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Abstract Osteoarthritis (OA) is a chronic degenerative

joint disease characterized by the progressive loss of ar-

ticular cartilage, remodeling of the subchondral bone, and

synovial inflammation. Mammalian target of rapamycin

(mTOR) is a serine/threonine protein kinase that controls

critical cellular processes such as growth, proliferation, and

protein synthesis. Recent studies suggest that mTOR plays

a vital role in cartilage growth and development and in

altering the articular cartilage homeostasis as well as

contributing to the process of cartilage degeneration asso-

ciated with OA. Both pharmacological inhibition and ge-

netic deletion of mTOR have been shown to reduce the

severity of OA in preclinical mouse models. In this review

article, we discuss the roles of mTOR in cartilage devel-

opment, in maintaining articular cartilage homeostasis, and

its potential as an OA therapeutic target.

1 Introduction

Aging is known to be one of the major risk factors pre-

cipitating the onset of osteoarthritis (OA) [1–3]. Although

aging and OA are correlative, OA is not a predictable

consequence of aging, since other factors such as obesity,

joint injury, and genetics may come into play [1]. Among

the early signs of OA is alteration in the extracellular

matrix (ECM) composition within the articular cartilage.

This elicits a chondrocytic, synthetic, and proliferative

response that functions to maintain or restore the articular

cartilage. With advancing age, there is a decline in the

chondrocytic anabolic response, ultimately favouring ma-

trix degradation [2–4]. The joint tissue is therefore unable

to bear normal load or maintain homeostasis when stressed,

which leads to matrix destruction and disease progression.

Destruction of the ECM of articular cartilage is a major

indicator of OA [5]. With advanced age, chondrocytes

exhibit reduced responsiveness to growth factors, abnormal

accumulation of advanced glycation end products (AGE),

mitochondrial dysfunction, and oxidative stress. As a re-

sult, cartilage homeostasis is disrupted and the ECM be-

comes more vulnerable to damage, leading to the onset of

OA [6]. Chondrocytes are the one cell type present in the

articular cartilage and are exclusively responsible for ma-

trix turnover and maintenance [7]. They function to

maintain cartilage homeostasis by maintaining a condition

where the normal cartilage ECM composition deals with

mechanical stress without structural or cellular damage [5].

With OA progression, excessive catabolic activity is

largely mediated by proinflammatory cytokines and me-

diators such as matrix metalloproteinases (MMPs) and a

disintegrin and metalloproteinase with thrombospondin

motifs (ADAMTS) [6]. The breakdown of cartilage during

OA pathogenesis is also a result of chondrocyte death as
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evidenced by the presence of apoptotic and non-apoptotic

mechanisms in OA cartilage [8]. This excessive catabolic

activity and loss of viable chondrocytes causes imbalance

of cartilage homeostasis and cartilage matrix breakdown.

There is also minimal proliferative activity in osteoarthritic

chondrocytes, in contrast to essentially no proliferative

activity in normal articular chondrocytes. In response to

injury during OA progression, chondrocytes proliferate and

form clusters, a characteristic feature of OA cartilage, in an

attempt to repair cartilage lesions. In spite of attempts to

salvage the cartilage degeneration, cartilage homeostasis

cannot be maintained, as the biosynthetic anabolic activity

becomes unable to compete with the degradative catabolic

activity [9, 10].

Studies suggest that cellular processes such as au-

tophagy and senescence could play a key role in deter-

mining the fate of chondrocytes within the articular

cartilage. Mammalian cells maintain homeostatic func-

tions such as the degradation and recycling of organelles

via autophagy [11]. Autophagy is the process of cell

degradation in a stressful or nutrient-deprived environ-

ment, consisting of formation of an isolation membrane,

or autophagosome, around the contents to be degraded,

which combines with a lysosome to form an autolyso-

some. This lysosomal degradation pathway is essential for

homeostasis as well as survival, differentiation, and de-

velopment [12]. Autophagy is particularly important to

remove aggregate-prone or misfolded proteins and dys-

functional organelles in post-mitotic tissue, such as the

articular cartilage, where a very low rate of cell turnover

is experienced [13]. The molecular components that

control the autophagy process, the Atg genes, were first

identified in yeast. Among the Atg genes, the four major

regulators of the autophagy pathway are Atg1, Atg6, Atg8

(ULK1, Beclin1, and LC3 in mammals, respectively) and

Atg5 [14]. ULK1 is a serine/threonine kinase that func-

tions as an intermediate in the transduction of proau-

tophagic signals to autophagosome formation [15].

