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Abstract

Background: Decoding the temporal control of gene expression patterns is key to the understanding of the
complex mechanisms that govern developmental decisions during heart development. High-throughput methods
have been employed to systematically study the dynamic and coordinated nature of cardiac differentiation at the
global level with multiple dimensions. Therefore, there is a pressing need to develop a systems approach to integrate
these data from individual studies and infer the dynamic regulatory networks in an unbiased fashion.

Results: We developed a two-step strategy to integrate data from (1) temporal RNA-seq, (2) temporal histone
modification ChIP-seq, (3) transcription factor (TF) ChIP-seq and (4) gene perturbation experiments to reconstruct
the dynamic network during heart development. First, we trained a logistic regression model to predict the probability
(LR score) of any base being bound by 543 TFs with known positional weight matrices. Second, four dimensions of data
were combined using a time-varying dynamic Bayesian network model to infer the dynamic networks at four
developmental stages in the mouse [mouse embryonic stem cells (ESCs), mesoderm (MES), cardiac progenitors (CP)
and cardiomyocytes (CM)]. Our method not only infers the time-varying networks between different stages of heart
development, but it also identifies the TF binding sites associated with promoter or enhancers of downstream genes.
The LR scores of experimentally verified ESCs and heart enhancers were significantly higher than random regions
(p <107'%9), suggesting that a high LR score is a reliable indicator for functional TF binding sites. Our network
inference model identified a region with an elevated LR score approximately —9400 bp upstream of the transcriptional
start site of Nkx2-5, which overlapped with a previously reported enhancer region (—9435 to —8922 bp). TFs such as
Tead1, Gata4, Msx2, and Tgif1 were predicted to bind to this region and participate in the regulation of Nkx2-5 gene
expression. Our model also predicted the key regulatory networks for the ESC-MES, MES-CP and CP-CM transitions.

Conclusion: We report a novel method to systematically integrate multi-dimensional -omics data and reconstruct the
gene regulatory networks. This method will allow one to rapidly determine the cis-modules that regulate key genes
during cardiac differentiation.
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Background
Decoding the temporal control of gene expression pat-
terns is essential to understand the complex mechanism
of developmental regulatory events during heart devel-
opment. High-throughput methods have been employed
to systematically study the dynamic and coordinated na-
ture of cardiac differentiation at the global level with
multiple dimensions [1-6]. For example, in several stud-
ies, RNA-seq and histone modification ChIP-seq experi-
ments were performed to profile the changes in global
gene expression and the chromatin state at distinct
stages of cardiac differentiation from ESCs to cardio-
myocytes in human and mouse [1,3]. In these reports,
the authors reported changes in chromatin modification
patterns associated with gene activation and identified
stage specific distal enhancer elements. He et al., out-
lined the candidate binding sites of five known cardiac
transcription factors (TFs) (Gata4, Nkx2-5, Tbx5, Srf
and Mef2a), which were identified using ChIP-seq [2].
Moreover, Schlesinger et al. knocked down each of the
four key cardiac transcription factors (Gata4, Mef2a,
Nkx2-5 and Srf) in HL-1 cells using RNA interference,
followed by the profiling of the changes in global gene
expression [4]. Although these studies presented a novel
and global perspective for the examination of the chro-
matin status and the prediction of transcriptional regula-
tion, they were limited in the types of data that were
integrated [1,3] and they based their initial screening on
a small set of candidate TFs [2,4]. As large-scale multi-
dimensional data are accumulating at an unprecedented
pace, there is a pressing need to develop systematic
methods to integrate these data from individual studies
and infer the dynamic gene regulatory networks (GRN)
during cardiac differentiation in an unbiased manner.
Time series expression profiles based on microarray
and/or more recently RNA-seq data have been widely
used to reconstruct the static networks, that is, net-
works with invariant topology over a given set of genes
[7-11]. However, because the GRN at a particular time
point depends on a specific biological context, it can
undergo systematic rewiring rather than being invariant
over time. Therefore, recent research has focused on
inferring the dynamic (time-varying) networks over the
time course [1-4,12-15]. A key technical hurdle to pre-
cisely reconstruct dynamic networks based solely on
temporal expression data is that there are too many
unknown variables to be estimated (ie. (7-1)p* network
edges). Some attempts have been made to circumvent
this difficulty including: factorizing gene-gene regula-
tory relationships into modular effects [1,3,11,14],
deconvolving the observed indirect effects into direct
effects [2,16], or smoothing the edge weight between
the networks of neighboring time points [4,13,17].
However, the overall performance of reconstructing
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GRN based solely on temporal expression profiles is
still limited [1,3,18].

One widely used strategy to infer the causal relation-
ship in GRN is to over-express or repress the key TFs
and measure the change in global expression. The sig-
nificantly up- or down-regulated genes may be either
directly or indirectly regulated by the perturbed TFs.
This strategy has been successfully utilized and several
examples include: the GRN in sea urchin embryonic
development [2,4,19], the early response of GRN in em-
bryonic stem cells (ESC) [7-11,20], and the cardiac GRN
involving several key cardiac genes [4]. Perturbation-
based methods can, in theory, greatly improve the pre-
diction accuracy for downstream targets, as compared
with the methods solely based on temporal expression
profiles [18]. The limitation of this strategy is that it is
unrealistic to perturb all TFs in the mammalian genome
in a specific context and it is not easy to distinguish
direct effects from indirect effects in the readout.

The most common strategy used to discover the dir-
ect regulatory relationship is to combine the TF infor-
mation and temporal expression profiles [2,12,21-23].
The general assumption is that a gene can be regulated
by a TF if its promoter or enhancer regions are occu-
pied by the TF. The TF binding sites (TFBS) within the
putative regulatory region of a gene are identified by
either scanning the known positional weight matrix
(PWM) representing a relatively short (5-20 nucleo-
tides) degenerative sequence motif recognized by a TE,
or by TF ChIP-seq experiments. Although PWMs have
been defined for the TFBSs of more than 500 TFs in
vertebrates by various techniques [24-32], the sensitiv-
ity and specificity are generally low when used to pre-
dict putative binding sites [33]. Alternatively, TF ChIP
followed by sequencing or microarray analyses emerged
as the standard approach to directly determine the
bona fide TFBS. However, because ChIP-seq experi-
ments are still relatively expensive and labor-intensive,
and the TFBSs tend to vary in distinct biological con-
texts, for example, only 7.14% of enhancers identified
in ESCs are overlapped with the enhancers in heart
[34-37], the number of available TF ChIP-seq datasets
is still limited. Moreover, for most TFs in the genome,
there are no ChIP-seq datasets available. For example,
in ChIPBase, only 12 and 5 TFs have corresponding
ChIP-seq data in ESCs and cardiomyocyte HL-1 cells,
respectively [38]. At present, there is no consensus
regarding whether ChIP-seq data obtained in one cell
type can be readily applied to predict TFBS in another
cell type. Moreover, it is unclear whether or not we can
adapt the information from the available ChIP-seq
results and predict the binding sites of TFs with only
PWM information in a specific biological context (e.g.
cell types or developmental stages).
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In lieu of profiling the binding sites of individual TFs,
the general enhancers or regulatory regions have also
been mapped by DNasel hypersensitive sequencing
experiments as well as ChIP-seq with p300, histone H3
Lys4 mono-methylation (H3K4mel), histone H3 Lys27
acetylation (H3K27ac) in a wide range of cell types
[39-44] including mouse ESCs and the heart [34-36,45].
The genomic loci defined by these marks, however,
typically span several hundred or thousand bases, and
are generally too broad to define the specific DNA
sequences mediating promoter or enhancer functions. It
has been proposed that local depletion in the ChIP sig-
nal intensity (dip) is indicative of TF binding sites [41].
Thus, several studies have used the structural change of
these active marks to discover the functional TFBS
among the enhancer regions, either by heuristic methods
[1], or by more sophisticated approaches, such as an
integrated hidden Markov model [46], logistic regression
[47,48], or a hierarchical mixture model [49]. However,
these studies usually focused on individual cell types.
Moreover, they focus on static regulatory relations and
do not fall under the framework of inferring dynamic
gene regulatory networks.

While each of the aforementioned strategies has its
own merits, they also have limitations in the inability to
capture the dynamic networks. An integrated approach
for network inference, which combines the strengths of
all these methods is highly desirable. In this study, we
presented a framework to integrate available four-
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dimensional data: (1) temporal RNA-seq, (2) temporal
histone ChIP-seq, (3) TF ChIP-seq and (4) perturbation
studies to reconstruct the dynamic networks during
cardiac differentiation. Our method not only infers the
time-varying networks between distinct stages of heart
development, but also identifies the TF binding sites on
the promoter or enhancer of the genes being regulated.

Results

Overview

We developed a two-step strategy to infer the dynamic
GRN during cardiac differentiation (Figure 1). In the
first step, based on 17 TFs whose ChIP-seq data are
available for either mouse ESCs or cardiomyocyte HL-1
cells (Table 1), we trained a logistic regression model to
predict the probability for any base being bound by any
TFs with known PWMs, at a specific differentiation
stage. The model included the context independent fea-
tures that do not change during differentiation (e.g. base
conservation) and context dependent features such as
the expression levels of nearby genes, the intensity of
histone modifications within defined distances, as well
as histone modification changes between adjacent time
points. This concept was modified from the work by
Ernst et al. that infers a score quantifying the general
binding preferences of TFBS [48]. However, it should be
noted that, for any given sequence in the genome, the
output of our model, the logistic regression (LR) score,
was dependent upon the differentiation stage, and not
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Figure 1 Overview of our two-step strategy to infer dynamic regulatory networks during cardiac differentiation. (A) Training a general
logistic regression model to predict the probability being bound by any transcription factor (LR score) in 40 kb cis-regions surrounding transcriptional
start sites (TSS) of expressed genes. The response variables of the model indicate whether the hit of the PWM of a specific TF coincides with the peak
region of the corresponding ChIP-seq data. 15 context-independent (e.g. conservation) and 54 context-dependent (e.g. mean intensity of H3K27ac in
1 kb surrounding any base) features were used to train the logistic regression model. (B) Context-dependent LR score, temporal expression profiles
and perturbation networks were used to infer the dynamic regulatory networks based on a time-varying dynamic Bayesian network model.
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Table 1 Transcription factor ChIP-seq datasets used to train the logistic regression model
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Regulator Cell type Positional weight matrix Source

E2f1 ESC [52]

Esrrb ESC ! E GGTCA [26]

Gata4 HL-1 ﬁ T C [2]

KIf4 ESC [26]
F§9QéCeCCQx

Mef2a HL-1 2]
_QgééAAATAQu

Mycn ESC C C G [26]

Nanog ESC [26]

Nkx2-5 HL-1 [2]
o S AGIGE

Nr5a2 ESC [74]
s%AA&Klggx

Pou5f1 ESC [26]

T.1<CAT _x_aA
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Table 1 Transcription factor ChIP-seq datasets used to train the logistic regression model (Continued)
Srf HL-1 [2]
CC.raxaxGG
= S — S — p— — e —
Stat3 ESC [26]
I I = Q — =T <—="w
Tbx5 HL-1 [2]
Tfep2I ESC [26]
_C<F_ — -C
Zfx ESC [26]

CCx

specific TFs. Specifically, the stage-specific LR score was
designed to capture the stage-specific TEBS. In the second
step, we used the following information: (1) the temporal
LR score defined in step 1, (2) the temporal expression
profiles of cardiac differentiation at four developmental
stages in the mouse [ESCs, mesoderm (MES), cardiac
progenitors (CP), and cardiomyocytes (CM) [1]], and
(3) the perturbed network we compiled from the per-
turbation experiments performed in mouse ESCs and
HL-1 cells [2,4,20,50,51], which were combined under
the framework of a time-varying dynamic Bayesian
network model to infer the dynamic networks during
cardiac differentiation.

Stage specific transcription factor binding probability

(LR score)

First, we compiled the ChIP-seq data for 12 TFs (E2f1,
Esrrb, KIf4, Myc, Mycn, Nanog, Nr5a2, Pou5fl, Sox2,
Stat3, Tfcp2ll and Zfx) in mouse ESCs and 5 TFs
(Gata4, Mef2a, Nkx2-5, Srf and Tbx5) in HL-1 cells
from ChIPBase. The PWMs for each TF were inferred
by using HOMER (Table 1) [38,52]. The 17 de novo
PWMs derived from these ChIP-seq experiments were
used to scan the 40 kb cis-region surrounding the

transcriptional start site (TSS) of the 13,961 genes whose
expression levels were greater than 1 FPKM in at least
one of the four time points: ESCs, MES, CPs and CMs
in the RNA-seq experiments described in Wamstad
et al. [1] (see Methods). Although the PWMs were de-
rived from the corresponding ChIP-seq dataset, due to
their degenerative nature, we still expected to obtain
PWM hits that did not overlap with the ChIP-seq peaks.
If a PWM hit overlapped with the ChIP-seq peak of the
corresponding TF, the center base of the PWM was con-
sidered to be a positive response variable in the logistic
regression model, otherwise, it was considered a negative
response variable. For any given base in the cis-region,
the features of the logistic regression model included 15
sequence-based context independent features (Table 2),
4 features regarding the expression levels of the nearby
genes at time ¢ and ¢ + I (Table 2), 50 features based on
the intensity of four histone marks (H3K27ac, H3K4mel,
H3K4me3, H3K27me3) and RNA polymerase II phosphor-
ylation at serine 5 (RNAP) profiled in Wamstad et al. [1]
(Table 3). The 15 sequence-based features (features
#1 - #15) were defined as described in Ernst et al. [48].
As the genuine TF binding sites were expected to lead
to alterations in the expression levels of the nearby
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Table 2 The 19 features based on sequence and nearby gene expression

No. Description Dir. P value Signif.
1 PhastCons score for 60-way vertebrate alignments; 0 if not available + 1.82E-09 xxx
2 PhastCons score for placental mammal; O if not available + 7.76E-31 e
3 1 if PhastCons vertebrate score is available and the score is 0; 0 otherwise + 1.55E-02 *
4 1 if PhastCons placental score is available and the score is 0; 0 otherwise - 453E-04 *rx
5 1 if PhastCons vertebrate score is available; 0 otherwise + 7.24E-125 FrE
6 1 if PhastCons placental score is available; 0 otherwise + 8.36E-01

7 1 if base is in CpG islands; 0 otherwise + 1.03E-23 *Hx
8 In(x + 5), where x is the absolute number of base pairs to nearest RefSeq transcription start site + 1.69E-02 *

9 1 if base is part of repeat element based on RepeatMaster; O otherwise - 6.07E-02

10 1 if base is part of a transcribed region of a RefSeq gene; 0 otherwise - 2.76E-07 *xx
11 1 if base is between the start and end of the coding region of the gene; 0 otherwise - 3.15E-05 *xX
12 1 if base is part of RefSeq exon; 0 otherwise + 747E-03 **
13 1 if base is part of a RefSeq exon and within the coding region of the gene; 0 otherwise - 2.07E-105 x
14 1 if base is part of a RefSeq intron; 0 otherwise + 2.19E-02 *
15 Percentage of G or C base pairs of all bases within 50 bases in either direction + 0.00E + 00 *xE
16 In(x + 1), where x is the FPKM of nearest gene at time t - 1.20E-07 *Hx
17 In(x + 1), where x is the FPKM of nearest gene at time t + 1 + 3.81E-05 e
18 1 if nearest gene is significantly up-regulated from t to t+ 1; 0 otherwise + 2.05E-03 **
19 1 if nearest gene is significantly down-regulated from t to t+ 1; 0 otherwise + 5.77E-02

*:0.01<p value < 0.05; **: 0.001<p value < 0.01; ***: p value < 0.001.

genes, we included expression levels of the nearby
genes as the features for modeling training (features
#16 - # 19). For the 12 TFs included in the model for
the ESCs, time ¢ was defined as the ESC stage, and ¢ +
1, the MES stage, while for 5 cardiac TFs, time ¢ was
defined as the CP stage and ¢ + I was the CM stage. To
capture the structural changes of histone modifications
during cardiac differentiation, for each histone mark
(including DNasel hypersensitive signals and RNA Pol
II signals), we defined five features for the mean inten-
sity within the surrounding window of different sizes
(10, 50, 100, 500 and 1000 nt), as well as their changes
from time ¢ to t + I (features #20 - #69).

As our goal was to train a general stage-specific model
to predict the binding probability of any TF with PWM,
we used a leave-one-TF-out cross-validation (LOT-
FOCV) to evaluate the generalizability of the model. In
short, at each stage (time point), we used the data from
16 of the 17 TFs to train a model, and tested its per-
formance on the remaining TFs. The sensitivity and spe-
cificity of the predictions were determined by the
overlap between the PWM hit and the ChIP-seq peaks.
The performance was measured by Area Under Receiver
Operating Characteristics Curve (AUC) (Figure 2A). The
AUC ranged from 0.961 (Mycn) to 0.702 (Nkx2-5) with
the 40 kb cis-region and PWM score cutoff at 90%,

while the mean AUC of 17 TFs was 0.860 (Figure 2A).
We also checked the AUC with distinct parameters (cis-
region =20 kb or 40 kb, PWM score cutoff=90% or
95%), and noted that the performance was similar be-
tween these conditions (Additional file 1: Figure S1A-C).
We compared the performance of the full model by
using all features (features #1 - #69), models without
features defined at ¢+ I (features #1 - #15, #16, #20 -
#24, #30 - #34, #40 - #44, #50 - #54, #60 - #64), and
models with only sequence features (features #1 - #15)
(Additional file 1: Figure S1D). The full model demon-
strated the best performance for 14 out of 17 TFs, with
the exception of Myc, Nkx2-5 and Tbx5. The results
suggested that the model was able to predict the stage-
specific TFBSs by using context independent sequence
features combined with context dependent expression
and histone modification features. Because the features
per se were independent of the PWMs of any specific
TF, this model can be used to predict the binding prob-
ability of other TFs, whose ChIP-seq data are not avail-
able during the cardiac differentiation process yet the
PWMs of which have already been defined.

Next, we trained the logistic regression model using
the data from all 17 TFs. We found that sequence fea-
tures such as conservation (#2) and GC content (#15)
had significant positive effects on the binding probability
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Table 3 The 50 features based on ChIP-seq intensity of four histone marks (H3K27ac, H3K4me1, H3K4me3 and
H3K27me3) and RNA polymerase Il phosphorylation at serine 5 (RNAP)

No. Histone Description Dir. P value Signif.

20 H3K27ac mean(x,, 1000) + 440E-245 *x

21 mean(x,,500) - 7.63E-03 **

22 mean(x,,100) - 1.59E-21 *HX

23 mean(x,,50) + 241E-06 *rx

24 mean(x,,10) - 2.09E-01

25 mean(x.,1,1000)-mean(x;,1000) - 1.62E-04 xrx

26 mean(x.1,500)-mean(x;,500) - 9.25E-01

27 mean(xq,1,100)-mean(x,,100) - 1.03E-03 **

28 mean(x,1,50)-mean(x,,50) + 6.40E-04 xrx

29 mean(xq.1,10)-mean(x,,10) - 1.33E-01

30 H3K4me1 mean(x,, 1000) + 9.27E-01

31 mean(x,,500) + 2.04E-07 i

32 mean(x,,100) + 1.04E-01

33 mean(x,,50) - 8.89E-01

34 mean(x,10) - 3.06E-01

35 mean(x..1,1000)-mean(x;,1000) - 1.21E-56 *rx

36 mean(x.1,500)-mean(x,500) + 242E-17 i

37 mean(x,;,100)-mean(x,,100) + 4.97E-05 Frx

38 mean(x.;,50)-mean(x,,50) - 4.04E-01

39 mean(x,1,10)-mean(x,,10) + 8.39E-01

40 H3K4me3 mean(x;,1000) - 3.34E-91 o

41 mean(x,,500) + 2.34E-32 *rx

42 mean(x,,100) + 1.28E-02 *

43 mean(x,,50) - 841E-01

44 mean(x,,10) + 7.33E-01

45 mean(x,1,1000)-mean(x;,1000) - 3.73E-23 il

46 mean(x,1,500)-mean(x;,500) + 3.82E-01

47 mean(x.1,100)-mean(x,,100) + 3.15E-04 *Hx

48 mean(x,1,50)-mean(x,,50) + 9.68E-01

49 mean(x,;,10)-mean(x,,10) - 7.65E-01

50 H3K27me3 mean(x,, 1000) + 161E-15 il

51 mean(x,,500) - 1.83E-27 i

52 mean(x,100) + 701E-02

53 mean(x,,50) - 2.04E-01

54 mean(x,,10) - 8.98E-02

55 mean(x.,1,1000)-mean(x;,1000) + 1.77E-08 Frx

56 mean(x..;,500)-mean(x,,500) - 9.39E-05 *x

57 mean(x,1,100)-mean(x,,100) + 2.15E-01

58 mean(x.,;,50)-mean(x,,50) - 3.05E-01

59 mean(xq.1,10)-mean(x,,10) - 4.10E-01

60 RNAP mean(x,,1000) - 0.00E + 00 Fxx
(

61 mean(x,,500) + 1.82E-105 xrx
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Table 3 The 50 features based on ChIP-seq intensity of four histone marks (H3K27ac, H3K4me1, H3K4me3 and
H3K27me3) and RNA polymerase Il phosphorylation at serine 5 (RNAP) (Continued)

62 mean(x,,100) + 1.04E-13 *rx
63 mean(x,,50) - 1.54E-01
64 mean(x,,10) + 9.46E-01
65 mean(x.;,1000)-mean(x,1000) - 6.44E-166 xR
66 mean(x.,1,500)-mean(x;,500) + 1.98E-31 *xx
67 mean(x.,;,100)-mean(x,,100) + 5.17E-03 **
68 mean(x.,1,50)-mean(x,50) - 4.77E-01
69 mean(x,;,10)-mean(x,,10) + 1.96E-01

*:0.01 <p value < 0.05; **: 0.001<p value < 0.01; ***: p value < 0.001.

(LR score) (Wald test p value = 7.76E-31 and <1E-100),
and being on a coding sequence (CDS) (#13) had signifi-
cant negative effects on the LR score (p value < 1E-100),
which was predicted for transcription factors (Table 2).
As for histone modification and RNA Pol II features,
high H3K27ac in the 1 kb surrounding region (#20) had
significantly positive effects on the LR score (p value <
1E-100), while high H3K4me3 and RNA Pol II in the
1 kb surrounding region (#40 and #60) had significantly

negative effects (p value = 3.34E-91 and < 1E-100). The
model also successfully captured the local dip of histone
marks as the H3K27ac in the 100 bp surrounding region
had negative effects on the LR score (p value = 1.59E-21),
consistent with previous reports [41]. It is interesting to
note that the changes of H3K4mel, H3K4me3 and RNAP
from t to t+1 (#35, #45 and #65) also demonstrated sig-
nificantly negative effects on the LR scores (p value =
1.21E-56, 3.73E-23 and <1E-100), suggesting that reduced
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Figure 2 Stage specific transcription factor (TF) binding probability (LR score). (A) Performance of leave-one-TF-out cross-validation of predicting
binding sites of 12 ESC TFs and 5 cardiac TFs, as measured by area under the Receiver Operating Characteristics curve (AUC). (B) Distribution of the
mean LR score of ESC transcriptional regulatory modules identified by functional identification of regulatory elements within accessible
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of heart enhancers and the LR score of one million randomly selected bases in the respective cis-regions [34]. (D) Number of significantly
enriched TFs in high LR score regions (>0.1) in the three stage transition.
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levels of these three histone modification marks may be a
novel signature of TF binding sites.

It should be noted that we trained the logistic regres-
sion model without any regularization. To demonstrate
the robustness of the obtained feature coefficients
under the regularization, we used elastic net regularized
logistic regression to fit the input data from all 17 TFs
(see Methods). We found that the correlation coeffi-
cients between the feature coefficients estimated by the
logistic regression model without regularization and
with LASSO regularization is 0.853 (Additional file 1:
Figure S3A). The correlation coefficient between the
predicted LR score is greater than 0.99 for all cis-
regions on mouse chromosome 10 (Additional file 1:
Figure S3B, C and D). These results suggested that not
only are the estimated coefficients robust using the
LASSO regularization, but the predicted LR scores are
also highly consistent.

To examine whether the high LR score is indicative of a
functional TFBS, we compared the LR scores of known
ESCs and heart enhancers with those of cis-regions of ran-
domly chosen genes. We determined that the mean LR
scores on known enhancers from four independent studies
were all significantly higher than cis-regions of the ran-
domly chosen genes (Wilcoxon rank-sum test p value <
1E-100, Figure 2A, 2B, Additional file 1: Figure S2A, B)
[34-36,45]. It should be noted that the difference was par-
ticularly strong on the recently defined ESC transcrip-
tional regulatory modules that have a relatively short
range (mean width = 185.8 bp) [35], compared to the other
three studies (mean width = 686.7, 2389.3 and 19177 bp,
respectively). The results suggest that a high LR score can
be used as a valid indicator for functional TFBS.

As outlined above, the base-wise LR score was stage-
specific. We decided to investigate the significantly
enriched PWMs of TFs in high LR score regions (>0.1)
in each stage transition (from ESCs to MES, from MES
to CPs and from CPs to CMs). We compiled a large
number of (1,854) PWMs for 543 TFs from multiple
sources [24-32]. 1,236 PWMs from 362 TFs expressed
(FPKM > 1) in ESCs, MES or CPs were used in the fol-
lowing analysis (Additional file 1: Figure S4A). If one TF
had multiple PWMs, the PWM with the lowest p value
was reported. We found that TFs had distinct enrich-
ment patterns in each stage transition (Figure 2D and
Additional file 2: Table S1). We conducted pathway en-
richment analysis, which demonstrated that 63 TFs that
were significantly enriched in high LR score regions in
all three transitions had significantly enriched functions
in cell cycle regulation (binomial test p value = 4.05E-05)
(Additional file 2: Table S1). The 22, 13 and 29 TFs that
are specifically enriched in ESC-MES, MES-CP and CP-
CM transitions were significantly enriched for stem cell
maintenance (p value = 9.36E-3), cell fate specification
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(p value =2.59E-4) and cardiovascular system develop-
mental pathways (p value =2.65E-3), respectively. In
summary, we established the LR score as an effective
metric to predict the stage-specific binding probability
of putative transcription factor binding sites.

Inferring dynamic regulatory networks during cardiac
differentiation

Next, we integrated (1) the stage-specific LR scores, (2)
the temporal expression profiles and (3) the perturbation
data under a time-varying dynamic Bayesian network
(DBN) framework to infer the dynamic regulatory net-
works during cardiac differentiation. Song et al. have
developed a DBN framework to infer the time-varying
direct or indirect networks by smoothing the edge
changes between adjacent networks under the assump-
tion that adjacent networks are likely to share common
edges than temporally distal networks [13,17]. This
framework is conceptually flexible and computationally
efficient. We extended this framework to model the
impact (weights) of a list of TFs to a downstream target
as the multiplicity between the weights of overlapping
windows in the cis-region surrounding the target and a
weighted binding matrix. The weighted binding matrix
measures (1) whether or not TF PWM hits exist, (2) the
LR score of the window and (3) whether or not the tar-
gets have been significantly affected in the perturbation
experiments of the TFs (see Methods).

For any gene expressed in the cardiac differentiation
process, this model can predict (1) which TFs are the
direct regulators, and moreover, (2) the regulatory bind-
ing sites on the cis-region (TEFBS). The p-value of each
predicted TFBS was evaluated using a bootstrap method
(see Methods). The predicted regulatory relations (links)
of 13,961 expressed genes are shown in Additional file 2
Table S2. The fractions of expression variance explained
by the model (cis-region =40 k, PWM score cutoff =
90%) were 88.6%, 88.1% and 88.2%, for MES, CP and
CM, respectively.

Nkx2-5 is one of the essential transcription factors
mediating heart development. Without Nkx2-5 function,
the heart primordium does not loop properly and em-
bryos die at embryonic day (E) 9.5 [53,54]. It has been
reported that a region -9435 bp to —-8922 bp upstream
of Nkx2-5's TSS contains an enhancer that controls its
early cardiac-specific transcription and this regulation is
Gata-dependent [55,56]. Our network inference model
predicted that this region contains a high LR score
region and peaks approximately —9400 bp upstream of
TSS (Figure 3). Around this peak LR score, there was a
dip of H3K27ac that contains the clustered binding sites
of the Hippo signaling pathway player Teadl, Gata4,
BMP signaling pathway players, Msx2 and Tgifl. Teadl
binding motif is known to be enriched around sequences
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pulled down by p300, Gata4, Nkx2-5, and Mef2a using
ChIP assays [2]. Msx1 and Msx2 functions have been
implied in endothelial-mesenchymal transformation of
the atrioventricular cushions and patterning of the atrio-
ventricular myocardium. BMP signaling pathway is an
important regulator of heart development [57]. Although
it is still unknown whether these factors directly bind to
the Nkx2-5 regulatory region, we predict that this regu-
latory module may be functionally important to activate
Nkx2-5 in cardiac progenitors [58-60]. Additional file 1:
Figure S6A-C are additional examples of Gata4, Gata6,
and Bhlh40 genes demonstrating the overlap of predicted
TEBS and experimentally detected enhancers. These
individual examples demonstrate that our network infer-
ence model identified many biologically verified links and
suggests that novel links may be of biological significance.

A total of 17,432, 15,491 and 14,339 positive edges
(u"* >0, see Methods) were predicted for the ESC-MES,
MES-CP and CP-CM transitions, respectively (Figure 4A).
The common links between ESC-MES and MES-CP, and
between MES-CP and CP-CM, represented 10.6% and
12.6% of the total number of discovered edges in the
corresponding time points. The number of common
links between ESC-MES and MES-CP (3,748) and

between MES-CP and CP-CM (4,139) were significantly
higher than the common ones between ESC-MES and
CP-CM (590), suggesting that the common links were
captured between adjacent networks.

Overall, 51.7% and 50.0% of predicted TFBSs over-
lapped with known ESCs and heart enhancers, respect-
ively, on genes that have mapped enhancers within
their 2 kb regions surrounding their TSS's [34-36,45]
(Figure 3B). In comparison, these ratios decreased for
the more distant TFBS (e.g. 39.1% and 15.5% for ESCs
and heart enhancers over a 40 kb cis-region). These
results suggested that the model was particularly good
at capturing the TFBS near the TSS. The superior per-
formance of the ESC model over the CP model may be
due to the fact that there were more data used in the
training of the ESC model.

Next, to evaluate the predictive power of the model we
performed a "computational perturbation experiment".
We computationally increased the expression levels of key
ESC TF genes (Pou5f1, Tcf3, Sox2, Nanog and Zfp281) by
five-fold in ESCs, and then predicted the global expression
profiles after computational 'induction’ and compared the
results with the published experimental data upon over-
expression of these TFs [20]. We found that there was a
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significant agreement in the direction of response (up- or
down-regulation) of gene expression between the compu-
tational overexpression and the experimental data, indicat-
ing the high predictability of this model (Fisher's exact test
p value = 2.2E-68 and <1E-100 for Pou5f1) (Figure 4C and
Additional file 1: Figure S5).

Figure 5 is a graphic representation of the positive
links predicted in the dynamic regulatory networks
involving a selected list of 93 key genes in cardiac differ-
entiation. This representation clearly illustrates the
changes of gene expression according to the differenti-
ation states as well as the dynamic gene regulatory
network involved in this process. Of note, pluripotency
genes such as Pou5fl, Kif4 or Zfp281 had the greatest
number of links to the predicted down-stream targets in
ES to MES transition. The targets included early meso-
dermal genes such as T, Mespl, Eomes, Kdr, as well as
early lineage specific regulators, such as Etv2, FoxC2,
Sox11, Soxl8 (endothelial), Nkx2-5, Gata4, Gata6,
Handl, Hand2 and Thx5 (cardiac), but did not include
the cardiac structural genes. Of the identified targets,
the early mesodermal genes peaked at the MES stage,
however the lineage specific regulators peaked later at
the CP stage, although the link was identified in the ES-
MES transition. This likely reflects the changes in the
histone modification patterns that precede gene activa-
tion [1]. In the MES-CP transition, many links from
mesodermal genes to cardiac structural genes, as well as
from lineage specific genes to cardiac structural genes
were identified. In addition, links emanating from sev-
eral hub genes such as Msx2, Egrl and Yyl were prom-
inent. Although the functions of these factors in cardiac
development is not well defined, this result suggests the
involvement of these factors in the cardiogeneic process
[2,59,61-63]. In the CP-CM transition, Tcf3, Egrl, Nkx2-5,
Gata4, Srf, Smad3 and Meis2 are predicted to activate many
highly expressed genes in cardiomyocytes. Interestingly,

although the same target genes (cardiac structural genes)
are activated in the MES-CP and CP-CM transitions, the
group of activating genes changed from MES and CP, likely
reflecting the changes in transcriptional regulatory
machinery.

It should be noted that the time-varying DBN model-
ing required known PWMs, and for more than 70% of
the TFs, their PWMs have not been identified yet. More-
over, non-DNA binding proteins, such as signaling pro-
teins and those associated with the chromatin complex,
also play important roles in ESC differentiation and
heart development by interacting with or modifying the
TFs [64-66]. To incorporate the effects of these proteins
into the time-varying DBN, we evaluated an extended
model using information of protein-protein interaction
(see Additional file 3). This extended model predicted
additional gene regulatory pathways (such as SWI/SNF
complex) that are important for heart development
(Additional file 1: Figure S7).

Discussion

Owing to the rapid declining cost of sequencing experi-
ments and our deep understanding of the roles of histone
modification during transcriptional regulation, the tem-
poral RNA-seq and histone ChIP-seq data are emerging as
powerful tools to explore the biological dynamics, espe-
cially during the developmental process [1,3,67,68]. In this
study, we propose a novel method to integrate such multi-
dimensional data to predict transcription factor binding
sites and gene regulatory networks. Instead of focusing on
segmenting the chromosomes based on histone codes or
scanning for genes with differentially histone modification
patterns, we integrated the data from temporal RNA-seq,
temporal histone ChIP-seq, TF ChIP-seq assays in related
cell types, and perturbation data, to systematically recon-
struct the regulatory relationship in cardiac differentiation.
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Compared with the original analysis of RNA-seq and
histone ChIP-seq datasets by Wamstad et al. [1], the
novelty of this study are two-fold: (1) instead of deter-
mining the TFBS by using a heuristic method to find
the dip in the H3K27ac profile, followed by motif
enrichment analysis, we used a logistic regression
model that considered sequence, expression and his-
tone modification features. This model computes the
probability of identifying TF binding sites for any base
in cis-regions, and quantitatively predicts the binding
potentials of any TFs with known PWMs. This strategy
allowed us to explore the binding profiles of a broader
spectrum of TFs rather than the significantly enriched
TFs. (2) In the network inference stage, instead of con-
sidering only the expression correlation, we used a
time-varying dynamic Bayesian model that combines
three different types of information including: (a) the
LR score, (b) the temporal expression profiles and (c)
experimentally derived perturbation data to quantita-
tively reconstruct the dynamic GRN during cardiac
differentiation. This model is also able to predict the
global outcome by computationally perturbing specific
TFs.

The most significant advantage of our method over
other network inference methods is that, by combining
multi-dimensional data, it not only predicts the gene-gene
relationship, but also pinpoints the specific TF binding
sites in the cis-region. Our method successfully identified
the known regulatory region (-9435 bp to —8922 bp) up-
stream of the transcriptional start site of the key cardiac
gene Nkx2-5. In addition, graphical representation of the
links illustrate the global landscape of the gene regulatory
network and predicts novel factors whose function is yet
to be discovered.

This method will allow biologists to quickly determine
the potential cis modules that regulate important genes
during cardiac differentiation and any biological processes
that involve temporal cascade in gene induction, which
can be experimentally tested in the laboratory. It also em-
phasizes the importance of analyzing the same system in
multiple dimensions in a comparable manner.

Building upon our successful prediction of known gene-
gene regulatory relationships and enhancers, there are
multiple interesting ways that our current method can be
extended. For example, microRNAs or long non-coding
RNAs (IncRNAs) have been shown to play important roles
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in heart development [69,70]. Since their expression have
also been profiled, for example, during the cardiac differen-
tiation [1], it would be intriguing to integrate them into the
current framework and build networks not only including
transcription factors, but also microRNAs or IncRNAs
[4,71]. To incorporate microRNA data, the development of
strategies to measure the stage-specific binding relation-
ship between a microRNA and a mRNA, rather than the
'static' relationship of a microRNA-mRNA pair predicted
by most microRNA target prediction tools will be needed.
By examining the 'static' microRNA target sites change on
mRNAs under alternative polyadenylation is another way
to incorporate microRNAs into the current framework. As
for IncRNAs, we need a deeper understanding of the
mechanism of how they regulate the target genes [72].

Another potential extension of our method will be an
inter-specific comparison of gene regulatory mechanisms.
For example, the temporal RNA-seq/histone ChIP-seq
data have also been generated for human cardiac differen-
tiation [3]. It will be interesting to systematically combine
the human and mouse data to study the conserved regula-
tory network components or the network evolution [73].
The potential challenge is that these two studies used an
overlapping, but different sets of histone states (H3K27ac,
H3K4me3, H3K4mel, H3K27ac and RNAP [1], versus
H3K27me3, H3K4me3, H3K36me3 and RNAP [3], and
different time points for their analyses. Our model needs
to be extended to accommodate datasets that have been
collected in different experimental paradigms.

Conclusion

In summary, we propose an integrative approach to utilize
multi-dimensional gene expression, histone modification
and transcriptional data. We predict that such a concep-
tual framework is crucial to fully decode the rapidly accu-
mulating -omics data in the biological field.

