
Objective: The objective of this work was to 
examine human response to motion-level robot adap-
tation to determine its effect on team fluency, human 
satisfaction, and perceived safety and comfort.

Background: The evaluation of human response 
to adaptive robotic assistants has been limited, particu-
larly in the realm of motion-level adaptation. The lack of 
true human-in-the-loop evaluation has made it impos-
sible to determine whether such adaptation would lead 
to efficient and satisfying human–robot interaction.

Method: We conducted an experiment in which 
participants worked with a robot to perform a collab-
orative task. Participants worked with an adaptive robot 
incorporating human-aware motion planning and with a 
baseline robot using shortest-path motions. Team flu-
ency was evaluated through a set of quantitative metrics, 
and human satisfaction and perceived safety and comfort 
were evaluated through questionnaires.

Results: When working with the adaptive robot, 
participants completed the task 5.57% faster, with 
19.9% more concurrent motion, 2.96% less human idle 
time, 17.3% less robot idle time, and a 15.1% greater 
separation distance. Questionnaire responses indicated 
that participants felt safer and more comfortable when 
working with an adaptive robot and were more satis-
fied with it as a teammate than with the standard robot.

Conclusion: People respond well to motion-
level robot adaptation, and significant benefits can be 
achieved from its use in terms of both human–robot 
team fluency and human worker satisfaction.

Application: Our conclusion supports the devel-
opment of technologies that could be used to imple-
ment human-aware motion planning in collaborative 
robots and the use of this technique for close-proximity 
human–robot collaboration.

Keywords: human–robot interaction, motion-level 
adaptation, team fluency, human satisfaction

Introduction
In many domains today, robots are often 

deployed in complete isolation from humans. 
Although the physical separation of people and 
robots can be an effective strategy for some 
applications, a lack of human–robot integration 
prevents robots from being used in domains 
that stand to benefit from robotic assistance. 
The final assembly of aircraft and automo-
biles, for example, is still mostly a manual 
operation, involving minimal use of automa-
tion (D. Amirehteshami, Boeing Research and 
Technology, personal communication, July 
2011; S. Bartscher, Innovation Product Divi-
sion, BMW Group, personal communication, 
February 2012). Although the capabilities of 
robotic systems continue to expand, many tasks 
in domains such as these require a level of judg-
ment, dexterity, and flexible decision making 
that surpasses the abilities of current robots, 
causing tasks to become human dominated. 
However, there are also many non-value-added 
tasks within these domains that could be per-
formed by robotic assistants. Allowing robots 
to collaborate with people in shared workspaces 
and to perform such tasks has the potential to 
increase productivity and efficiency, providing 
a strong incentive for the development of tech-
nologies that foster this collaboration.

A significant amount of research has been 
conducted in recent years in support of this goal, 
across a variety of complementary domains. The 
first step toward creating robots that can suc-
cessfully collaborate with people is allowing the 
robots to navigate a shared workspace, which 
requires the development of specialized path-
planning algorithms and frameworks designed 
with the human element in mind (Bellotto, 2012; 
Chung & Huang; 2010; Kitade, Satake, Kanda, 
& Imai, 2013; Kruse, Kirsch, Sisbot, & Alami, 
2010; Trautman & Krause, 2010; Ziebart et al., 
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2009). Sisbot and colleagues developed a frame-
work that uses parameters including human–
robot separation distance and the field of vision 
and stance of the human to generate safe and 
socially acceptable robot paths (Sisbot, Marin-
Urias, Alami, & Simeon, 2007). An extension of 
this framework also reasons on task constraints 
and human kinematics (Sisbot, Marin-Urias, 
Broquere, Sidobre, & Alami, 2010). To further 
enhance human–robot co-navigation, Chung 
and Huang (2011) investigated the development 
of a predictive path-planning framework based 
on pedestrian motion models trained via statisti-
cal learning methods. Bennewitz, Burgard, Ciel-
niak, and Thrun (2005) showed that a combina-
tion of clustering and hidden Markov models 
could be used to learn and predict human motion 
patterns, allowing for improved co-navigation.