Beclin1 forms a complex with type II phosphatidylinositol

3-kinase (PI3K) and Vps34 allowing nucleation of the

autophagic vesicle [16]. LC3 is present in two forms:

LC3-I is located in the cytoplasm, while LC3-II is bound

to the autophagosome membrane. During autophagy,

LC3-I undergoes lipidation to be converted to LC3-II,

resulting in the association of LC3-II with autophagy

vesicles [17].

The reduced efficacy of articular cartilage repair that

accompanies ECM degradation has also been proposed to

be a result of chondrocyte phenotypic senescence [18]. As

opposed to ‘replicative senescence’, which refers to the

loss of the ability of mitotic cells to further divide in

culture after a period of 30–40 population doublings

(‘Hayflick limit’), phenotypic senescence develops well in

advance of complete arrest of the cell cycle [1, 19]. De-

terioration of chondrocyte function with age is character-

ized by a decline in their mitotic and synthetic activity,

resulting in the synthesis of smaller proteoglycan aggre-

gates. This is due to the shortening of aggrecan molecules,

their chondroitin sulfate chains, and the reduction in the

mean number of aggrecans in each aggregate. These age-

related incidents may be a result of ECM proteoglycan

degradation and/or alterations in proteoglycan synthesis

[20]. Using three markers of cell senescence (beta-galac-

tosidase expression, mitotic activity, and telomere length),

studies conducted by Martin and Buckwalter [18] showed

that beta-galactosidase expression increased with age,

whereas mitotic activity (indicated by 3H-thymidine in-

corporation) and mean telomere length declined with age.

Two mechanisms have been proposed to explain how the

cells become senescent with age [18]. First, telomere

erosion occurs as a result of incomplete replication of the

telomeres during mitosis (end replication problem) such

that a portion of the end of the telomere is lost with each

cell division. As telomeres shorten, cells ultimately reach

their replicative limit and progress into senescence [21].

While authors such as Loeser [1] argue that telomere

erosion due to repeated cycles of cell division does not

explain senescence in quiescent cells such as chondro-

cytes, Martin and Buckwalter [18] claim that even a slow

rate of cell division would be sufficient to cause telomere

erosion over many decades. Additionally, following car-

tilage injury, chondrocyte mitotic activity increases sev-

eral fold; hence, repetitive joint stress could accelerate

telomere erosion and eventual joint degeneration [22].

Stress-induced senescence due to oxidative damage is the

second proposed mechanism of how cells approach se-

nescence [23]. One causative factor for oxidative damage

is the age-related degeneration of mitochondria, which

protect cells from the toxic effects of free radicals and

reactive oxygen species (ROS) as well as providing

metabolic energy to support the homeostatic activities that

chondrocytes require for tissue maintenance [18, 24].

Mitochondrial degeneration and loss is suggested to be

associated with chondrocyte senescence. The altered ac-

tivity and expression of regulatory proteins that control

cell growth and proliferation in senescent cells can also

result in the increased production of cytokines (e.g. in-

terleukin [IL]-6 and IL-1), growth factors (e.g. epidermal

growth factor), and MMPs. This ‘senescent secretory

phenotype’ can also contribute to tissue aging through

damage to the ECM [1]. While senescent cells undergo

permanent cell cycle arrest, growth-promoting pathways

are not inhibited [25]. The enlarged and flattened cell

morphology is a distinct marker of cell senescence, a

consequence of cell growth without cell divisions (i.e.

