
Sleep restriction increases free fatty acids in healthy men

Josiane L. Broussard1, Florian Chapotot2, Varghese Abraham2, Andrew Day3, Fanny 
Delebecque2, Harry R. Whitmore2, and Esra Tasali2

1Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, THA 
E104, Los Angeles, CA 90048, USA

2Department of Medicine, University of Chicago, Chicago, IL, USA

3Department of Medicine, University of Wisconsin Hospitals and Clinics, Madison, WI, USA

Abstract

Aims/hypothesis—Sleep loss is associated with insulin resistance and an increased risk for type 

2 diabetes, yet underlying mechanisms are not understood. Elevation of circulating non-esterified 

(i.e. free) fatty acid (NEFA) concentrations can lead to insulin resistance and plays a central role 

in the development of metabolic diseases. Circulating NEFA in healthy individuals shows a 

marked diurnal variation with maximum levels occurring at night, yet the impact of sleep loss on 

NEFA levels across the 24 h cycle remains unknown. We hypothesised that sleep restriction 

would alter hormones that are known to stimulate lipolysis and lead to an increase in NEFA levels.

Methods—We studied 19 healthy young men under controlled laboratory conditions with four 

consecutive nights of 8.5 h in bed (normal sleep) and 4.5 h in bed (sleep restriction) in randomised 

order. The 24 h blood profiles of NEFA, growth hormone (GH), noradrenaline (norepinephrine), 

cortisol, glucose and insulin were simultaneously assessed. Insulin sensitivity was estimated by a 

frequently sampled intravenous glucose tolerance test.

Results—Sleep restriction relative to normal sleep resulted in increased NEFA levels during the 

nocturnal and early-morning hours. The elevation in NEFA was related to prolonged nocturnal 

GH secretion and higher early-morning noradrenaline levels. Insulin sensitivity was decreased 

after sleep restriction and the reduction in insulin sensitivity was correlated with the increase in 

nocturnal NEFA levels.

Conclusions/interpretation—Sleep restriction in healthy men results in increased nocturnal 

and early-morning NEFA levels, which may partly contribute to insulin resistance and the 

elevated diabetes risk associated with sleep loss.
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Introduction

Substantial evidence from population studies suggests that individuals who regularly curtail 

their sleep are at an increased risk for developing type 2 diabetes [1]. Several well-controlled 

laboratory studies have consistently shown marked reductions in insulin sensitivity in young 

adults following sleep loss [2–7]. However, the mechanisms by which insufficient sleep 

increases type 2 diabetes risk are not known. Alterations in non-esterified (i.e. free) fatty 

acid (NEFA) levels play a central role in the pathogenesis of insulin resistance and the 

development of metabolic diseases [8, 9]. Acute elevation in circulating NEFA levels in 

healthy individuals has been linked to insulin resistance in multiple investigations [10–13]. 

A marked diurnal variation in circulating NEFA concentrations has been observed in healthy 

individuals with peak levels occurring in the middle of the night and declining levels toward 

morning [14]. To date, the impact of sleep loss on NEFA concentrations across the 24 h 

cycle remains unknown.

Growth hormone (GH), noradrenaline (norepinephrine) and cortisol are major signals that 

link the central nervous system to peripheral tissues. In addition, these hormones are known 

to increase the rate of lipolysis, resulting in elevated circulating NEFA concentrations. 

Experimental sleep restriction in healthy young adults has been associated with alterations in 

nocturnal GH secretion [15], increased night-time noradrenaline concentrations [5] and 

elevated evening cortisol levels [4, 16, 17]. We therefore hypothesised that sleep loss would 

alter these lipolytic hormones, leading to an increase in NEFA concentrations. To test this 

hypothesis, we simultaneously assessed 24 h blood profiles of NEFA, GH, noradrenaline 

and cortisol in healthy volunteers who were tested in the laboratory under conditions of 

normal sleep and sleep restriction. We also assessed 24 h glucose and insulin profiles and 

estimated insulin sensitivity by an intravenous glucose tolerance test during normal sleep 

and sleep restriction.

Methods

Participants

Nineteen healthy young lean men between 18 and 30 years of age were recruited from the 

community through local advertisements. Exclusion criteria were a history of any chronic 

medical condition, acute illness, shift work, travel across time zones during the past 4 

weeks, depressed mood (as assessed by a score on the Center for Epidemiologic Studies of 

Depression Scale > 16), use of any prescription or over-the-counter medications or 

supplements known to affect sleep or glucose metabolism, current smoking, substantial 

consumption of alcohol (> 2 drinks per day) or caffeine (> 300 mg per day) or abnormal 

findings on physical examination or routine laboratory testing. All participants had an 

overnight laboratory polysomnography to exclude sleep disorders, as well as a standard 75 g 
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oral glucose tolerance test and fasting blood sample collection for routine laboratory tests, 

including complete blood counts, a comprehensive metabolic panel, thyroid function tests, a 

lipid panel and HbA1c measurement. A 12-lead electrocardiogram was also obtained to 

screen for sleep abnormalities. Healthy participants who had normal glucose tolerance and 

no current or previous sleep disorders were included. All participants had regular self-

reported nocturnal time in bed of 7.5–8.5 h. The Institutional Review Board of the 

University of Chicago approved the protocol and all participants gave written informed 

consent.

Experimental protocol

Participants were studied at the University of Chicago Clinical Resource Center under two 

experimental conditions in randomised order spaced at least 4 weeks apart: (1) four 

consecutive nights of 8.5 h in bed (normal sleep) and (2) four consecutive nights of 4.5 h in 

bed (sleep restriction). Sleep was recorded by polysomnography (Nihon Kohden, Irvine, 

CA, USA) during each night in each sleep condition. The recordings were visually scored in 

30 s epochs as rapid eye movement (REM) sleep, non-REM sleep and wake according to 

standard criteria [18]. Participants remained in the laboratory during the entire protocol and 

participated in sedentary activities (e.g. reading, watching TV, computer work, board or card 

games, etc.). A research staff member was continuously present to monitor wakefulness. 

During the week preceding each inpatient period, participants maintained standardised 

bedtimes at home in accordance with their usual habits. Naps were not allowed. Compliance 

with this schedule was verified by sleep diaries and continuous wrist activity monitoring 

(Actiwatch; Philips-Respironics, Bend, OR, USA).

Blood samples were collected at 15–30 min intervals for 24 h (from 21:30 hours starting on 

the evening prior to the third night of each condition) for measurements of NEFA, GH, 

noradrenaline, cortisol, glucose and insulin (Fig. 1). During waking hours, blood samples 

were collected while participants remained semi-recumbent at a 30 angle. During sleep 

hours, the intravenous line was extended and fed through a port in the wall, allowing for 

blood drawing from an adjacent room. Diet was strictly controlled (2 day cycle menu of 

three isoenergetic meals per day) and energy intake was identical under both sleep 

conditions. Percentage body fat was assessed during each condition by bioimpedance. 

Participants were not allowed to consume any food or beverages that were not provided by 

the metabolic kitchen. No caffeine-containing beverages were allowed. Participants ate 

identical carbohydrate-rich (65%) meals at 09:00, 14:00 and 19:00 hours during the blood-

sampling period. Each meal was completely consumed within 20 min. At 10:00 hours on the 

day following the fourth night of each sleep condition, a frequently sampled intravenous 

glucose tolerance test (IVGTT was performed as previously described [6]. In six IVGTTs 

during the normal sleep condition and two IVGTTs during the sleep restriction condition, 

technical difficulties invalidated the estimation of insulin sensitivity and secretion. Five of 

the six invalid IVGTTs during the normal sleep condition were repeated on a separate day 

after one night of laboratory polysomnography under the same sleep and experimental 

conditions. We previously reported the effects of sleep restriction on total body insulin 

sensitivity and insulin signalling in adipocytes from six men who were included in this 

report [6].
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Hormonal measurements

All hormonal values were interpolated at 15 min intervals to facilitate chronobiological 

analyses. The NEFA profiles were smoothed using a two-point moving average to facilitate 

the identification of the onset and peak nocturnal NEFA levels. To better assess the 

relationships between the GH secretion and NEFA rise, the nocturnal NEFA onset was 

defined as the minimum NEFA value occurring after the onset of the first GH pulse. The 

nocturnal NEFA peak was defined as the maximum NEFA value that occurred after the 

sleep-onset GH pulse. The duration of nocturnal NEFA rise was calculated from NEFA 

onset to peak. Significant GH secretory pulses were identified as previously described [19]. 

The duration of nocturnal GH secretion was defined as the total duration of significant GH 

secretory pulses (concentration above 0.3 ng/ml) from the onset of the first GH pulse after 

blood sampling began until the end of the sleep-onset GH pulse.

Blood samples were centrifuged immediately at 4 °C and plasma was frozen and stored at 

−80 °C until assay. For each 24 h profile, all samples obtained from the same individual 

were measured in the same assay. Plasma NEFA levels were measured using a colorimetric 

assay (Wako Chemicals, Richmond, VA, USA). Plasma glucose was assayed by the glucose 

oxidase method with a coefficient of variation < 2%. Serum insulin and plasma cortisol and 

GH were measured by chemiluminescence assays using the Immulite Immunochemistry 

System (Diagnostic Products Corporation, Los Angeles, CA, USA). Plasma noradrenaline 

was measured using an HPLC system (Coulochem MD5001; ESA, Chelmsford, MA, USA) 

with a lower limit of sensitivity of 10 pg/ml and an intra-assay coefficient of variation of 6–

7.8%.

Statistical analyses

The effects of sleep restriction on metabolic variables were assessed using repeated 

measures design by mixed-model ANOVA with participants as random factor and sleep 

conditions (normal sleep, sleep restriction) as fixed factors. The NEFA time points between 

normal sleep and sleep restriction conditions were analysed by mixed-model ANOVA with 

participants as random factor and sleep condition and sampling time as fixed factors after 

controlling for multiple comparisons with a Benjamini and Hochberg procedure. Changes in 

hormonal and metabolic variables following sleep restriction were expressed as percentage 

of the values obtained during normal sleep. Relationships between changes in NEFA levels 

and changes in other metabolic variables were examined using the Pearson coefficient. Data 

are reported as mean and SEM. All statistical analyses were performed using JMP software 

(version 9.0.3; SAS Institute, Cary, NC, USA). A p value < 0.05 was considered significant 

for all analyses.

Results

Nineteen men (mean age: 23.5 ± 0.7 years) participated in the study. Average body mass 

index (23.4 ± 0.4 vs 23.3 ± 0.4 kg/m2; p = 0.12) and percentage body fat (19.3 ± 1.1% vs 

19.2 ± 1.0%; p = 0.86) did not differ between sleep conditions. On average, participants 

slept for 7.8 ± 0.1 h during normal sleep vs 4.3 ± 0.0 h during sleep restriction (Table 1).
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The 24 h profile of NEFA displayed a marked circadian variation under both sleep 

conditions (Fig. 2a). When sleep was restricted, the duration of the nocturnal NEFA increase 

was prolonged by approximately 50 min (Table 2). Sleep restriction resulted in a plateau of 

NEFA levels in the morning rather than the continued decline observed during normal sleep. 

Sleep restriction relative to normal sleep resulted in a significant increase in mean NEFA 

levels by approximately 15–30% during the nocturnal and early-morning hours (Fig. 2a, 

Table 2). We also analysed NEFA AUCs for the same time periods and found similar 

results.

During normal sleep, a single nocturnal GH pulse was observed in all but four of the 19 

participants (Fig. 2b). In contrast, during sleep restriction 14 of the 19 participants showed a 

biphasic nocturnal GH release, resulting in GH secretion being prolonged by approximately 

50 min. The total amount of nocturnal GH secreted did not differ between sleep conditions 

(Table 2). The increase in the duration of nocturnal GH secretion was correlated with the 

prolonged duration of NEFA rise (r = 0.81, p < 0.0001), while no relationship was found 

with the amount of nocturnal GH (r = 0.30, p = 0.207). Noradrenaline levels were increased 

by approximately 30% during the early-night and early-morning hours, when participants 

had to remain awake during sleep restriction (Fig. 2c, Table 2). This early-night increase in 

noradrenaline did not appear to influence the NEFA peak or the slope of NEFA rise. 

However, the early-morning increase in noradrenaline was positively correlated with the 

early-morning increase in NEFA levels (r = 0.55, p = 0.015). The normal post-awakening 

cortisol peak occurred approximately 2 h earlier when sleep was restricted (Fig. 2d) and 

cortisol levels were 23% higher in the evening hours as well as during the early night with 

extended wakefulness (Table 2). The alterations in cortisol secretory patterns did not 

correlate with any changes in NEFA (p > 0.05 for all variables).

Overnight (21:30–09:00 hours) mean fasting insulin levels were higher after sleep restriction 

as compared with normal sleep (51.0 ± 5.1 vs 46.7 ± 5.1 pmol/l; p = 0.036) despite similar 

glucose levels (5.08 ± 0.07 vs 5.05 ± 0.07 mmol/l; p = 0.410), suggesting an insulin-resistant 

state (Fig. 3). When sleep was restricted, the AUC for glucose response to breakfast tended 

to be higher (p = 0.061) and the AUC for insulin response was significantly increased (p = 

0.045), suggesting decreased insulin sensitivity (Fig. 4). The post-breakfast change in insulin 

level was positively correlated with the change in nocturnal NEFA level (r = 0.51, p = 

0.025).

Insulin sensitivity estimated by the IVGTT was reduced by 23% during sleep restriction as 

compared with normal sleep (p = 0.004, Fig. 5a). The acute insulin response to glucose did 

not differ between sleep conditions (p = 0.22). Thus, the lack of compensatory insulin 

secretion after sleep restriction resulted in a lower disposition index (p = 0.042), indicating 

an increase in diabetes risk. The decrease in insulin sensitivity was correlated with the 

increase in mean nocturnal NEFA levels (r = 0.52; p = 0.05; Fig. 5b) and the AUC for 

nocturnal NEFA levels (r = −0.53, p = 0.05). The decrease in insulin sensitivity did not 

correlate with any changes in noradrenaline, cortisol or GH (p > 0.10 for all variables).
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Discussion

We have demonstrated that experimental sleep restriction in healthy young lean men results 

in an increase in nocturnal and early-morning NEFA levels accompanied by insulin 

resistance. We also found that alterations in two lipolytic hormones, namely GH and 

noradrenaline, may be involved in the observed increase in NEFA levels during sleep 

restriction. These findings provide novel insights into our understanding of the pathways 

that may link sleep restriction to insulin resistance and increased diabetes risk.

To our knowledge, this is the first study to examine the impact of sleep loss on 24 h NEFA 

profiles. We observed the maximum NEFA levels occurring at night, as reported in earlier 

studies [20–23]. When sleep was restricted, the NEFA levels remained elevated during the 

nocturnal and early-morning hours in the prolonged fasted state. However, daytime NEFA 

levels were similar between sleep conditions, suggesting that sleep restriction may 

differentially affect NEFA levels during fasting vs fed states. Thus far, two studies have 

explored the effects of sleep deprivation on NEFA concentrations, but measurements were 

taken only in the morning over a limited number of time points [24, 25]. In the first study, 

NEFA concentrations were measured following one night of total sleep deprivation and 

recovery sleep in overweight individuals. Morning fasting and postprandial NEFA 

concentrations were found to be lower after recovery sleep as compared with baseline [25]. 

In the second study, 2 weeks of sleep restriction during diet-induced weight loss resulted in 

increased morning fasting NEFA levels in overweight adults [24].

To examine the potential signals that may be involved in elevations in NEFA during sleep 

restriction, we simultaneously assessed 24 h profiles of GH, noradrenaline and cortisol (i.e. 

hormones that are known to stimulate lipolysis and link the central nervous system to 

peripheral metabolism). We found that the nocturnal GH secretory pattern became biphasic 

during sleep restriction, relative to normal sleep, resulting in extended GH secretion, as 

previously reported [15]. The increase in the duration of nocturnal GH secretion was 

strongly related to the prolonged nocturnal increase in NEFA, suggesting that an altered GH 

secretory pattern may be partially responsible for the observed increase in nocturnal NEFA 

levels during sleep restriction. However, it is also possible that the prolonged exposure of 

peripheral tissues to higher GH levels may directly affect glucose and lipid regulation at the 

tissues themselves.

We also found that noradrenaline levels were elevated during the early-night and early-

morning hours when participants had to remain awake during the sleep restriction condition, 

consistent with the known inhibitory effect of sleep on noradrenaline [26]. The increase in 

early-morning noradrenaline was positively correlated with the increase in early-morning 

NEFA levels, suggesting that higher noradrenaline levels likely contributed to the 

interruption of decline in morning NEFA concentrations during sleep restriction. Our 

finding of elevated noradrenaline supports the hypothesis that augmented sympathetic drive 

may be a potential mediator of the metabolic consequences of sleep restriction and is in 

agreement with some [5] but not all [24, 27] studies reporting increased sympathetic activity 

with sleep loss.
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Consistent with earlier reports [4, 28], we found an increase in evening cortisol levels during 

sleep restriction. Additionally, we observed an earlier cortisol peak during sleep restriction 

relative to normal sleep, likely due to the stimulating effects of morning awakening. During 

the early night, cortisol levels were higher when sleep was restricted, possibly due to the 

lack of inhibitory effects of the early sleep period. However, we did not find any correlations 

between changes in cortisol secretion and NEFA levels. Although this may suggest that 

cortisol is not a key mediator of NEFA release during sleep restriction, we cannot exclude 

the interactions and combined effects of various hormones, including cortisol, that are 

affected by sleep loss.

As shown previously in multiple studies [3–6, 29], we observed reduced insulin sensitivity 

in our participants in the morning hours during sleep restriction as compared with normal 

sleep. The reduction in morning insulin sensitivity was correlated with the increase in 

nocturnal NEFA levels. Although this correlation does not demonstrate a direct causal link, 

acute elevation in circulating NEFA concentrations has been shown to induce insulin 

resistance in healthy participants in multiple previous studies [10–13]. In addition, the 

degree of insulin resistance in patients with type 2 diabetes correlates with the elevation in 

nocturnal NEFA levels [30]. Although the increase in NEFA levels during sleep restriction 

was modest (an increase of approximately 15–30% during nocturnal and early-morning 

hours) in our healthy participants, these findings are consistent with the notion that even a 

very small sustained increase in NEFA concentrations can alter insulin sensitivity [31]. Our 

findings are also in agreement with the observation of elevated nocturnal NEFA levels in a 

dog model of diet-induced insulin resistance [32]. Although we did not find significant 

correlations between decreased insulin sensitivity and changes in cortisol, noradrenaline or 

GH, alterations in these factors are known to affect insulin sensitivity and thus may be 

additional mediators of the insulin-resistant state that we observed in our participants.

Future mechanistic studies (e.g. use of pharmacological agents to suppress NEFA) will be 

necessary to demonstrate a direct causal role for NEFA in insulin resistance induced by 

sleep loss. Our current finding of elevated NEFA also suggests that adipocytes are resistant 

to the antilipolytic effects of insulin, and thus is consistent with our previous report of 

impaired intracellular insulin signalling in adipose tissue following sleep restriction [6]. It is 

important to note that our study does not provide information on the long-term effects of 

sleep restriction or the effects of recovery sleep following short-term sleep restriction on 

NEFA levels or insulin sensitivity.

We cannot exclude the possibility that altered circadian timing may play a role in our 

findings. Sleep and circadian rhythms are highly integrated such that sleep loss can occur 

with circadian misalignment and studies of sleep restriction have shown evidence for altered 

circadian timing [33, 34]. Disruption of circadian rhythms has also been associated with 

adverse effects on metabolism [29, 35]. Additionally, recent findings suggest the importance 

of clock genes in regulating lipolytic activity in adipose tissue [36]. Future studies are 

required to determine the independent effects of dysregulated circadian timing on NEFA 

metabolism.
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In summary, we have demonstrated that sleep restriction in healthy young men results in 

elevations in nocturnal and early-morning NEFA levels accompanied by marked alterations 

in hormones involved in lipolysis and reduced insulin sensitivity. These findings provide 

evidence for potential mechanisms by which sleep restriction may be associated with insulin 

resistance and increased type 2 diabetes risk. From a clinical perspective, our findings 

support the importance of sleep in the regulation of metabolism and provide further evidence 

that insufficient sleep, a highly prevalent condition in our modern society, may adversely 

affect fatty acid metabolism. Future studies are required to discover whether achieving 

adequate sleep can improve metabolic outcomes and thus be a novel strategy to counteract 

the current epidemics of diabetes and obesity.
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Fig. 1. 
Study protocol. Black bars, consecutive nights with bedtimes from 23:00 hours to 07:30 

hours in the normal sleep condition; red bars, consecutive nights with bedtimes from 01:00 

hours to 05:30 hours in the sleep restriction condition; dotted lines, 24 h blood-sampling 

period; thin arrows, the identical meals served at 09:00, 14:00 and 19:00 hours; thick arrows, 

IVGTT
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Fig. 2. 
Twenty-four hour profiles of NEFA (a), GH (b), noradrenaline (c) and cortisol (d) under 

conditions of normal sleep (black lines) and sleep restriction (red lines) in N=19 participants. 

Error bars are SEM. Horizontal black bars, time in bed under normal sleep (23:00 to 07:30 

hours); horizontal red bars, time in bed under sleep restriction (01:00 to 05:30 hours); 

arrows, identical meals served at 09:00, 14:00 and 19:00 hours. *p<0.05 for sleep restriction 

vs normal sleep at specific time points
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Fig. 3. 
Twenty-four hour profiles of glucose (a, b) and insulin (c, d) under conditions of normal 

sleep (black lines) and sleep restriction (red lines) in N=19 participants. Error bars are SEM. 

Horizontal black bars, time in bed under normal sleep (23:00–07:30 hours); horizontal red 

bars, time in bed under sleep restriction (01:00–05:30 hours); arrows, identical meals served 

at 09:00, 14:00 and 19:00 hours; vertical lines, AUC over the first postprandial 2.5 h after 

the breakfast meal
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Fig. 4. 
AUC values for glucose (a) and insulin (b) after breakfast, lunch and dinner under 

conditions of normal sleep (black bars) and sleep restriction (red bars) in N=19 participants. 

Error bars are SEM. Identical meals were served at 09:00, 14:00 and 19:00 hours. The 

AUCs were calculated using the trapezoidal method over the postprandial 2.5 h for each 

meal. *p<0.05 sleep restriction vs normal sleep
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Fig. 5. 
(a) Insulin sensitivity from IVGTTs under conditions of normal sleep (black bars) and sleep 

restriction (red bars) in N=19 participants. **p<0.01 sleep restriction vs normal sleep. Error 

bars are SEM. To convert values to SI units, multiply by 0.167. (b) Correlation between the 

change in nocturnal NEFA levels and the change in insulin sensitivity in n=16 participants. 

Changes during sleep restriction are expressed as percentage of the values obtained during 

normal sleep. r= −0.52; p=0.05
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Table 1

Effects of sleep restriction on sleep stages

Sleep variable Normal sleep Sleep restriction p value

All nightsa

 N1, min 20.6 ± 1.4 6.1 ± 0.5 <0.0001

 N1, % 4.5 ± 0.3 2.4 ± 0.2 <0.0001

 N2, min 248.3 ± 4.9 118.9 ± 4.8 <0.0001

 N2, % 53.1 ± 1.0 45.8 ± 1.8 <0.0001

 Slow wave sleep, min 74.2 ± 6.4 77.7 ± 5.5 0.13

 Slow wave sleep, % 15.9 ± 1.3 30.0 ± 2.1 <0.0001

 REM, min 124.8 ± 4.5 57.0 ± 2.6 <0.0001

 REM, % 26.6 ± 0.86 21.9 ± 1.0 <0.0001

Night 3b

 N1, min 26.1 ± 2.3 7.0 ± 1.3 <0.0001

 N1, % 5.7 ± 0.6 2.8 ± 0.6 0.002

 N2, min 247.1 ± 5.0 115.6 ± 6.9 <0.0001

 N2, % 53.8 ± 1.4 44.8 ± 2.5 0.0005

 Slow wave sleep, min 68.9 ± 6.8 72.1 ± 6.4 0.17

 Slow wave sleep, % 14.9 ± 1.4 28.1 ± 2.5 <0.0001

 REM, min 118.5 ± 6.8 62.7 ± 3.7 <0.0001

 REM, % 25.6 ± 1.3 24.3 ± 1.4 0.50

Data represent mean ± SEM (N=19). Percentages for each sleep stage were calculated as the percentage of total sleep time

a
Data are from the average of four nights during each sleep condition

b
Data are from night 3 only (i.e. 24 h blood-sampling night)

N1, stage 1 non-REM sleep; N2, stage 2 non-REM sleep
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Table 2

Effects of sleep restriction on 24 h profiles of NEFA, GH, noradrenaline and cortisol

Variable Normal sleep Sleep restriction p value

NEFA

 Nocturnal onset, mmol/l 0.15 ± 0.01 0.15 ± 0.01 0.820

 Nocturnal peak, mmol/l 0.66 ± 0.03 0.69 ± 0.04 0.436

 Duration of nocturnal increase, min 210 ± 15 262 ± 15 0.003

 Mean nocturnal (04:00–05:45 hours), mmol/l 0.44 ± 0.02 0.51 ± 0.03 0.014

 Mean early morning (07:15–09:00 hours), mmol/l 0.24 ± 0.02 0.31 ± 0.02 0.019

 Mean daytime (09:00–21:30 hours), mmol/l 0.10 ± 0.01 0.09 ± 0.01 0.565

GH

 Duration of nocturnal secretion, min 307 ± 18 359 ± 20 0.004

 Nocturnal amount secreted, μg 726 ± 59 614 ± 57 0.156

 Daytime amount secreted, μg 127 ± 21 103 ± 17 0.336

Noradrenaline

 Mean early night (23:00–01:00 hours), pmol/l 633 ± 52 833 ± 94 0.002

 Mean early morning (05:30–07:30 hours), pmol/l 676 ± 50 868 ± 90 0.038

 Mean daytime (09:00–21:30 hours), pmol/l 1,064 ± 74 1,085 ± 98 0.781

Cortisol

 Mean early night (23:00–01:00 hours), nmol/l 51 ± 5 75 ± 9 0.008

 Mean evening (19:00–21:30 hours), nmol/l 119 ± 12 146 ± 12 0.047

Data represent mean ± SEM hormone levels during the time interval indicated within parentheses, unless otherwise specified (N=19) NEFA: non-
esterified fatty acid, GH: growth hormone
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