Prediction of human actions and trajectories 
has been studied with a variety of approaches 
(Hawkins, Vo, Bansal, & Bobick, 2013; Hoffman 
& Breazeal, 2007a; Koppula & Saxena, 2013; 
Luber, Stork, Tipaldi, & Arras, 2010; Mori et al., 
2006; Thompson, Horiuchi, & Kagami, 2009). 
When it comes to prediction on the task level, 
results from prior work have indicated that the 
observation of changes to the entropy rate of a 
Markov chain produced from a task description 
encoded as a Markov decision process could be 
used to encode the uncertainty of a robot about 
what action a human will perform next (Nikolai-
dis et al., 2013). Lenz et al. (2008) used a high-
level architecture for joint human–robot action 
that could predict human tasks based on knowl-
edge databases and decision processes. Alami et 
al. (2006) approached this problem by encoding 
discrete sets of human and robot actions, allow-
ing for the incorporation of task-specific rules 
and preferences that could then be used to predict 
likely sequences of human actions. Kwon and 
Suh (2012) showed how Bayesian networks 
could be used to perform simultaneous inference 
on temporal and causal information, allowing for 
the determination of what task a robot should 
take and when it should perform that task. Hoff-
man and Breazeal (2007b), on the other hand, 
used a formulation based on a first-order Markov 
process and showed that it could be successfully 
used for anticipatory action selection.

Prior work has indicated that predictions 
about human actions are possible without the 

use of specific task models, through observation 
of motion features of the human worker. Main-
price and Berenson (2013), for example, showed 
that early stages of human motion can be 
assessed to predict what action a human is tak-
ing in a reaching task and that these predictions 
can subsequently be used to select tasks that 
would avoid motion conflict. Also, work by 
Doshi and Trivedi (2009) indicated that head 
motion can be a useful factor for predicting 
human actions in the domain of advanced driver 
assistance systems, supporting the results found 
earlier by Pentland and Liu (1999).

Conversely, enabling a human to predict robot 
actions is also important. The legibility of robot 
trajectories—meaning their successful portrayal 
of the intent of the robot—is often cited as of key 
importance for fluid human–robot interaction 
(Dragan, Lee, & Srinivasa, 2013; Dragan & Srini-
vasa, 2013; Sisbot et al., 2010, 2007). However, 
Dragan et al. (2013) observed that legible robot 
trajectories are often not the same as what a person 
would predict, making legibility and predictability 
contradictory properties of robot motion. Indeed, 
there must be a careful balance between these two 
properties, as the benefits of legibility suffer when 
robots move beyond a “trust region” of expecta-
tion (Dragan & Srinivasa, 2013). Legibility has 
also been studied in the context of human–robot 
co-navigation (Kruse, Basili, Glasauer, & Kirsch, 
2012).

The ability to predict what action a robot will 
take is just one of many aspects to consider when 
measuring the effects robotic assistants have on 
humans and the implications of these effects on 
the quality of interaction. Arai, Kato, and Fujita 
(2010) indicated that several parameters, includ-
ing separation distance, end effector speed, and 
advance notice of robot motion, have a significant 
effect on mental strain among human operators. 
Results from an experiment by Meisner, Isler, and 
Trinkle (2008) evaluating a robot controller 
designed for human-friendly trajectories sug-
gested that the prevention of collisions between 
humans and robots during a co-navigation task is 
not sufficient to maintain human comfort. The 
effects of robotic assistants on people were also 
assessed in work by Unhelkar, Siu, and Shah 
(2014), who showed that there are significant dif-
ferences between human–robot and human–
human team dynamics, as measured by interaction 
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and idle times and subjective evaluations of team 
fluency, situational awareness, comfort, and 
safety. Hoffman and Breazeal (2007b) observed 
that human–robot teams in which participants 
worked with robots that anticipated their actions 
were able to perform a task more efficiently and 
had more favorable perceptions of the contribu-
tion of the robot to their team’s success than did 
those who worked with a nonadaptive robot.

Objective
The majority of prior work aimed at bringing 

humans and robots closer together and allowing 
for close-proximity interaction described previ-
ously focuses on the development of frame-
works or algorithms without evaluating human 
response to these technologies. The developed 
systems were, for the most part, evaluated either 
only in simulation or with very limited experi-
mentation with actual human participants. How-
ever, without fully evaluating human response 
to adaptive robotic assistants through human 
subject experimentation, it is impossible to pre-
dict whether these technologies would improve 
team efficiency or human satisfaction. It is pos-
sible, for example, that the decreased predict-
ability of an adaptive robot could cause human 
workers to trust it less than a preprogrammed 
robot, leading to decreased team efficiency.

The works mentioned earlier that evaluated 
human response to robotic assistants either did not 
deal with adaptive systems at all or only consid-
ered adaptation at the task level. Motion-level 
robot adaptation, however, is critical for true 
close-proximity interaction; and, to the authors’ 
knowledge, there has been no work thus far aimed 
at evaluating the human response to this type of 
robot adaptation. The objective of this work, 
therefore, was to develop a robotic assistant capa-
ble of motion-level adaptation and to evaluate 
through human subject experimentation whether 
this type of adaptation leads to more efficient 
teamwork and a more satisfied human coworker.