cellular hypertrophy) [25, 26].
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2 Mammalian Target of Rapamycin (mTOR)

The target of rapamycin (TOR) is a nutrient-sensing

signaling cascade that is responsible for the regulation of

growth and metabolism of cells, depending on the nutri-

tional environment. The discovery of the TOR pathway

was preceded by the discovery of the drug rapamycin. It

was discovered on the island of Rapa Nui in the 1970s

from the bacteria Streptomyces hygroscopicus and ini-

tially studied as an anti-fungal agent [27]. TOR is a 282

kDa protein composed of an evolutionarily conserved

atypical serine-threonine kinase, part of the phos-

phatidylinositol kinase-related kinase (PIKK) family, also

similar to the PI3K and 4-kinases (PI4Ks). It was

originally discovered in Saccharomyces cerevisiae, where

the immunosuppressant FK506, structurally similar to

rapamycin, was found to bind to FK506-binding protein

(FKBP12), a peptidyl-prolyl isomerase (PPIase), which is

highly conserved across species and a very abundant

protein in cells [28–31].

The TOR pathway can be inhibited by TOR inhibitors,

which bind to FKBP12. This complex then targets and

binds to TOR and inhibits it. Mutations in TOR prevent

the binding of the FKBP12-rapamycin complex to it,

depicting the role of TOR in the pathway [31]. The

mammalian counterpart in mammals, mTOR (or FRAP,

RAFT1 [32]), now known as the mechanistic target of

rapamycin, is inhibited by the FKBP12–rapamycin com-

plex [33]. mTOR comprises of two complexes that are

similar in structure but not in function [34]: while the

mTOR complex 1 (mTORC1) consists of mTOR, mLST8,

and raptor; the mTOR complex 2 (mTORC2) consists of

mTOR, mLST8, and rictor (not raptor). FKBP12–ra-

pamycin complex binds to the raptor component of

TORC1, not the rictor component of TORC2 in vivo,

concluding that TORC1 is rapamycin sensitive while

TORC2 is insensitive [35, 36]. mTORC1 is important for

the regulation and promotion of cell growth, protein

synthesis upstream (initiation, translation, elongation), ri-

bosome biogenesis, cell cycle regulation via the S/G1

phase, inhibition of autophagy, accelerated aging and

nutrient uptake and metabolism (Fig. 1). On the other

hand, mTORC2 controls endocytosis, sphingolipid

biosynthesis (ROS association), cell survival, and polar-

ization of the cytoskeleton [37–40].

mTORC1 is a major negative regulator of autophagy

(discussed in detail later) and is a downstream target of the

PI3K and protein kinase B (Akt) pathway [41–43]. The

PI3K/Akt/mTOR signaling cascade is activated by trans-

membrane tyrosine kinase growth factor receptors such as

insulin-like growth factor (IGF)-1 [44]. When activated, it

promotes cell growth, differentiation, survival, and down-

regulates apoptotic signals [45, 46]. AKT stimulates mTOR

activity by phosphorylating the tuberous sclerosis complex

(TSC2) and suppressing its repressive action [47]. TSC2

phosphorylation consequently promotes the activation of

the Ras homolog enriched in brain (Rheb) and the activa-

tion of mTOR [48]. Activation of mTOR leads to the

phosphorylation of p70 ribosomal S6 kinase (S6K) and

eukaryotic initiation factor 4E-binding protein (4EBP),

which are related to translational machinery, ribosomal

biogenesis, and cell growth [49]. On the other hand, inhi-

bition of mTOR by rapamycin induces the initiation of

autophagy and the formation of autophagosomes [50].

mTORC1 inhibition by rapamycin also increases AKT

phosphorylation by blocking the phosphorylation of S6K

and insulin receptor substrate (IRS)-1, which are key fac-

tors of a negative feedback inhibition for PI3K/Akt signal

transduction, consequently inducing survival and anti-

apoptotic pathways [51, 52].

