Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1994 Apr 12;91(8):3413–3417. doi: 10.1073/pnas.91.8.3413

Reading the molecular clock from the decay of internal symmetry of a gene.

P E Gibbs 1, A Dugaiczyk 1
PMCID: PMC43587  PMID: 7512733

Abstract

The closely related serum albumin, alpha-fetoprotein, and vitamin D-binding proteins are derived from a common ancestor, which itself was the result of a triplication of an ancestral gene. We have aligned the sequences of these proteins against themselves to assess the degree to which the ancestral 3-fold symmetry has been retained; in a dot plot, relics of the molecular symmetry appear as a series of alignments parallel to the main diagonal. The decay of internal symmetry reflects the rate of change of a gene in a single line of evolutionary descent. We examined 11 serum albumins, 2 ceruloplasmins, 3 alpha-fetoproteins, and 3 vitamin D-binding proteins. We have found that ceruloplasmin evolves at the same rate in human and rat, whereas albumin, alpha-fetoprotein, and vitamin D-binding protein evolve at different rates. The human genes had the highest alignment scores, indicating the most preserved ancestral features. We conclude that the molecular clock may run at different rates for the same gene in different species.

Full text

PDF
3413

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boccaccio C., Deschatrette J., Meunier-Rotival M. Empty and occupied insertion site of the truncated LINE-1 repeat located in the mouse serum albumin-encoding gene. Gene. 1990 Apr 16;88(2):181–186. doi: 10.1016/0378-1119(90)90030-u. [DOI] [PubMed] [Google Scholar]
  2. Britten R. J. Rates of DNA sequence evolution differ between taxonomic groups. Science. 1986 Mar 21;231(4744):1393–1398. doi: 10.1126/science.3082006. [DOI] [PubMed] [Google Scholar]
  3. Brown J. R. Structural origins of mammalian albumin. Fed Proc. 1976 Aug;35(10):2141–2144. [PubMed] [Google Scholar]
  4. Brown W. M., Dziegielewska K. M., Foreman R. C., Saunders N. R. Nucleotide and deduced amino acid sequence of sheep serum albumin. Nucleic Acids Res. 1989 Dec 25;17(24):10495–10495. doi: 10.1093/nar/17.24.10495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Byrnes L., Gannon F. Atlantic salmon (Salmo salar) serum albumin: cDNA sequence, evolution, and tissue expression. DNA Cell Biol. 1990 Nov;9(9):647–655. doi: 10.1089/dna.1990.9.647. [DOI] [PubMed] [Google Scholar]
  6. Carter D. C., He X. M., Munson S. H., Twigg P. D., Gernert K. M., Broom M. B., Miller T. Y. Three-dimensional structure of human serum albumin. Science. 1989 Jun 9;244(4909):1195–1198. doi: 10.1126/science.2727704. [DOI] [PubMed] [Google Scholar]
  7. Cooke N. E. Rat vitamin D binding protein. Determination of the full-length primary structure from cloned cDNA. J Biol Chem. 1986 Mar 5;261(7):3441–3450. [PubMed] [Google Scholar]
  8. Easteal S. Rate constancy of globin gene evolution in placental mammals. Proc Natl Acad Sci U S A. 1988 Oct;85(20):7622–7626. doi: 10.1073/pnas.85.20.7622. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Eiferman F. A., Young P. R., Scott R. W., Tilghman S. M. Intragenic amplification and divergence in the mouse alpha-fetoprotein gene. Nature. 1981 Dec 24;294(5843):713–718. doi: 10.1038/294713a0. [DOI] [PubMed] [Google Scholar]
  10. Feng D. F., Johnson M. S., Doolittle R. F. Aligning amino acid sequences: comparison of commonly used methods. J Mol Evol. 1984;21(2):112–125. doi: 10.1007/BF02100085. [DOI] [PubMed] [Google Scholar]
  11. Fleming R. E., Gitlin J. D. Primary structure of rat ceruloplasmin and analysis of tissue-specific gene expression during development. J Biol Chem. 1990 May 5;265(13):7701–7707. [PubMed] [Google Scholar]
  12. Gibbs P. E., Dugaiczyk A. Origin of structural domains of the serum-albumin gene family and a predicted structure of the gene for vitamin D-binding protein. Mol Biol Evol. 1987 Jul;4(4):364–379. doi: 10.1093/oxfordjournals.molbev.a040447. [DOI] [PubMed] [Google Scholar]
  13. Gibbs P. E., Zielinski R., Boyd C., Dugaiczyk A. Structure, polymorphism, and novel repeated DNA elements revealed by a complete sequence of the human alpha-fetoprotein gene. Biochemistry. 1987 Mar 10;26(5):1332–1343. doi: 10.1021/bi00379a020. [DOI] [PubMed] [Google Scholar]
  14. Ho J. X., Holowachuk E. W., Norton E. J., Twigg P. D., Carter D. C. X-ray and primary structure of horse serum albumin (Equus caballus) at 0.27-nm resolution. Eur J Biochem. 1993 Jul 1;215(1):205–212. doi: 10.1111/j.1432-1033.1993.tb18024.x. [DOI] [PubMed] [Google Scholar]
  15. Ingram R. S., Scott R. W., Tilghman S. M. alpha-Fetoprotein and albumin genes are in tandem in the mouse genome. Proc Natl Acad Sci U S A. 1981 Aug;78(8):4694–4698. doi: 10.1073/pnas.78.8.4694. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Koop B. F., Goodman M., Xu P., Chan K., Slightom J. L. Primate eta-globin DNA sequences and man's place among the great apes. Nature. 1986 Jan 16;319(6050):234–238. doi: 10.1038/319234a0. [DOI] [PubMed] [Google Scholar]