Human-Aware Motion Planning
The specific motion-planning adaptation 

technique we implemented to investigate these 
questions is a method we call human-aware 
motion planning. In this technique, the system 
attempts to predict the next action of a human 

worker and approximate the portion of the 
shared workspace the human will be using dur-
ing this action, based on an appropriate motion 
model. The system then uses this prediction to 
modify the robot’s motions to avoid this portion 
of the shared workspace, in an attempt to elimi-
nate motion conflicts.

To illustrate this technique, consider the shared 
workspace depicted in Figure 1. The left side of 
the figure indicates a shared workspace in which a 
human and robot place screws and apply a sealant, 
respectively. If we can accurately predict that the 
human worker will place a screw at the third hole 
from the left, beside the two screws already placed, 
we can then approximate the portion of the shared 
workspace that the human worker will use within 
the next several moments. A simple and effective 
motion model for this particular task is the approx-
imation of the predicted workspace occupancy of 
the human via a cylinder that encompasses the 
worker’s arm as he or she completes the placing 
task, as this is the only part of the human the robot 
can reach. This cylinder is indicated in the virtual 
representation of the workspace depicted on the 
right side of Figure 1. Once the robot has made a 
prediction of the workspace occupancy of the 
human, it can adapt its motion planning by select-
ing a path to its own goal—in this case, the second 
screw from the left—that avoids the area that the 
model predicts the human will occupy. This 
human-aware motion is depicted in the figure as a 
solid arrow, and the simple, shortest-path motion 
the robot would have otherwise taken is shown as 
a dashed arrow.

Method
To investigate human response to robot adap-

tation at the motion-planning level, we devised a 
human subject experiment in which participants 
worked cooperatively with a robot to perform a 
collaborative task within a shared workspace. 
The particular robot used in our experiment was 
the ABB IRB-120, shown in Figure 1, which is a 
standard 6-degrees-of-freedom industrial robot. 
A PhaseSpace motion capture system was used 
to track the human within the workspace and to 
detect the actions he or she performed. A real-
time safety system was deployed on the robot to 
adjust speed as necessary according to the sepa-
ration distance between the human and robot, 
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with the ability to gradually decrease the robot’s 
speed to a complete stop (see Lasota, Rossano, 
& Shah, 2014, for details).

The robot was programmed such that it could 
operate in two motion-planning modes: standard 
and human aware. A database of robot motions 
was computed offline for every possible combina-
tion of human and robot actions using the con-
strained bidirectional rapidly exploring random 
tree (CBiRRT) algorithm (Berenson, Srinivasa, & 
Kuffner, 2011). The decision to generate robot 
motion plans offline was made to ensure that the 
robot motions were consistent throughout the 
experiment, as the CBiRRT algorithm is based on 
the rapidly exploring random tree algorithm, which 
inherently may produce different motions each 
time. Both human-aware and standard motions 
were planned with the CBiRRT algorithm.

Task
The task used in the experiment is depicted 

in Figure 2. During this task, human participants 
placed eight screws at designated locations on a 
table, while the robot simulated the application 
of a sealant to each screw by dipping a brush in 
a centrally positioned container and then mov-
ing the brush over the screw. Each participant 
was instructed to twist the screw one full rota-
tion before moving on to the next one. The task, 
from the placement of the first screw to the seal-
ant of the last, took 52 s on average.

The screws were placed by the participants in 
a predefined order. This, in effect, simulated per-
fect human action prediction and allowed us to 
focus on measuring the effects of the motion 

adaptation independent of the accuracy of action 
prediction. The screws were colored either yel-
low or red. The participants first placed the four 
red screws and were then instructed to wait for a 
sound cue before proceeding to the yellow set of 
screws. Splitting the screw placement in this 
manner allowed us to control the types of motion 
conflicts the subject would experience by pre-
venting the participant from working too quickly 
and losing synchronization with the robot.

Numbering the screws from left to right, the 
screws were placed according to the following 
sequence: 1, 3, 8, 6, 2, 4, 7, 5. This sequence was 
selected in order to balance between conflicting 
and nonconflicting motion.