Fig. 1 Some of the critical physiological and pathological roles of mammalian target of rapamycin. mTOR mammalian target of rapamycin, OA

osteoarthritis
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3 mTOR in Cartilage Growth and Development

Several studies suggest that mTOR plays a vital role in

cartilage growth and development. Chen and Long [53]

showed that disruption of mTORC1 signaling through

deletion of either mTOR or raptor retards embryonic

skeletal growth associated with severe delays in chondro-

cyte hypertrophy and bone formation [53]. This study also

showed that growth reduction of cartilage is not due to

changes in chondrocyte proliferation or survival, but is

caused by a reduction in cell size and in the amount of

cartilage matrix. It has also been shown that mechanical

activation of mTOR is necessary for cell proliferation,

chondrogenesis, and cartilage growth during bone devel-

opment [54]. Rokutanda et al. [55] showed that the Akt–

mTOR pathway positively and dominantly regulates

chondrocyte proliferation, maturation and cartilage matrix

production during skeletal development. Studies also show

that mTOR signaling contributes to chondrocyte differen-

tiation [56].

Rapamycin-treated animals have been shown to exhibit

retarded growth and marked alterations in the growth plate

associated with disruption of angiogenesis in the growth

plate [57]. Direct infusion of rapamycin in growth plates by

an osmotic minipump resulted in smaller hypertrophic and

proliferative zones, decrease in the size of the growth plate,

and inhibition of overall long bone growth in rabbits [58].

In young rats, treatment with rapamycin significantly de-

creased endochondral bone growth [59]. Treatment with

rapamycin has also been shown to inhibit chondrogenesis

of mesenchymal cells at the post-precartilage condensation

stage [60]. It may seem like mTORC1 is essential for

normal cartilage and skeletal development; however, re-

cent reports suggest that mTORC2 also plays a key role in

skeletal development. Chen et al. [61] showed that deletion

of rictor resulted in shorter and narrower skeletal elements

in both embryos and postnatal mice. Specifically, this study

showed that deletion of rictor reduced the width but not the

length of the initial cartilage anlage associated with a delay

in chondrocyte hypertrophy, with no change in prolif-

eration, apoptosis, cell size, or matrix production. Further,

rictor-deficient mice exhibit impaired bone formation, re-

sulting in thinner cortical bone postnatally. These studies

strongly suggest that mTOR is a key regulator of chon-

drogenesis and cartilage development.

4 mTOR in Articular Cartilage Homeostasis

In recent years, a variety of studies have demonstrated a

key role of mTOR signalling in chondrocyte metabolism,

articular cartilage homeostasis, and OA pathophysiology

[62]. Tchetina et al. [63] recently reported an upregulation

in mTOR gene expression in the peripheral blood

mononuclear cells (PBMCs) of OA patients and in the

articular cartilage of all end-stage OA patients. They also

showed that an increase in the expression of mTOR in

PBMCs of OA patients related to disease activity, being

associated with synovitis. Interestingly, this study also re-

ported a ‘‘low mTOR expression subset’’ with significantly

lower mTOR gene expression in PBMCs compared with

healthy controls that correlated with pain upon walking,

standing and increased total joint stiffness compared with

the ‘‘High mTOR’’ subset.

It has also been shown that upregulation in the expres-

sion of mTOR in OA cartilage is accompanied with an

increased rate of chondrocyte apoptosis [64]. Increase in

mTOR expression and an increased rate of chondrocyte

loss is not restricted to human OA cartilage, as mouse and

dog cartilage subjected to OA surgical models also exhibit

a significant increase in mTOR expression associated with

enhanced articular chondrocyte loss [64].

Recent studies have shown that dysregulated autophagy

could contribute to the pathophysiology of OA [4, 64–68].

