheral chemoreceptors of the carotid
body sense changes in O2/CO2/H+ and also regulate
breathing and sympathetic outflow, via synapses through
the central nervous system (Kumar & Prabhakar, 2012). It
is well established that the rostral ventrolateral medulla
(RVLM) contains two important subsets of neurons
involved in cardiorespiratory control during the chemo-
reflexes, namely the CO2/H+-sensitive neurons of the
retrotrapezoid nucleus (RTN) that function as central
respiratory chemoreceptors (Mulkey et al. 2004; Guyenet
et al. 2010) and presympathetic catecholaminergic C1
neurons that control sympathetic vasomotor tone in
response to a number of reflexes, including the peripheral
chemoreflex (Guyenet, 2006; Guyenet et al. 2013).

The role of ATP as a neurotransmitter was first
described in the enteric nervous system several decades
ago (Burnstock et al. 1970). Since then, purinergic
signalling has been found to contribute at all levels of the
nervous system, including enteric, autonomic and central
(Burnstock, 2007). The mechanisms of ATP signalling
are equally diverse. They include many ionotropic (P2X)
and metabotropic (P2Y) receptor subtypes (Fredholm
et al. 1994), as well as varying methods of transmission,
including vesicular, volume-regulated anion channel and
gap junction hemichannel release of ATP from neuronal
and non-neuronal cells (Burnstock, 2007).

This short review addresses the role of purinergic
signalling in the RTN chemoreceptor and C1 pre-
sympathetic neuronal control of the central and
peripheral chemoreflexes. To learn more about purinergic
signalling in respiratory control, the reader is referred
to reviews by Erlichman and colleagues (2010) and
Funk (2013). In addition, this review focuses on central
purinergic mechanisms; however, purinergic signalling is
also critical peripherally in the carotid bodies (Piskuric &
Nurse, 2013).

Purinergic signalling in the RVLM: the RTN and central
chemoreception

The defining properties of central respiratory chemo-
receptors include the following: (i) intrinsic CO2/H+
sensitivity in vivo and in vitro; (ii) an excitatory
neurochemical phenotype; and (iii) projection to the
respiratory pattern generator. While there are a number
of chemosensitive respiratory neurons that are likely to

contribute to central chemoreception (Nattie & Li, 2012),
the chemosensitive neurons of the RTN fulfil all three
of these criteria and are the focus of this review. They
are highly activated by increasing arterial PCO2 in vivo,
independently of respiratory activity (Mulkey et al. 2004;
Takakura et al. 2006). Retrotrapezoid nucleus neurons
are directly activated by CO2/H+, as demonstrated in
neuronal recordings from brain slices (Mulkey et al. 2004;
Onimaru et al. 2012) and acutely dissociated preparations
(Wang et al. 2013). Retrotrapezoid nucleus neurons are
glutamatergic, and their selective stimulation in vivo
results in rapid and robust breathing activity (Abbott
et al. 2009; Kanbar et al. 2010), while selective inhibition
blunts whole-animal breathing responses to hypercapnia
(Marina et al. 2010; Takakura et al. 2014), thus indicating
that RTN chemoreceptors provide an excitatory drive to
breathe.

As denoted above, at least some of the CO2/H+
sensitivity of RTN neurons is intrinsic, and this appears to
be mediated partly by TWIK-related acid-sensitive K-2
channels (TASK-2; Wang et al. 2013). However, adult
RTN neurons receive numerous excitatory and inhibitory
inputs, including polysynaptic inputs from the carotid
body, pulmonary receptors, hypothalamus, nucleus of the
solitary tract (NTS), periaqueductal grey matter, spinal
cord, dorsolateral pons and raphe nuclei (Rosin et al.
2006; Takakura et al. 2006; Moreira et al. 2007; Barna
et al. 2014). If some of these inputs are chemosensitive
themselves (e.g. carotid body inputs surely are and some
NTS inputs could be), then part of the in vivo chemo-
sensitivity of RTN neurons could be synaptically driven.
However, pharmacological blockade of excitatory inputs
has little to no effect on their CO2/H+ sensitivity in vivo,
at least in an anaesthetized, hyperoxic state (Mulkey et al.
2004), underscoring their intrinsic chemosensitivity.