Participants
Our participant pool consisted of 20 Mas-

sachusetts Institute of Technology affiliates, 

Figure 1. Illustration of human-aware motion planning. The left panel depicts a 
shared workspace in which a human and robot are placing and sealing screws, 
respectively. The right panel depicts both the standard, shortest-path motion (dashed 
arrow) and a human-aware motion (solid arrow) that the robot could take given the 
expected human workspace occupancy, represented by the cylinder.

Figure 2. Photograph of the task setup used in the 
human subject experiments.



Effects of Human-Aware Motion Planning	 25

including undergraduate and graduate students, 
postdoctoral associates, and visiting students. 
Of the 20 participants, seven were female and 
13 were male, with ages ranging from 19 to 39 
years (M = 27.1, SD = 6.24).

Procedure
Our experiment had a repeated-measure 

design that consisted of two randomly selected 
groups of subjects: those who first worked with 
a human-aware robot (n  = 11) and those who 
initially worked with a robot using standard 
motion planning (n = 9). The subjects were not 
informed prior to completion of the experiment 
what these two conditions were or what was 
being measured.

The experiment procedure is depicted in Figure 
3. First, both groups executed a training round, 
during which the participants placed the screws 
without an assistant applying the sealant, to famil-
iarize themselves with the task. Next, all partici-
pants performed the task with a human assistant to 
implicitly prime the subjects to work with a robot 
in a manner similar to working with a person dur-
ing subsequent task executions. To prevent any 
unintentional bias from the experimenter, who 
acted as the human coworker, this first task execu-
tion was conducted in a double-blind fashion, with 

the experimenter unaware of which of the two 
conditions each participant had been assigned to.

After performing the task with a human 
coworker, the participants then performed the 
same task with a robotic assistant. Participants 
under the “human-aware-first” condition worked 
with a robot in the human-aware motion-planning 
mode, whereas those under the “standard-first” 
condition worked with the robot in the standard 
motion planning mode. Each participant per-
formed two training task executions with the 
robot to practice working with a robotic assistant 
and to build a mental model of its behavior. 
After two training executions, the task was per-
formed one more time, followed by the adminis-
tration of the first questionnaire.

In the next phase of the experiment, the mode 
of the robot was switched to the opposite of 
what each participant had experienced thus far. 
Prior to continuing, participants were informed 
that the robot would move differently during the 
second phase, allowing for anticipation of the 
change in motion so that the new robot behavior 
would not startle them. To avoid revealing that 
the modes were linked to whether the robot 
adapted its motions or not, the participants were 
simply told that a few robot motion parameters 
were changed. After learning of the change, the 

First Ques�onnaire

Train with human-aware robot (2x)

Training round (no assistant)

Work with human co-worker

Work with human-aware robot (1x)

First Ques�onnaire

Train with standard robot (2x)

Work with standard robot (1x)

Second Ques�onnaire

Train with standard robot (2x)

Work with standard robot (1x)

Second Ques�onnaire

Train with human-aware robot (2x)

Work with human-aware robot (1x)

es�onnaire

an-aware robot (2x)

Work with human co-worker

an-aware robot (1x)

First Ques�o

Train with standa

Work with standa

Q � i

andard robot (2x)

andard robot (1x)

S d Q

Train with human-a

Work with human-a

Figure 3. Diagram depicting the experimental procedure. The group 
on the left represents the “human-aware-first” condition, whereas the 
group on the right represents the “standard-first” condition.
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participants performed another set of training 
rounds with the robot and a final task execu-
tion. Upon completion of the final task, par-
ticipants responded to a second questionnaire 
that directly compared the robot behavior in  
the second mode with that of the first mode. A 
video showing sample task executions for both 
conditions can be viewed at the following link: 
http://youtu.be/Dk5XVQBDJpU.

Dependent Measures
The dependent measures we considered 

when evaluating human response to human-
aware motion planning and the possible derived 
benefits were split into two main groups: quan-
titative metrics of team fluency and subjective 
evaluation by the participants. Our first group of 
metrics was based on those proposed by Hoff-
man and Breazeal (2007b), expanded to con-
sider additional measures, including task execu-
tion time, the amount of concurrent motion, 
human and robot idle time, and human–robot 
separation distance.

The second group of metrics was based on 
subjective evaluation of the robotic assistant 
according to the questionnaire responses. The 
questions, shown in Table 1, were intended to 
determine each participant’s satisfaction with 
the robot as a teammate as well as his or her per-
ceived safety and comfort.

Participants responded to the questions using 
a 5-point Likert scale ranging from strongly dis-
agree to strongly agree for the first question-
naire and from much less to much more for the 
second questionnaire.