Carames et al. [4] demonstrated that the expression of key

autophagy markers ULK1 (most upstream autophagy in-

ducer), Beclin1 (autophagy regulator), and LC3 (au-

tophagosome formation) were significantly decreased in

human aging, OA cartilage, chondrocytes, and aging-re-

lated and surgically induced OA mouse models. Further-

more, an increase in apoptotic cell death was observed via

the increased expression of the apoptosis marker, poly

ADP ribose polymerase (PARP) p85, in human aging and

OA cartilage and chondrocytes as well as aging-related and

surgically induced OA mouse models [4]. Data from au-

tophagy polymerase chain reaction (PCR) array analysis

also shows aberrant expression of several autophagy genes

in human OA cartilage compared with normal human

cartilage associated with increased expression of mTOR

during OA [64].

Both pharmacological inhibition of mTOR as well as

cartilage-specific deletion of mTOR have been shown to

decrease the severity of experimental OA in mouse models

[64, 69–71]. Inhibition of mTOR signaling by rapamycin

and subsequent increase in autophagy was shown to be

associated with a significant reduction in the severity of

cartilage degeneration and synovitis associated with de-

crease in the expression of ADAMTS-5 and IL-1b in ar-

ticular cartilage [71]. Further, cartilage-specific mTOR

knock-out (KO) mice subjected to destabilisation of the

medial meniscus in the OA model showed significant

protection from surgery-induced OA, associated with in-

creased autophagy and decreased articular chondrocyte cell

death, elucidating a potential role for mTOR inhibition to

restore homeostasis during OA [64]. Sasaki et al. [65] also

showed that inhibition of autophagy caused OA-like gene
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expression changes, while the induction of autophagy by

rapamycin reduced MMP13 and ADAMTS5 expression

induced by IL-1b, a major pro-inflammatory cytokine im-

plicated in OA [72]. Another study showed that glucocor-

ticosteroids used in the short-term increase autophagy in

human chondrocytes, but cause apoptosis in the long term.

When rapamycin was given before treatment, cell viability

and autophagy increased compared with dexamethasone-

only cells [73].

It has also been shown that mTOR can be regulated via

enhanced synthesis of endogenous n-3 polyunsaturated

fatty acids (PUFAs) from n-6 PUFAs, thus promoting au-

tophagy and chondrocyte cell survival and delaying the

incidence of OA [74]. Genetic deletion of Von Hippel–

Lindau (Vhl), a tumor-suppressor gene, in the articular

cartilage results in increased phosphorylation of mTOR

and increased MMP-13 expression associated with earlier

dysregulation of cartilage homeostasis, increased chon-

drocyte apoptosis, compromised autophagy, and acceler-

ated age-related and surgery-induced OA development

[75]. Phosphoinositide-specific phospholipase c1 (PLCc1),

a key regulator of cell metabolism, has been shown to

regulate the ECM synthesis of human chondrocytes

through triggering of the mTOR/P70S6K/S6 pathway [76].

In vitro and in vivo studies using glucosamine have also

been shown to enhance autophagy associated with the in-

hibition of Akt/mTOR pathway, thus shedding light on

possible disease-modifying or homeostatic properties ex-

hibited by glucosamine [77].

mTOR modulation of autophagy in the articular cartilage

seems to be partly regulated through the ULK1/AMPK

pathway. ULK1 is the most upstream autophagy inducer.

mTORC1 has been shown to associate with the ULK1-

Atg13-FIP200 complex, whereby it phosphorylates both

ULK1 and Atg13, which represses ULK1 kinase activity [3,

78, 79]. Therefore, when mTOR is active in conditions such

as the presence of abundant amino acids, autophagy is re-

pressed as a consequence of ULK1 inhibition by mTORC1-

mediated phosphorylation [80]. Indeed, studies performed

in cartilage-specific mTOR KO mice and human patient OA

cells treated with rapamycin showed that the ability of

mTOR to modulate ULK1/AMPK autophagy pathway may

be partly responsible for the imbalance between catabolic

and anabolic processes and decreased chondroprotection

and ultimately cartilage destruction observed during OA.

Since mTOR is a complex mediator, it may affect other

cellular processes independently of the autophagy pathway

in articular cartilage. For example, mTOR plays a role in

growth-promoting pathways and remains active during

senescence [81]. The significance of active growth-pro-

moting pathways in cellular senescence was shown by

Demidenko et al. [82]. p21 induction caused cell-cycle

arrest in HT1080 human fibrosarcoma cells, as well as a

senescent morphology (beta-galactosidase staining, cell

hypertrophy, increased levels of cyclin D1, active mTOR)

in the presence of serum growth factors. However, the

addition of rapamycin decelerated cellular senescence and

partially reduced beta-galactosidase staining. Still, sup-

pression of the permanent loss of proliferative potential by

rapamycin is only achievable if the cell cycle inhibitors are

removed [82]. Hence, while rapamycin does not reverse

cell cycle arrest, it does suppress inappropriate growth

stimulation via mTOR. These findings have yet to be ex-

amined in the context of chondrocyte senescence.

Since mTOR is active in senescent cells, and mTOR is

also a major repressor of autophagy, one would assume

autophagy to be inhibited in senescent cells. Interestingly,

Narita and colleagues [83, 84] observed that autophagy can

be activated in senescent cells. Their research uncovered a

unique cellular compartment, the TOR-autophagy spatial

coupling compartment (TASCC), which forms during Ras-

induced senescence. The authors discovered a large accu-

mulation of mTORC1-studded lysosomes together with

autophagosomes in a well-defined perinuclear location.

According to their proposed model, autophagosome-

derived amino acids reinforce mTOR enrichment and ac-

tivity, leading to the synthesis of senescence-associated

secretory proteins. Blocking the localization of mTORC1

to the TASCC resulted in a strong reduction in the syn-

thesis of two key SASP components, IL-6 and IL-8.

Similarly, blocking autophagy (i.e. cutting off amino acid

supply) leads to a complete loss of mTORC1 from the

TASCC [83, 85]. Thus, there is increasing evidence that the

progressive loss of cell function with age contributes to

age-related changes in articular cartilage structure and

function and increases the risk of the articular cartilage

degeneration associated with OA. Furthermore, mTOR has

been shown to have significant roles in both autophagy and

senescence, as well as its recently discovered role fa-

cilitating the mass synthesis of secretory proteins [83].

5 mTOR as a Potential Therapeutic Target

in Osteoarthritis

Recent pre-clinical studies have shown a decrease in the

severity of OA in animal models subjected to pharmaco-

logical inhibition and genetic deletion of mTOR. These

results depict mTOR as a potential therapeutic target in

OA. Specifically, the ability of mTOR to regulate chon-

drocyte survival, cell death, and senescence is promising.

Furthermore, the effect of mTOR modulation on lifespan

has been examined in yeast, C. elegans, Drosophila and

most importantly, mice [86–88]. Harrison et al. [89] re-

ported a significant increase in lifespan in male and female

mice following rapamycin treatment at 600 days of age. It
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would be interesting to track how this treatment results in

the aging of the joints in these mice and whether treatment

with rapamycin protects articular cartilage from degen-

eration and maintains articular cartilage integrity.

Genetic or pharmacological manipulation of mTOR

signalling is time sensitive, since mTOR is essential for the

early stages of cartilage growth and development. Prema-

ture modulation of the mTOR-signaling pathway has dire

consequences on skeletal growth in vivo. In recent years,

inhibition of the mTOR pathway has received substantial

attention as an anti-cancer approach, leading to the clinical

development of rapamycin analogs (rapalogs) (Table 1)

[90]. The mTOR pathway has also been shown to be in-

volved in the development of vascular lesions associated

with antiphospholipid syndrome, an autoimmune disease

[91]. Clinical studies in patients with antiphospholipid

syndrome nephropathy who required transplantation

showed that treatment with sirolimus resulted in no re-

currence of vascular lesions and decreased vascular pro-

liferation on biopsy as compared with patients with

antiphospholipid antibodies who were not receiving sir-

olimus. In rheumatic diseases, rapamycin has been shown

to reduce the disease activity in patients with systemic

lupus erythematosus [92]. In a case study involving a single

patient with scleroderma, treatment with rapamycin

decreased skin tightness and increased the range of motion

of fingers and arms [93]. The beneficial effects of ra-

pamycin have also been reported in a patient with der-

matomyositis [94]. In animal models of systemic sclerosis,

treatment with rapamycin prevents fibrosis in tight-skin

and bleomycin-induced mouse models [95].

Despite these advances, the disease-modifying effects of

rapamycin and its rapalogs have not been tested in OA

clinical studies. As previously discussed, mTOR has a

negative feedback inhibition on the activity of the PI3K/

Akt pathway, and the inhibition of mTOR results in in-

creased activity of the PI3K/Akt/nuclear factor (NF)-jB

pathway, which may increase MMP secretion by chon-

drocytes. Chen et al. [96] propose that a dual inhibition of

PI3K and mTOR may be a potential therapeutic approach

in OA (Fig. 2). Besides this prospect of dual inhibition,

targeting autophagy genes to upregulate autophagy, impart

chondroprotection, and promote articular cartilage home-

ostasis can also be tested.

The side effects observed with mTOR inhibitors may be

a limitation of their use. However, this may be resolved by

preventive and management measures during the course of

treatment with combination therapy. In addition, intra-ar-

ticular delivery of mTOR inhibitors in affected OA joints

could reduce the risk of systemic side effects. As further

Table 1 List of some recent clinical trials with mammalian target of rapamycin inhibitors

Drug name(s) Title of study Trial status References

Sirolimus A pilot study evaluating the use of mTOR inhibitor sirolimus in children and

young adults with desmoid-type fibromatosis

Phase I and II [97]

Gemcitabine ?

rapamycin

Gemcitabine plus rapamycin versus gemcitabine to treat advanced soft tissue

sarcoma

Phase I and II

(completed)

[98]

Sirolimus Pulsed oral sirolimus in autosomal dominant polycystic kidney disease—the

Vienna rap study

Phase III [99]

Everolimus Controlled level everolimus in acute coronary syndromes Phase I and II [100]

Rapamycin Prospective study of rapamycin for the treatment of SLE Phase II [101]

Everolimus A phase II study of everolimus in patients with primary or relapsed

chondrosarcomas

Phase II [102]

Everolimus ?

lenalidomide

Everolimus and lenalidomide in treating patients with relapsed or refractory

non-Hodgkin or Hodgkin lymphoma

Phase I and II [103]

Everolimus ?

trastuzumab ? vinorelbine

Daily everolimus in combination with trastuzumab and vinorelbine in HER2/

Neu positive women with locally advanced or metastatic breast cancer

Phase III [104]

Rapamycin Neoadjuvant rapamycin in patients undergoing radical cystectomy Phase 0

(completed)

[105]

Temsirolimus Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma Phase III [106]

Temsirolimus ?

hydroxychloroquine

Phase I trial of hydroxychloroquine with dose-intense temozolomide in patients

with advanced solid tumors and melanoma

Phase I [107]

Everolimus ?

lenalidomide

Outcomes in patients with relapsed or refractory multiple myeloma in a phase I

study of everolimus in combination with lenalidomide

Phase I [108]

Temsirolimus ? irinotecan ?

temozolomide

Phase I trial of temsirolimus in combination with irinotecan and temozolomide

in children, adolescents and young adults with relapsed or refractory solid

tumors: a Children’s Oncology Group Study

Phase I and II [109]

HER human epidermal receptor, SLE systemic lupus erythematosus
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validation of rapamycin or other mTOR inhibitors is con-

ducted in pre-clinical studies, it will be essential to dissect

the mTOR-dependent, mTOR-independent, and other off-

target effects of mTOR inhibitors. Overall, the outcomes of

preclinical studies of mTOR modulation in OA, as well as

clinical studies conducted using mTOR inhibitors for the

treatment of cancer and other diseases give credibility to

the use of mTOR inhibitors as a potential and promising

therapeutic target for OA patients.
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