In the past decade, a role for paracrine release of ATP
(i.e. purinergic signalling) in the RVLM has been found to
be crucial for proper central chemoreception (Thomas
& Spyer, 1999, 2000; Spyer et al. 2004; Gourine et al.
2005). Work from our group confirmed and extended
some of these earlier studies (Fig. 1). We found that
blocking P2 receptors in the RTN produces a reduction
in the amplitude and frequency of phrenic nerve activity
and in the pressor responses elicited by hypercapnia in
anesthetized and conscious rats (Wenker et al. 2012;
Sobrinho et al. 2014; B. F. Barna, A. C. Takakura, D. K.
Mulkey and T. S. Moreira, unpublished results). At the
cellular level, bath application of P2-receptor antagonists
blunted the CO2/H+-evoked firing rate response of RTN
neurons in brain slice recordings (Gourine et al. 2010;
Wenker et al. 2010, 2012). The contribution of purinergic
signalling to chemosensitive RTN neuronal activity was
found to be independent of temperature and stimulus
strength and was wholly retained when synaptic activity
was blocked using high-Mg2+, low-Ca2+ solution (Wenker
et al. 2012).
C© 2014 The Authors. The Journal of Physiology C© 2014 The Physiological Society
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Our group also found that connexin hemichannel
blockers were effective at blunting the purinergic
component of RTN neuronal CO2/H+ sensitivity (Wenker
et al. 2012). This observation is congruent with a series of
experiments from the laboratory of Nicholas Dale, where
they demonstrated that CO2-evoked ATP release at the
ventral surface is likely to be mediated by CO2-sensitive
connexin 26 (Cx26) hemichannels (Huckstepp et al.
2010a, 2010b; Meigh et al. 2013). Using ATP-sensing
microelectrodes, they found that CO2, and not H+, was
the stimulus for ATP release in brain slices containing the
ventral surface, and this process is dependent on functional
connexin hemichannels (Huckstepp et al. 2010b). In
cultured HeLa cells, transfection with Cx26 and preloading

with ATP was enough to recapitulate the CO2-dependent
ATP release observed in brain slices (Huckstepp et al.
2010a). Furthermore, in a series of elegant molecular
studies they were able to demonstrate that CO2 binds
directly to Cx26 channels, resulting in their opening
(Meigh et al. 2013).

Although the above experiments provide evidence for a
purinergic role in central chemoreception and the ability
of Cx26 to sense CO2 and release ATP, major questions
remain. For instance, which cells are releasing ATP? Based
on experiments using synaptic blockade (Mulkey et al.
2004; Wenker et al. 2012), it is clear that fast chemical
synapses do not provide for the purinergic drive in the
RTN region. The common interpretation has been that

Figure 1. Schematic model of the possible medullary mechanisms involved in the control of cardio-
respiratory responses caused by raising cerebral arterial PCO2 and lowering arterial PO2

Signals from central or peripheral chemoreceptors may directly or indirectly affect the activity of several medullary
areas, including the NTS, C1 region, RTN and VRC, which affect sympathetic discharge to the heart and blood
vessels and motorneurons to the respiratory muscles (Pankratov et al. 2006; Braga et al. 2007; Moraes et al.
2011; Wenker et al. 2013). An essential step for hypercapnia-induced increase in breathing is activation of RTN
neurons by CO2/H+, directly or indirectly from VMS astrocytes, which in turn send excitatory signals to activate
the VRC, either directly or through activation of metabotropic and ionotropic glutamate/purinergic receptors
in the C1 region (Takakura & Moreira, 2011; Wenker et al. 2013). Release of ATP by astrocytes may be a
calcium-dependent exocytotic process triggered by intracellular acidification and/or a leak through connexin
channels (primarily connexin 26) opened by molecular CO2 via carbamylation (Huckstepp et al. 2010a, 2010b).
Signals from the RTN that activate metabotropic receptors in the C1 region may also increase sympathetic activity to
the cardiovascular system. Abbreviations: ATP, adenosine triphosphate; C1, C1 adrenergic region; CB, carotid body;
Glut, glutamate; iGlut, ionotropic glutamatergic receptors; mGlut, metabotropic glutamatergic receptors; MN,
motor neuron; NTS, nucleus of the solitary tract; P2X, ionotropic purinergic receptors; P2Y, metabotropic purinergic
receptors; RTN, retrotrapezoid nucleus; SGN, sympathetic ganglionic neurons; SPGN, sympathetic preganglionic
neurons; VLM, ventrolateral medulla; VMS, ventral medullary surface; and VRC, ventral respiratory columm.

C© 2014 The Authors. The Journal of Physiology C© 2014 The Physiological Society



1070 T. S. Moreira and others J Physiol 593.5

ATP is released by astrocytes, because astrocytes have been
found to release ATP in response to a number of different
physiological stressors (Butt, 2011; Ota et al. 2013).
Work by Gourine and colleagues (2010) demonstrated
that optogenetic stimulation of astrocytes produced ATP
release and respiratory effects when the light was directed
at the ventral surface. The investigators also found that
ATP was released in the RVLM in response to CO2/H+
stimulation, via Ca2+-dependent vesicular release. The
pharmacology used to block vesicular release could
affect any cell type, and astrocyte-specific loss-of-function
experiments was not done. By itself, this leaves open
the possibility that other cell types could be responsible
for the CO2/H+-evoked ATP release. However, the ATP
release was unaffected by tetrodotoxin, a blocker of neuro-
nal action potentials, and genetically identified astrocytes
were found to elevate intracellular Ca2+ in response to
CO2/H+. In addition, cultured brainstem astrocytes have
demonstrated H+-mediated ATP release (Kasymov et al.
2013). Thus, although it remains possible that ATP could
be released by other cell types, astrocytes appear to be the
likely candidates. In separate experiments, Nicholas Dale’s
laboratory also produced data supporting astrocytes as
the ATP-releasing cells (Huckstepp et al. 2010a, 2010b).
Looking at fluorescent dye uptake into cells (dyes that can
traverse Cx26 channels) during elevated CO2, they found
that it mostly co-localized with glial fibrillary acid protein,
a marker for astrocytes (Huckstepp et al. 2010b). However
compelling the apparent CO2-dependence of these data,
it is of course only correlative, and future studies will
require cell-specific loss of function, as has been done in
the cortex (Lalo et al. 2014), to confirm that astrocytes
are indeed responsible for the purinergic drive to
breath.

Another open question is, by what mechanism(s) does
purinergic signalling alter the function of RTN chemo-
sensitive neurons? For example, purinergic receptor sub-
types and downstream cellular mechanisms of membrane
depolarization (e.g. ion channels) are incompletely under-
stood. Based on the purinergic agonist profile described by
Mulkey and colleagues (2006), RTN neurons are excited
by direct activation of P2Y receptors and inhibited by
indirect activation (i.e. via interneurons) of P2X receptors.
However, based on the purinergic antagonist profile of
the CO2/H+ responses of neurons in the RVLM, Gourine
and colleagues (2010) suggested that the receptors might
be of the P2X variety. The former case may be open to
some contention because newer, more subtype-selective
pharmacological agents have since been developed for
purinergic receptors (Fredholm et al. 1994). Our group’s
only results using these agents show that P2Y1 receptors
(for a review of purinergic receptor subtypes see Fredholm
et al. 1994) do not contribute to CO2/H+ sensitivity of the
RTN (Wenker et al. 2012), although, serendipitously, they
do regulate the activity of local catecholamine neurons

in the RVLM (see next section; Fig. 1). The use of
the ever-improving purinergic pharmacology and cell
specific loss-of-function genetics will no doubt improve
our understanding of purinergic mechanisms in central
chemoreception.

Purinergic signalling in the RVLM: the C1 neurons and
the peripheral chemoreflex

The increased sympathetic outflow elicited by peripheral
chemoreceptors is mediated primarily by activation of the
presympathetic neurons of the RVLM, the majority of
which are C1 neurons (Fig. 1; Guyenet et al. 2013). In
support of this idea, selective lesion of the C1 neurons
with dopamine-β-hydoxylase-conjugated saporin toxin
virtually abolishes the sympathoexcitatory response
to peripheral chemoreflex activation (Schreihofer &
Guyenet, 2000). The cardiorespiratory effects of peri-
pheral chemoreceptors are mediated in part by direct
glutamatergic inputs from the NTS to C1 neurons.
Indirect pathways also exist, and the best documentation
is a di-synaptic input that relays via the chemosensitive
neurons of the RTN (Koshiya et al. 1993; Sun & Reis,
1995; Paton et al. 2001; Moreira et al. 2006; Takakura et al.
2006; Takakura & Moreira, 2011).

In addition to glutamatergic neurotransmission, the
C1 neuronal activity can be modulated by purinergic
signalling, both by exogenous agonists and endogenously,
during autonomic reflex control. In studies from the
last two decades, spinally projecting RVLM neurons were
found to express P2Y and P2X receptors functionally (Sun
et al. 1992; Ralevic et al. 1999), and activation of these
receptors in the RVLM also increases cardiorespiratory
parameters (i.e. fictive breathing and blood pressure)
in anaesthetized rats (Ralevic et al. 1999). Later, it was
purported that these P2X receptors were important for
RVLM reflex control of cardiorespiratory function. For
example, inhibition of P2X receptors within the ventro-
lateral medulla blunted the ventilatory but not the pressure
response elicited by peripheral chemoreceptor activation
in conscious rats (Moraes et al. 2011). The interpretation
that P2X receptors are responsible is based on the relatively
low pyridoxal-phosphate-6-azophenyl-2′,4′-disulfonate
concentration used, which in vivo is dubiously selective
over P2Y receptors. Nevertheless, if it is true, this
could be explained by P2X receptor expression on
nearby RTN chemoreceptor neurons (Gourine et al.
2010) or by differential expression of P2X and P2Y
receptors amongst RVLM neurons (as in Ralevic et al.
1999).

More recently, a role for P2Y signalling in C1 neuro-
nal control of the peripheral chemoreflex has been put
forward by our group. Specifically, we found that P2Y1
receptors are robustly expressed by C1 neurons but not by

C© 2014 The Authors. The Journal of Physiology C© 2014 The Physiological Society
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nearby RTN chemoreceptors in vitro (Wenker et al. 2013).
This was determined by the fact that action potential
firing of CO2/H+-sensitive (i.e. RTN chemosensitive)
neurons in this region were unaffected by application
of a P2Y1-specific agonist, whereas CO2/H+-insensitive
neuronal firing was greatly increased. In addition, many
of these CO2/H+-insensitive, P2Y1-expressing neurons
were immunoreactive for tyrosine hydroxylase, a marker
for C1 neurons in this region. The expression of P2Y1
receptors by C1 neurons was confirmed in vivo by showing
that the cardiorespiratory responses induced by P2Y1
agonist injection in the RVLM were blunted in C1-lesioned
animals (Wenker et al. 2013). Additionally, selective
inhibition of P2Y1 receptors in the RVLM decreased peri-
pheral chemoreceptor-mediated activation of breathing
and sympathetic outflow. Importantly, this did not change
cardiorespiratory outflow during baroreflex or RVLM
stimulation, indicating that pharmacological blockade
of P2Y1 receptors does not directly alter excitability of
C1 cells and that ATP is released during the chemo-
reflex to stimulate P2Y1 receptors (Wenker et al. 2013).
Corroborating this idea, we found that approximately
60% of caudal NTS neuron varicosities in the RVLM
are immunoreactive for both vesicular glutamate and
nucleotide transporters (VGLUT2 and VNUT; Wenker
et al. 2013), which at other central synapses are sufficient
machinery to allow for ATP and glutamate co-release
(Gordon et al. 2009).

Together, these results suggest that peripheral chemo-
receptor drive is relayed, in part, by ATP and glutamate
co-release from NTS neuron terminals acting on P2Y1
and ionotropic glutamatergic receptors expressed on C1
neurons (Fig. 1). Interestingly, this purinergic mechanism
appears to be distinct from those involved in RTN chemo-
reception. By this, we mean that although ATP is released
in the RVLM during the central CO2 chemoreflex, P2Y1
receptors do not appear to influence the cardiorespiratory
effects of this reflex (Wenker et al. 2013), Of course, this has
been tested only in anaesthetized hyperoxic conditions.
It is known that while central and peripheral chemo-
reflexes operate via separate sensors, they do influence
the activity of one another (Blain et al. 2010). Thus, in
different conditions (i.e. CO2/O2 levels or conscious state)
it is possible that the P2 receptors in the RVLM could
contribute to central–peripheral chemoreflex interactions.

Finally, it is important to point out that astrocytes
in the RVLM are capable of releasing ATP to affect C1
neurons. Optogenetic stimulation of astrocytes within
the ventrolateral medulla excites presympathetic C1
neurons via an ATP-dependent mechanism (Marina et al.
2013). This is particularly interesting because evidence
exists that glial cells release ATP in response to various
stimuli, including hypoxia (Aley et al. 2006), and hypoxia
produces ATP release in the RVLM (Gourine et al. 2005).

Thus, depending on the conditions, purinergic signalling
of a number of varieties could co-ordinate the output of
RVLM neurons.

Conclusions and clinical perspectives

In this review, we have discussed a number of independent
purinergic mechanisms of RTN and C1 neurons that
influence breathing and autonomic control of the
chemoreflexes. It is not surprising that purinergic
signalling is so important in this region, because it
contributes to autonomic control via varying mechanisms
at several levels of the nervous system, both peripherally
and centrally (Gourine et al. 2009).

The central and peripheral chemical drive to breathe is
associated with several widespread autonomic disorders.
Deficits in central chemical drive are associated with
central sleep apnoea, a debilitating disease with few
therapies besides constant positive airway pressure
(Dempsey et al. 2014). In addition, disruption of the drive
to breath is thought to contribute to mortality of certain
pathologies, including sudden infant death syndrome,
stroke and epilepsy (Kinney et al. 2009; Davis et al.
2013; Massey et al. 2014). Finally, in obstructive sleep
apnoea, certain forms of hypertension and heart failure,
the sensitization of peripheral chemoreceptor drive,
particularly the sympathetic component, is observed, and
this overactivity is thought contribute to the pathology
(Narkiewicz et al. 1999; Schultz et al. 2007).

In recent years, purinergic signalling has been proposed
to be an excellent system to target for therapies of
numerous pathologies (Jacobson & Boeynaems, 2010;
Burnstock, 2014), mainly due to novel pharmacological
agents being developed. As more detailed understanding
of the purinergic mechanisms involved in the chemical
drive to breath is uncovered, it may be possible to treat
the aforementioned pathologies with the newly developed
purinergic agents. Recent work by Marina and colleagues
(2013) demonstrates the utility of targeting purinergic
mechanisms by transducing an ectonucleotidase, which
breaks down ATP, in the RVLM to treat a rat model
of heart failure (Marina et al. 2013). Based on our
recent data, we have proposed that P2Y1 receptors could
represent a therapeutic target for the treatment of cardio-
respiratory diseases in which the peripheral chemoreflex is
sensitized (Wenker et al. 2013). Most of the new purinergic
pharmacological agents are ATP analogues and do not
cross the blood–brain barrier, making them less practical
for use in the central nervous system. It is therefore
imperative that brain-permeable agents are developed
(Burnstock, 2008). Better pharmacology, combined with
further understanding of the specific purinergic receptor
subtypes and signalling pathways involved in chemoreflex

C© 2014 The Authors. The Journal of Physiology C© 2014 The Physiological Society
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control by RTN and C1 neurons, may allow for novel
therapeutic strategies for cardiorespiratory diseases.
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