Hypotheses
Based on the dependent measures described 

in the previous section, the two main hypotheses 
in this experiment were as follows:

Hypothesis 1: Using human-aware motion 
planning will lead to more fluent human–
robot teamwork, including shorter task 
execution time, more concurrent motion, 
shorter human and robot idle times, and a 
greater separation distance between the 
human and robot, compared with standard 
motion planning.

Hypothesis 2: Participants will be more satis-
fied with the human-aware robot’s perfor-
mance as a coworker and will feel more 
comfortable and safe when working with 
it compared with a robot that uses standard 
motion planning.

Results
Quantitative Team Fluency Metrics

When we compared the participants’ per-
formance while working with a human-aware 
robot to their performance working with a robot 
using standard motion planning, significant dif-
ferences were found for all quantitative team 
fluency metrics. The Shapiro-Wilk test (at α = 
.05) was used to assess the normality of the 
data. With the exception of human idle time, 
W(20)  = 0.817, p  = .002, the distributions of 
the differences between the human-aware and 
standard task executions were not significantly 
different from normal, minimum W(20) = 0.943, 

Table 1: Questionnaire Items

Satisfaction with the robot as a teammate
  1.  I trusted the robot to do the right thing at the right time.
  2.  The robot did not understand how I wanted to do the task.
  3.  The robot kept getting in my way.
  4.  The robot and I worked well together.
Perceived safety and comfort
  5.  I felt safe when working with the robot.
  6.  The robot moved too fast for my comfort.
  7.  The robot came too close to me for my comfort.
  8.  I trusted the robot would not harm me.
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p  = .274. One-way repeated-measures ANO-
VAs were used where appropriate. Human idle 
time was instead analyzed with the Wilcoxon 
signed-rank test. The results of the statistical 
tests revealed that when working with a human-
aware robot, participants completed the task 
5.57% faster, F(1, 19)  = 4.95, p  = .038, with 
19.9% more concurrent motion, F(1, 19)  = 
53.82, p  < .001; 2.96% less human idle time, 
Z = −2.48, p = .013; 17.3% less robot idle time, 
F(1, 19) = 54.79, p < .001; and a 15.1% larger 
separation distance, F(1, 19) = 61.18, p < .001. 

The mean values for each of these metrics, 
along with error bars depicting standard error 
of the mean, are depicted in Figure 4 for both 
robot modes.

In regard to data collected up to the adminis-
tration of the first survey (see Figure 3), each 
participant was exposed only to a single robot 
type. Consequently, we can treat the team flu-
ency metric data from the two groups of partici-
pants, those who worked with a standard robot 
and those who worked with a human-aware 
robot, as independent. Significant differences 

a b c

d e

Figure 4. Mean values, with error bars indicating standard error of the mean (SEM), of (a) task execution 
time, (b) percentage of concurrent motion, (c) average separation distance between the human and robot, 
(d) robot idle time, and (e) human idle time for the standard and human-aware robot executions.
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between these populations emerged for three of 
the five team fluency metrics considered when 
analyzed with one-way ANOVAs. Once again, 
the normality of the data was assessed with the 
Shapiro-Wilk test, and none of the distributions 
was significantly different from normal, mini-
mum W(11) = 0.862, p = .061. The group of par-
ticipants that worked with the human-aware 
robot completed the task with 15.0% more con-
current motion, F(1, 18) = 5.68, p = .028; 14.6% 
less robot idle time, F(1, 18) = 6.41, p = .021; 
and a 17.3% larger separation distance, F(1, 
18) =19.83, p < .001. The mean values of both 
groups of participants for each of these metrics 
along with error bars depicting standard error of 
the mean are shown in Figure 5.

Subjective Evaluation
As indicated in Figure 3, the first ques-

tionnaire for the subjective assessment of the 
robotic assistant was administered prior to each 
participant’s exposure to the second robot mode, 
regardless of whether he or she was in the 

human-aware-first or standard-first condition. 
As a result, we can treat the responses of these 
questionnaires as having come from two inde-
pendent populations: one that worked with 
the human-aware robot and one that worked 
with a standard robot. We used the Mann-
Whitney-Wilcoxon test to determine whether 
these two groups provided significantly differ-
ent responses to the questions listed in Table 1. 
Significant differences (at α = .05) were found 
for three of the questions, with participants 
exposed to the human-aware robot disagreeing 
more strongly with “The robot did not under-
stand how I wanted to do the task” (p = .012), 
“The robot kept getting in my way” (p < .001), 
and “The robot came too close to me for my 
comfort” (p = .05).

After being exposed to both conditions, the 
participants were asked to directly compare the 
behavior of the robot in the first mode with its 
behavior during the second mode. Since “first 
mode” and “second mode” signified different 
modes depending on whether a participant was 

a b c

Figure 5. Mean values, with error bars indicating standard error of the mean (SEM), of (a) percentage of 
concurrent motion, (b) robot idle time, and (c) average separation distance between the human and robot 
for groups of participants working with the standard and human-aware robots prior to exposure to the 
second robot type.
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in the human-aware-first or standard-first condi-
tion, we could once again treat the two groups as 
independent and test whether the responses were 
significantly different between groups using the 
Mann-Whitney-Wilcoxon test. All of the ques-
tions yielded significantly different responses, 
with the exception of “The robot moved too fast 
for my comfort.” The group of participants that 
experienced the human-aware robot second 
(standard-first condition), when compared with 
the group that experienced the standard robot 
second (human-aware-first condition), more 
strongly sided toward much more when respond-
ing to the following statements regarding the 
second robot mode: “I trusted the robot to do the 
right thing at the right time” (p  < .001), “The 
robot and I worked well together” (p < .001), “I 
felt safe when working with the robot” (p  < 
.001), and “I trusted the robot would not harm 
me” (p = .008) and more strongly sided toward 
much less for the statements “The robot did not 
understand how I wanted to do the task” (p  = 
.046), “The robot kept getting in my way” (p < 
.001), and “The robot came too close to me for 
my comfort” (p < .001).

Discussion
Differences in Team Fluency

The results presented in the previous section 
provide strong support for both of our hypoth-
eses. The significant differences in favor of 
human-aware motion planning observed in all 
quantitative metrics of team fluency indicate 
that this type of motion planning leads to more 
effective human–robot teamwork (Hypothesis 
1). Further, the fact that significant differences 
emerged between the two independent groups 
of participants before exposure to the second 
robot mode for most of these metrics provides 
very strong evidence in support of human-aware 
motion planning (Hypothesis 1).

The major significance of this result is that 
these improvements can be achieved among par-
ticipants who were never previously exposed to 
a robot capable of human-aware motion plan-
ning. After only two practice task executions, 
and without any explanation of the system’s 
capability to adapt its motion planning, partici-
pants were able to take advantage of the adapta-
tion and form a more effective team with the 

robot. This finding suggests that given minimal 
demonstration of the robot’s ability to avoid 
motion conflicts, human workers inherently 
begin to exploit this capability, just as they 
would when working with a human assistant. In 
light of previously mentioned research, which 
indicated that some participants expect a robot 
to adapt at the task level as a human would 
(Hoffman & Breazeal, 2007b), it is possible that 
a similar expectation is placed on motion-level 
adaptation and that a lack of adaptation leads not 
only to inefficient teamwork, as shown by the 
quantitative metrics, but also to an unsatisfied 
human worker, as discussed in the next section.

Differences in Human Satisfaction and 
Perceived Safety and Comfort

Even before exposure to both robot modes, 
as indicated by the results of the first ques-
tionnaire, we already observed significant dif-
ferences between the groups with regard to 
satisfaction with the robot as a teammate: Par-
ticipants working with the human-aware robot 
disagreed more strongly with statements like 
“The robot did not understand how I wanted to 
do the task” and “The robot kept getting in my 
way.” Additionally, we found that participants 
were less comfortable with the robotic assistant 
that used standard motion planning, agreeing 
more strongly with the statement “The robot 
came too close to me for my comfort.”

Once the participants finished working with 
both the human-aware and standard robots and 
filled out the comparison questionnaire, these 
results were even more pronounced: In addition 
to the three items that yielded significantly dif-
ferent responses during the first questionnaire, 
when directly comparing the two robot modes, 
participants agreed more strongly with the 
phrases “I trusted the robot to do the right thing 
at the right time,” “The robot and I worked well 
together,” “I felt safe when working with the 
robot,” and “I trusted the robot would not harm 
me” when describing the human-aware robot. 
The first two of these questionnaire items indi-
cate that our participants experienced more sat-
isfying interaction with the robot in human-
aware mode, and the last two items suggest that 
the participants also felt more comfortable and 
safe when working with the human-aware robot. 
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Collectively, these results provide strong sup-
port for our second hypothesis (Hypothesis 2).

The only item on the questionnaire that did 
not yield significantly different results between 
human-aware and standard robots was “The 
robot moved too fast for my comfort.” This is, in 
a way, an expected result, as the base speed of 
the robot was the same under both conditions. 
The safety system mentioned in the Method sec-
tion would slow and eventually stop the robot if 
the distance between the human and robot work-
ers fell below certain thresholds, but this behav-
ior was identical under both conditions.

Since the safety system was running identi-
cally under both conditions, the higher per-
ceived safety and comfort ratings when work-
ing with a human-aware robot are interesting 
phenomena. In terms of physical safety, partici-
pants in both conditions were at an equally low 
risk of unwanted contact with the robot due to 
the use of the safety system. However, as a 
result of the robot taking evasive maneuvers 
under the human-aware condition, participants 
were exposed to fewer sudden robot stops while 
under this condition; we hypothesize that par-
ticipants felt safer when working with the 
human-aware robot for this reason. Although 
physical safety was the same in both conditions, 
the observed higher degree of perceived safety 
with the human-aware robot is an important 
result, as low perceived safety can be a high-
stress situation for a human worker, and con-
tinuous exposure to stress has been shown to 
have negative long-term effects on health 
(McEwen & Stellar, 1993).

Human and Robot Idle Time
Another interesting observation follows from 

a comparison of the percentages of human and 
robot idle time for the two modes. As one can see 
from Figure 4, the average human idle time was 
far shorter than robot idle time in both condi-
tions. Analysis with a paired t test indicated sta-
tistical significance for the difference between 
human idle time and robot idle time when par-
ticipants worked with both the standard motion 
planning robot, t(19) = 11.8, p < .001, and the 
human-aware robot, t(19) = 10.1, p < .001. This 
finding suggests that in a human–robot team 
when motion conflict prevents both agents from 

performing their tasks simultaneously, people 
prefer to perform their own task and make the 
robot wait, rather than waiting for the robot to 
perform its task first. This result is similar to 
that observed by Unhelkar et al. (2014), whose 
experiment indicated that human workers are 
more likely to make a robotic assistant wait for 
them rather than a human assistant. In the pres-
ent experiment, we showed that human workers 
prefer to make the robot wait rather than wait 
themselves; on the basis of these results and 
those observed by Unhelkar et al., it appears that 
people consider human time more valuable than 
robot time, whether the time in question is their 
own or that of another human.

Learning Effects
Several precautions were taken to minimize 

confounding due to learning effects. Recall that 
the experiment included two training rounds 
preceding the test tasks. This training allowed 
participants to grow accustomed to the task; 
mistakes, such as placing screws in the wrong 
sequence, were common during training but 
were far less common during final task execu-
tion. The training also contributed to a learning 
effect confound in that it provided participants 
with experience in performing the task in the 
first condition that carried over to subsequent 
task executions in the second condition. We 
mitigated this effect by randomizing the order 
in which the two robot modes were presented 
to our participants to counterbalance the poten-
tial impact of the experience gained from these 
training rounds.

We also tested whether the order in which our 
participants were exposed to the two conditions 
had a significant effect on the experiment met-
rics across robot modes. We evaluated whether 
the groups that worked with the human-aware 
(or standard) robot in the first and second condi-
tions performed significantly differently in 
terms of human idle time and other metrics. 
Analysis with one-way ANOVAs found that 
with the exception of percentage concurrent 
motion in the human-aware mode, F(1, 18)  = 
4.53, p = .047, none of the metrics in either mode 
differed significantly based on the order in 
which it was measured, minimum F(1, 18)  = 
3.71, p = .07.
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Limitations
Our experiment results lend support that 

human-aware motion planning can provide ben-
efits in terms of perceived safety and team flu-
ency. Our experiment was designed as a first 
investigation, and there are a number of ways in 
which follow-on experiments can be improved. 
First, these results were found using a tabletop 
task with a fixed-base robot. Although the task 
was simple, it was designed to be representative 
in that a large set of manual assembly opera-
tions are performed at workbenches, and most 
current industrial robots systems are fixed based 
and not yet freely mobile. As was mentioned in 
the Method section, the task was also carefully 
designed to provide a balance between conflict-
ing and nonconflicting motions. This design 
makes our task, and the presented results, a 
good representation of similar tasks—namely, 
those in which a human and a stationary robot 
work at small distances of separation, such as 
assembly of consumer electronics or collab-
orative tasks on assembly lines. It is an open 
question, however, whether these results will 
generalize to other types of human–robot col-
laboration, such as applications in which the 
robot is mobile or not visible to the human 
worker at all times.

Second, our participant pool consisted of 
Massachusetts Institute of Technology affiliates 
with a rather narrow age distribution centered 
around 27 years of age. It is possible that, on 
average, the members of our participant pool are 
more likely to be accepting of autonomy and 
robots than is an average worker in a factory 
environment. Participants from relevant occupa-
tions that are more representative of the target 
population would strengthen future experiments.

A third limitation is related to the length of 
the work session experienced by our partici-
pants. In the experiment, each participant 
worked with the robot for 5 min in each of the 
two conditions. This period is relatively short 
compared to work session lengths that would be 
experienced by workers at a factory. Over time, 
a worker may become more efficient working 
with a robot that uses standard motion planning 
by learning how to time his or her actions to 
minimize motion conflicts. Conversely, a longer 
work session with a standard robot may lead to 

greater fatigue than that caused by working with 
a human-aware robot, since the worker has to be 
more focused on avoiding motion conflicts. This 
increased fatigue may affect team fluency and 
efficiency. The potential effects of longer work 
sessions on team fluency of human–robot teams 
with and without motion-level adaptation is an 
open question.

Conclusion
In this paper, we presented an adaptive 

motion-planning technique that we call human-
aware motion planning, which uses the predic-
tion of human actions and workspace occupancy 
to actively avoid potential motion conflicts that 
could arise in close-proximity human–robot 
interaction. We then described a human subject 
experiment aimed at studying human response 
to this motion-planning technique and quantify-
ing its potential benefits through quantitative 
team fluency metrics and subjective evaluation 
of satisfaction, safety, and comfort. The results 
of this experiment indicated that people learn to 
take advantage of human-aware motion plan-
ning even when performing novel tasks with 
very limited training and with no indication 
that the robot’s motion planning is adaptive. It 
was also shown that participants working with 
a human-aware robot form a more effective 
human–robot team and are able to perform a 
collaborative task in less time, with more con-
current motion and less human and robot idle 
time, and while maintaining a greater separation 
distance, compared to working with a standard 
robot. Furthermore, subjective evaluations indi-
cated that human workers were more satisfied 
with the human-aware robot as a teammate and 
perceived it to be more comfortable and safe to 
work with. This finding signifies that human-
aware motion planning leads to more satisfying 
human–robot interaction.

That human-aware motion planning leads  
to a higher degree of perceived safety—and  
thus reduced potential for stress-related health 
problems—while simultaneously improving team 
fluency is a very important result. The ability to 
show simultaneous improvements to efficiency 
and human worker satisfaction and well-being 
makes human-aware motion planning a highly 
desirable tool for close-proximity human–robot 
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interaction and brings us one step closer toward 
the successful introduction of robotic assistants 
into previously human-only domains. Further-
more, by showing that human-aware motion 
planning is effective through actual human sub-
ject experiments, rather than through simulation, 
we can strongly motivate future research in all 
the facets that would make a real-time human-
aware system possible, including action predic-
tion algorithms, the development of rapid 
motion–planning techniques, human motion 
model development, and many others.

One important point to consider, however, is 
that the improvements presented in this paper 
were obtained with the robot having perfect 
knowledge of what action the human would take 
next, since the sequences of actions were preset. 
Consequently, these results should be viewed as 
an upper bound of possible increases to team 
fluency and human worker satisfaction. As one 
might imagine, the improvements would depend 
very highly on prediction accuracy and would 
not be as pronounced with imperfect action pre-
diction. Nonetheless, the results shown in this 
paper are substantial, leading us to believe that 
significant improvements can be derived from 
human-aware motion planning. Evaluating how 
the performance of a team using a human-aware 
robot can change according to varying levels of 
prediction accuracy is very important and is a 
planned future avenue of research.

Key Points
•• To determine whether motion-level robot adapta-

tion leads to efficient and satisfying human–robot 
interaction, human-in-the-loop evaluation is nec-
essary.

•• We conducted a human subject experiment in 
which participants performed a collaborative 
task with an adaptive robot incorporating human-
aware motion planning and with a baseline robot 
using shortest-path motions.

•• When working with the adaptive robot, partici-
pants completed the task faster, with more con-
current motion, with less human and robot idle 
time, and with a larger human–robot separation 
distance.

•• Participants also indicated they were more satis-
fied with the adaptive robot as a teammate and felt 
safer and more comfortable working with it.

•• The results of the experiment indicate that humans 
respond well to motion-level adaptation, even with 
very limited training and without being informed 
the robot is adaptive.

•• The positive response to human-aware motion 
planning motivates the use of this technique in 
close-proximity human–robot interaction and the 
development of supporting technologies.
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