  17. Koschinsky M. L., Funk W. D., van Oost B. A., MacGillivray R. T. Complete cDNA sequence of human preceruloplasmin. Proc Natl Acad Sci U S A. 1986 Jul;83(14):5086–5090. doi: 10.1073/pnas.83.14.5086. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Law S. W., Dugaiczyk A. Homology between the primary structure of alpha-fetoprotein, deduced from a complete cDNA sequence, and serum albumin. Nature. 1981 May 21;291(5812):201–205. doi: 10.1038/291201a0. [DOI] [PubMed] [Google Scholar]
  19. Martignetti J. A., Brosius J. Neural BC1 RNA as an evolutionary marker: guinea pig remains a rodent. Proc Natl Acad Sci U S A. 1993 Oct 15;90(20):9698–9702. doi: 10.1073/pnas.90.20.9698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Minghetti P. P., Dugaiczyk A. The emergence of new DNA repeats and the divergence of primates. Proc Natl Acad Sci U S A. 1993 Mar 1;90(5):1872–1876. doi: 10.1073/pnas.90.5.1872. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Minghetti P. P., Law S. W., Dugaiczyk A. The rate of molecular evolution of alpha-fetoprotein approaches that of pseudogenes. Mol Biol Evol. 1985 Jul;2(4):347–358. doi: 10.1093/oxfordjournals.molbev.a040350. [DOI] [PubMed] [Google Scholar]
  22. Minghetti P. P., Ruffner D. E., Kuang W. J., Dennison O. E., Hawkins J. W., Beattie W. G., Dugaiczyk A. Molecular structure of the human albumin gene is revealed by nucleotide sequence within q11-22 of chromosome 4. J Biol Chem. 1986 May 25;261(15):6747–6757. [PubMed] [Google Scholar]
  23. Needleman S. B., Wunsch C. D. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol. 1970 Mar;48(3):443–453. doi: 10.1016/0022-2836(70)90057-4. [DOI] [PubMed] [Google Scholar]
  24. Pearson W. R., Lipman D. J. Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2444–2448. doi: 10.1073/pnas.85.8.2444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sargent T. D., Jagodzinski L. L., Yang M., Bonner J. Fine structure and evolution of the rat serum albumin gene. Mol Cell Biol. 1981 Oct;1(10):871–883. doi: 10.1128/mcb.1.10.871. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sargent T. D., Yang M., Bonner J. Nucleotide sequence of cloned rat serum albumin messenger RNA. Proc Natl Acad Sci U S A. 1981 Jan;78(1):243–246. doi: 10.1073/pnas.78.1.243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sarich V. M., Wilson A. C. Immunological time scale for hominid evolution. Science. 1967 Dec 1;158(3805):1200–1203. doi: 10.1126/science.158.3805.1200. [DOI] [PubMed] [Google Scholar]
  28. Schoenberg D. R., Moskaitis J. E., Smith L. H., Jr, Pastori R. L. Extranuclear estrogen-regulated destabilization of Xenopus laevis serum albumin mRNA. Mol Endocrinol. 1989 May;3(5):805–814. doi: 10.1210/mend-3-5-805. [DOI] [PubMed] [Google Scholar]
  29. Takahashi N., Ortel T. L., Putnam F. W. Single-chain structure of human ceruloplasmin: the complete amino acid sequence of the whole molecule. Proc Natl Acad Sci U S A. 1984 Jan;81(2):390–394. doi: 10.1073/pnas.81.2.390. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Watkins S., Sakamoto Y., Madison J., Davis E., Smith D. G., Dwulet J., Putnam F. W. cDNA and protein sequence of polymorphic macaque albumins that differ in bilirubin binding. Proc Natl Acad Sci U S A. 1993 Mar 15;90(6):2409–2413. doi: 10.1073/pnas.90.6.2409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Weinstock J., Baldwin G. S. Nucleotide sequence of porcine liver albumin. Nucleic Acids Res. 1988 Sep 26;16(18):9045–9045. doi: 10.1093/nar/16.18.9045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Witke W. F., Gibbs P. E., Zielinski R., Yang F., Bowman B. H., Dugaiczyk A. Complete structure of the human Gc gene: differences and similarities between members of the albumin gene family. Genomics. 1993 Jun;16(3):751–754. doi: 10.1006/geno.1993.1258. [DOI] [PubMed] [Google Scholar]
  33. Wu C. I., Li W. H. Evidence for higher rates of nucleotide substitution in rodents than in man. Proc Natl Acad Sci U S A. 1985 Mar;82(6):1741–1745. doi: 10.1073/pnas.82.6.1741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Yang F., Bergeron J. M., Linehan L. A., Lalley P. A., Sakaguchi A. Y., Bowman B. H. Mapping and conservation of the group-specific component gene in mouse. Genomics. 1990 Aug;7(4):509–516. doi: 10.1016/0888-7543(90)90193-x. [DOI] [PubMed] [Google Scholar]
  35. Yang F., Brune J. L., Naylor S. L., Cupples R. L., Naberhaus K. H., Bowman B. H. Human group-specific component (Gc) is a member of the albumin family. Proc Natl Acad Sci U S A. 1985 Dec;82(23):7994–7998. doi: 10.1073/pnas.82.23.7994. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES