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Abstract
Parkinson’s disease (PD) and schizophrenia (SCZ) are frequent central nervous disorders

that have unclear etiologies but that show similarities in their pathogenesis. Since elevated

histamine levels in the brain have been associated with PD and SCZ, we wanted to explore

whether the Thr105Ile substitution in the histamine N-methyltransferase gene (HNMT-
Thr105Ile), which impairs histamine degradation, is associated with either disease. We

used the ligase detection reaction to genotype a case-control cohort of Han Chinese pa-

tients with PD or SCZ and healthy controls at the HNMT-Thr105Ile locus. The Ile allele was

associated with reduced risk of PD (OR 0.516, 95%CI 0.318 to 0.838, p = 0.007) and of

SCZ (OR 0.499, 95%CI 0.288 to 0.865, p = 0.011). Genotype frequencies and minor allele

frequencies were similar between patients and controls when we compared males with fe-

males or early-onset patients with late-onset ones. Genotype and allele frequencies were

not significantly different between PD patients with dyskinesia and PD patients without dys-

kinesia. Our results suggest that the heterozygous Thr/Ile genotype at the HNMT-Thr105Ile
locus and the minor Ile105 allele protect against PD and SCZ in Han Chinese.

Introduction
Parkinson’s disease (PD) and schizophrenia (SCZ) are devastasting central nervous disorders
and despite decades of research, their etiology remains unclear. However, numerous studies
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have documented similarities in the pathogenesis of both diseases. The risk of both PD and
SCZ is higher in patients with the Val158Met polymorphism in the gene for catechol-O-
methyltranferase (COMT)[1,2], the rs1799836 polymorphism in the gene for monoamine oxi-
dase B (MAOB) [1,3], or the C(-1562)T polymorphism in the gene encoding matrix metallo-
protease-9 (MPP-9) [4,5]. Dysregulation of several neurotransmitters, including dopamine and
histamine, is associated with PD and SCZ[6,7]. In fact, substantial evidence indicates an associ-
ation of the dopamine metabolism pathway with PD and SCZ, and the main treatments for PD
and SCZ are based on the dopamine pathway [8,9].

Like the dysregulation of dopamine, dysregulation of histamine levels in the brain may be
another unifying element in the pathogenesis of both PD and SCZ. Histamine can selectively
damage dopaminergic neurons of the substantia nigra pars compacta (SNc), leading to the in-
creased inflammation that is characteristic of PD pathology [10]. Patients with SCZ show
lower density of histamine H1 receptors in the frontal, prefrontal, and cingulate cortex than do
controls [11]. In addition, levels of the histamine metabolite tele-methylhistamine in the cere-
brospinal fluid are 2.6-fold higher in SCZ patients than in healthy individuals, suggesting
abnormally high histamine turnover [12]. Histamine H2 antagonist therapy has shown clinical
benefits for patients with SCZ without significant adverse effects in a recent placebo-controlled
randomized clinical trial[13]. The same type of therapy has proven effective at treating
levodopa-induced dyskinesia in an animal model of PD and in patients with PD [6,14]. These
findings suggest that histamine levels and histamine metabolism may influence onset and pro-
gression of PD and SCZ.

The enzymes histamine N-methyltransferase (HNMT) and diamine oxidase (DAO) degrade
histamine, with HNMT playing the leading role in histamine metabolism in the central ner-
vous system. TheHNMT gene has even been proposed as a genetic biomarker for PD [15]. A
sequence variant of the HNMT gene, exon 4(C314T), causes the amino acid substitution
Thr105Ile in the enzyme, reducing its activity and increasing histamine levels in the brain [16].
This Thr105Ile mutation is the only functional mutation identified so far in theHNMT coding
region in Chinese populations [17]. Several studies have examined a possible association be-
tween the HNMT-Thr105Ile polymorphism and PD, but the results have been inconsistent
[18–20]. At the same time, we are aware of only one published study examining the association
between HNMT-Thr105Ile and risk of SCZ, which found no association [21]. That study in-
volved a relatively small sample of 185 patients with SCZ and 189 healthy controls, and the
subjects came from several ethnicities; both factors may have significantly affected
the outcome.

To help resolve the controversy over whether theHNMT-Thr105Ile variant is associated
with risk of PD and SCZ, we performed a case-control study in a relatively large, single-
ethnicity cohort of Han Chinese.

Materials and Methods

Materials
A total of 564 Han Chinese patients with sporadic PD (305 males, 259 females) were consecu-
tively recruited from two movement disorder centers: West China Hospital of Sichuan Univer-
sity, located in southwest China; and First Affiliated Hospital of Sun Yat-sen University,
located in southeast China. PD was diagnosed in all patients by two independent movement
disorder specialists based on the UK Parkinson’s Disease Society Brain Bank criteria for idio-
pathic PD [22]. Patients with at least one relative with PD were excluded from the study. As
controls, 496 healthy Han Chinese (294 males, 202 females) unrelated to the PD cohort were
recruited. Average age was 62.75±12.84 yr for PD patients, and 61.91±11.51 yr for healthy
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controls (Table 1). Patients who were younger than 50 years at onset were classified as having
early-onset PD (EOPD; n = 167; mean age at onset, 44.37±5.35 yr); others were defined as hav-
ing late-onset PD (LOPD; n = 397; mean age at onset, 63.05±6.59 yr). Patients were further di-
vided into those with dyskinesia (n = 124) and those without it (n = 440).

Patients with SCZ were recruited from four centers: The Second Xiangya Hospital of Central
South University, located in central China; West China Hospital of Sichuan University, located
in southwest China; and the Third Affiliated Hospital of Sun Yat-sen University and Jining
Mental Hospital, both located in east China. A total of 423 Han Chinese patients were recruited
(180 males, 243 females; mean age, 36.11±13.61 yr). All patients were diagnosed by two psychia-
trists based on the Structured Clinical Interview for DSMDisorders (SCID) and DSM-IV crite-
ria [23]. Patients who were older than 18 at SCZ onset were classified as having late-onset SCZ
(LOSCZ; n = 287; mean age at onset, 25.99±6.77 yr); others were classified as having early-onset
SCZ (EOSCZ; n = 136; mean age at onset, 15.35±2.13 yr) [24]. The control group for SCZ pa-
tients comprised 457 Han Chinese (193 males, 264 females; mean age, 36.69±10.86 yr).

Control individuals were screened for mental disorders and for family history of mental dis-
ease. The corresponding controls were well-matched with SCZ patients in terms of age and
gender. To take into account the different age distributions between our PD and SCZ groups,
we recruited a healthy control population for the SCZ cohort that was entirely different from
that of the PD cohort. Each control group was well-matched with PD or SCZ patients in terms
of age and gender (Table 1).

The protocol of the study was approved by the ethics committees of West China Hospital of
Sichuan University, the First Affiliated Hospital of Sun Yat-sen University, the Second Xiangya
Hospital of Central South University, the Third Affiliated Hospital of Sun Yat-sen University,
and Jining Mental Hospital. Written informed consent was obtained from all subjects.

Genotyping
Genomic DNA was obtained from peripheral leukocytes by classical phenol- chloroform ex-
traction. All genotyping was performed by the Shanghai BioWing Applied Biotechnology
Company using the ligase detection reaction (LDR) [25]. Briefly, this method involved the fol-
lowing steps. Target DNA in theHNMT gene was amplified using a multiplex PCR method
using the forward primer 5’-GCCAAGCA AACTTTACGTTC-3’ and the reverse primer 5’-
TGATGGTGTGTCACCTCTTC-3’. Then amplifications were mixed with 1 μl of proteinase K
(20 mg/ml), incubated at 70°C for 10 min and then at 94°C for 15 min. Ligation reactions (20
μl) were set up with 20 mM Tris-HCl (pH 7.6), 25 mM potassium acetate, 10 mMmagnesium
acetate, 10 mM DTT, 1 mM NAD, 0.1% Triton X-100, 10 μl of amplicon, 1 pmol of each dis-
criminant primer, 1 pmol of each universal primer and 0.5 μl of 40 U/μl Taq DNA ligase (New
England Biolabs, USA). Ligation was performed using 40 cycles at 94°C for 30 s and 63°C for 4
min. Fluorescent ligation products were analyzed on an ABI Sequencer 377.

Several measures were taken to ensure accurate genotyping. First, the technicians perform-
ing the genotyping were blinded to the case or control status of the samples. Second, a random

Table 1. Demographic data on Han Chinese with Parkinson’s disease (PD) or schizophrenia (SCZ) and healthy controls.

Factor SCZ (n = 423) Controls (n = 457) Comparison* PD (n = 564) Controls (n = 496) Comparison

Age, yr 36.11±13.61 36.69±10.86 t = 0.70; p = 0.48 62.7±12.84 61.9±11.51 t = 1.13; p = 0.26

Gender

Male 180 193 p = 0.923 305 294 p = 0.089

Female 243 264 259 202

doi:10.1371/journal.pone.0119692.t001
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selection of 20% of the samples was genotyped independently by other technicians; the results
of this second round of testing were identical in all cases to the initial results. Third, we selected
10 samples for each variant genotype obtained in the ligase detection reaction and we se-
quenced them directly using an automated sequencer (ABI Prism 3730); in all cases, the ex-
pected sequences were obtained.

Statistical analysis
All statistical analyses were performed using SPSS 17.0 (IBM, Chicago, USA). Age was reported
as mean±SD, while gender, allele and genotype frequencies were reported as percentages. Allele
and genotype frequencies were determined by direct counting of HNMT alleles. Concordance
between genotype distributions was verified by comparison with the predictions of Hardy-
Weinberg equilibrium (HWE); differences were assessed using the chi-squared test. Associa-
tions among gender, allele and genotype were assessed using the chi-squared test. Intergroup
differences in age at the time of the study and in age at onset were assessed using the t test. A
two-tailed P value< 0.05 was defined as the threshold of statistical significance.

Result
The genotype distribution at the HNMT-Thr105Ile locus and frequencies of individual
alleles in patients with PD and the corresponding control group are shown in Table 2. The ge-
notype distribution was in accordance with HWE for patients (χ2 = 0.34, p = 0.56) and controls
(χ2 = 0.0005, p = 0.98).The Thr/Ile+Ile/Ile genotype was significantly less frequent among pa-
tients than controls (OR 0.53, 95%CI 0.322 to 0.871, p = 0.013), as was the Ile105 allele (OR
0.516, 95%CI 0.318 to 0.838, p = 0.007). We also examined whether patients and controls dif-
fered significantly in genotype frequencies or minor allele frequency when we compared males
with females, early-onset patients with late-onset ones or patients with dyskinesia and patients
without dyskinesia. Frequencies were similar between patients and controls in all these sub-
group analyses (Table 3).

The genotype distribution at theHNMT-Thr105Ile locus and frequencies of individual al-
leles in patients with SCZ and the corresponding control group are shown in Table 2. The ge-
notype distribution was in accordance with HWE for patients (χ2 = 0.20, p = 0.65), and for
controls (χ2 = 0.91, p = 0.34). The Thr/Ile genotype was significantly less frequent among pa-
tients than controls (OR 0.499, 95%CI 0.268 to 0.847, p = 0.010), as was the Ile105 allele (OR

Table 2. Polymorphism at the HNMT-Thr105Ile locus in Han Chinese patients with PD or SZ and in healthy controls.*

Variant PD Control Comparison** SCZ Control Comparison**

Genotype

Thr/Thr 537 (94.2) 452 (91.03) 0.53;0.322–0.871; 0.013*** 405 (95.7) 418 (91.47) 0.499;0.268–0.847; 0.010***

Thr/Ile 27 (4.8) 43 (8.76) 18 (4.3) 39 (8.53)

Ile/Ile 0 1 (0.2) 0 0

Allele

Thr 1101 947 0.516;0.318–0.838;0.007 828 (97.75) 875 (95.73) 0.499;0.288–0.865; 0.011

Ile 27 45 18 (2.25) 39 (4.27)

* Values for the PD, SCZ and control groups are reported as n (%).

**Unless otherwise indicated, the values refer to OR; 95%CI; P value.

***Ile/Ile+Thr/Ile vs Thr/Thr

doi:10.1371/journal.pone.0119692.t002
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0.499, 95%CI 0.288 to 0.865, p = 0.011). Genotype frequencies and MAF were similar between
patients and controls in subgroup analyses based on gender or age at onset (Table 3).

Discussion
Our results suggest that the HNMT-Thr105Ile locus is associated with risk of both PD and SCZ
in Han Chinese, with the heterozygous genotype Thr/Ile and the minor Ile105 allele conferring
a protective effect against both disorders. To the best of our knowledge, this is the first study to
relate variations at the HNMT-Thr105Ile locus to PD and SCZ in an Asian population.

We detected the Ile/Ile allele in only one of 496 subjects in the control group matched to PD
patients; a similarly low frequency was also reported in a previous study ofHNMT-Thr105Ile
polymorphism in Chinese [26]. The frequencies of the heterozygous genotype Thr/Ile and the
Ile allele are significantly lower in our population than in European and North American popu-
lations [18]. However, PD and SCZ appear to be less prevalent among Asians than in these
other populations [27,28], contrary to what one might predict if the Thr/Ile genotype and Ile
allele protect against these disorders. This apparent paradox presumably reflects the strong in-
fluence of gene-gene and gene-environment interactions in determining the overall risk
of disease.

Such influences may also help explain why we failed to detect significant differences in ge-
notype distribution between PD patients with dyskinesia and PD patients without it, even
though histamine H2 antagonist therapy has proven effective at treating levodopa-induced
dyskinesia in an animal model of PD and in patients [6,14]. Since our findings are based on
only 124 patients with dyskinesia, larger studies are needed to verify this result.

The HNMT gene, located at 2q22.1, encodes an enzyme that methylates histamine in the ex-
tracellular space of the central nervous system. Histamine is an important neurotransmitter in
the brain, and HNMT-mediated methylation is the only way to deactivate it, since the mamma-
lian brain lacks a histamine reuptake system [29]. Numerous lines of evidence suggest that his-
tamine hypermetabolism is associated with the pathophysiology of PD. This hypermetabolism
may involve increased synthesis to compensate for a relatively rapid deactivation [add here the
Agundez et al. reference]. Elevated serum levels of histamine have been detected in patients

Table 3. Distributions of minor allele frequency (MAF) in Han Chinese patients with SCZ or PD, stratified by gender or age of onset.

Subgroup Genotype / MAF Comparison*

Total Thr/Thr Thr/Ile Ile

Patients with SCZ

Males 180 170 10 10 0.571;0.221–1.478;0.243 a

Females 243 235 8 8 1.707;0.667–4.370;0.259 b

EOSCZ 136 128 8 8 1.731;0.668–4.490;;0.254 a

LOSCZ 287 277 10 10 1.709;0.667–4.380;;0.259; b

Patients with PD

Male 305 293 12 12 1.501;0.690–3.267;0.303 a

Female 259 244 15 15 0.637;0.312–1.451;0.309 b

EOPD 167 161 6 6 0.637;0.312–1.451;0.309 b

LOPD 397 376 21 21 0.673;0.312–1.451;0.309 b

With dyskinesia 124 121 3 3 1.876;0.556–6.332;0.303 a

Without dyskinesia 540 516 24 24 1.856;0.554–6.213;0.308 b

*Values indicate: OR; 95%CI;P value. Results marked with “a” refer to the genotype distribution; results marked with “b” refer to MAF distribution.

doi:10.1371/journal.pone.0119692.t003
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with PD [30], and non-medicated patients with mild to moderate PD show elevated levels of
the histamine metabolite pros-methylimidazoleatic acid in the cerebrospinal fluid[31]. Autopsy
studies of patients with PD have revealed elevated levels of histamine in areas associated with
motor behavior, including the caudate nucleus, putamen, internal and external globus pallidus
and the SNc. Autopsy studies have also shown that histaminergic fibers, where the neurotrans-
mitter is synthesized, are denser in patients with PD than in controls, and that a greater pro-
portion of these fibers have enlarged varicosities, where histamine is stored [32]. Post-mortem
studies have shown higher levels ofHNMTmRNA in the SNc and putamen of patients than of
healthy individuals, and the precise mRNA level may correlate with PD severity [33]. Adminis-
tering an irreversible inhibitor of histamine synthesis to a rat model of PD produced significant
protection against neuronal loss [34]. Histamine hypermetabolism may contribute to PD
pathophysiology by inhibiting dopamine activity: in a rat model of PD, a selective H3 receptor
agonist attenuated dopamine release in the striatum [35]. Together, the findings suggest that el-
evated histamine metabolism may promote PD onset and/or progression, perhaps by disturb-
ing dopamine signaling, whereas reduced histamine metabolism may exert a protective effect.
Consistent with this literature, we found in the present study that the minor allele Thr105Ile,
which reduces HNMT-mediated histamine deactivation, helps reduce risk of PD. This may be
because the reduction in deactivation causes a compensatory reduction in synthesis, which
should be tested in future studies.

Whether SCZ involves a similar disruption of histamine homeostasis is unclear, but several
pieces of evidence point in that direction. Autopsy studies of patients with SCZ show that the
density of histamine H1 receptors in the frontal cortex is lower in patients with SCZ than in
controls [11]. In addition, levels of histamine metabolites in the cerebrospinal fluid are higher
in patients with SCZ, suggesting histamine hypermetabolism similar to that in PD[12]. It may
be no coincidence that antipsychotic drugs such as clozapine and olanzapin act, in least in part,
through histamine receptors [36]. Indeed, a new generation of non-dopaminergic drugs to
treat both PD and SCZ bind to histamine H2 receptors[6,13].

Our results provide strong evidence that theHNMT gene is associated with PD and SCZ,
with a power of 0.955 for the PD association and 0.912 for the SCZ association. These findings
extend the list of diseases already associated with the gene, including alcoholism [37], essential
tremor [38], allergic rhinitis [39], asthma [40], and myasthenia gravis [41]. Future studies
should explore to what extent histamine dysregulation is important in the onset or progression
of these disorders.

Our observation of an association between theHNMT-Thr105Ile polymorphism and PD
risk is consistent with previous studies in Caucasians from Spain [16] and from Europe and the
US [20], but at least one study, on Caucasians from North America, concluded that there was
no association [19]. These discrepancies may reflect strong influence of different genetic back-
grounds in different ethnicities. It may also reflect differences in gene-gene or gene-environ-
mental interactions. TheHNMT-Thr105Ile polymorphism would not be the first to show
different effects on PD risk as a function of ethnicity or environment. The rs11724635 poly-
morphism in the BST1 gene increases the risk of PD to a significantly greater extent in Asians
than in Caucasians. Another BST1 polymorphism, rs11724635, is not by itself associated with
PD in ethnic Taiwanese, but when carriers drink well water, it does increase the risk of the dis-
ease[42]. Future studies should examine the extent to which other genes and environment may
affect the influence of theHNMT-Thr105Ile polymorphism on PD and SCZ.

The results of our study should be interpreted with caution given its limitations. Although
we examined a relatively large study population, the low minor allele frequency reduced the
overall statistical power. In addition, we focused on the one functional SNP in theHNMT gene,
leading us to neglect SNPs in other regions of the gene that may be playing a disease role. Thus,
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future studies should examine moreHNMT variants in a larger study population in order to
gain a more complete picture of the potential association of this gene with PD and SCZ.

In conclusion, our multi-center study shows that the HNMT-Thr105Ile polymorphism is
associated with PD and SCZ in Han Chinese. Nevertheless, these associations should be veri-
fied in larger studies of other ethnicities. Future studies are also needed to understand how
HNMT polymorphism affects histamine homeostasis, and how histamine dysregulation con-
tributes to PD, SCZ and potentially other motor disorders.
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