Methods

Transcription factor ChIP-seq datasets

The ChIP-seq binding sites for 17 transcription factors
in ESCs and HL-1 cells were downloaded from ChIP-
Base [2,26,38,52,74] (Table 1). The genomic coordinates
were converted to the mouse genome version mmlO0.
We used findMotifsGenome.pl in HOMER (v4.6) to
identify the enriched motifs in each dataset with the de-
fault parameters [52]. The most significant PWM for
each transcription factor was used to scan the cis-region
of each gene to find the possible binding sites (kit) at ei-
ther plus or minus strand with the PWM score of 90%
of the highest possible score, by using matchPWM()
from Biostrings package in Bioconductor. The cis-region
is defined as 40 kb surrounding the transcription start
site. If the cis-regions of neighboring genes were
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overlapped, the bases within overlapped regions were
assigned to their nearest gene.

Feature preparation and logistic regression model

The raw RNA-seq, histone modification (H3K4me3,
H3K27me3, H3K4mel and H3K27ac) and RNA poly-
merase II phosphorylation at serine 5 (RNAP) ChIP-seq
data during cardiomyocyte differentiation from ESCs,
mesoderm (MES), cardiac progenitors (CP) and cardio-
myocytes (CM) were downloaded from NCBI GEO data-
base (SRP026035 and SRP026036). The RNA-seq data
were analyzed by TopHat (v2.0.11)/Cufflink (v2.1.1)
pipeline [75]. The ChIP-seq reads were first mapped in
the mouse genome mm10 by BWA (v0.7.4), followed by
MACS (v1.4.1) analysis [76]. The 13,961 genes whose
expression levels are greater than 1 FPKM in at least
one of four time points were used for the following ana-
lysis. The ChIP-seq tag intensity for every 10 bp interval
was transformed by an inverse hyperbolic sine function
to reduce the distortion effects of high data values [77].
The features were calculated as described in Tables 2
and 3, followed by scaling to the mean of zero and a
standard deviation of 1.0. The logistic regression models
were trained by glm() function in R. The elastic net regular-
ized logistic regression model was trained by glmnet pack-
age in R [78], while the complexity parameter 1 was
automatically determined using three fold cross-validation.

Perturbation network

We compiled the perturbation experiments for 189 TFs
in ESCs and 4 in HL-1 cells [2,4,20,50,51]. The signifi-
cantly differentially expressed genes between control and
induction (or repression) microarray samples were deter-
mined by RankProd [79] with FDR <0.1. The perturb-
ation network is represented as a 13,961 (number of
expressed genes) by 13,961 matrix P where P; =1 if gene
i is significantly up- or down-regulated after inducing or
repressing gene j, otherwise, 0. There are 29,534 non-zero
entities in the perturbation matrix P (Additional file 2:
Table S3).

Time-varying dynamic Bayesian network

Let X be a p by T expression level matrix, where p is the
number of genes and T is the number of time points
(log(FPKM + 1)). Let A, be a p by p coefficient matrix
describing the regulatory relationship during the transition
from ¢ to ¢+ I, where ¢ is from 1 to 7-1. The dynamic
expression levels can be modeled as

X = A'X" + &, eeN(0,0%])

based on time-varying dynamic Bayesian networks [13].
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For each gene i, the regulatory relationship by other
genes at the transition from ¢ to t+ 1 can be further
modeled as:

Azt' _ (ui,t) TBi,t

where A! is the row i of matrix A%, #** is a K’-length vec-
tor indicating the weight of K’ cis-segments for gene i.
In this study, the cis-segments were defined as 50 bp
segments in the cis-region with the step size as 5 bp,
that is, every adjacent segment have 45 bp overlap. B*'
is a K’ by p binding profile matrix describing the binding
potentials of each TF for each cis-segment &, and defined
as:

LR}
it —hmj if there exists a PWM hit of TF j in
s(k)j T ) hes(k) skl cis-segment k
0 otherwise

where s(k) represents the location of cis-segment k with
length |s(k)|, LR} is the LR score of base 4 on cis-region
of gene i at time ¢, and s(k) represents the bases contained
within the cis-segment k. The parameter 7r;; adjusts for the
regulatory relationship existing in the corresponding per-
turbation experiments: if in the perturbation matrix, P; =
1, then ;= 1, otherwise, 7;; = 0.25. At each time point ,
only abundantly expressed TFs were used (FPKM > 25).
There are 66, 70 and 61 abundantly expressed TFs (with
known PWMs) in ESCs, MES and CPs (Additional file 1:
Figure S4B). If two PWM hits were overlapped, the PWM
hit with the higher score was used.

The network inference problem can be formulated as
an optimization problem such that, for each gene i,

T-1 T-1 )
> Y,
1 2 1

T-2
+2 bt Bt it 1 git+l
| !

min
uht, T

Xfﬂ _ (ui,t) TBi,er;

The first term in the objective function is to minimize
the difference between observed expression levels and
expression levels that can be explained by the regulatory
relationship. The second term is for obtaining a sparse
weight of the cis-segments, that is, most of the cis-
segments will have the weight of zero and only a few
cis-segments have significant impact on the expression
levels of nearby genes. The third term is to smooth the
edge weights between the adjacent networks. Two
hyperparameters 1; and A, were selected by cross-
validation. This optimization problem is convex for
every gene and can be solved by standard convex
optimization methods. In this study, we used the CVX
convex modeling package (http://cvxr.com/cvx/).

To evaluate the confidence of each TFBS, we used a
bootstrap method: for the cis-region of each gene, the
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LR scores were re-sampled with replacement, followed
by network inference using the time-varying DBN. This

process was repeated for N=100 times for each gene.

For each estimated ui’(tk) (the weight of cis-segment s(k)

of gene i at time f), the p-value was calculated as

N n
> H('u>u)+1
N+1
estimation, u is the estimation without bootstrapping

(the superscripts and subscripts were omitted to reduce
the clutter), and H(x) = 1, if x > 0, otherwise 0 [80].

, where "u is the n-th bootstrapped

Additional files

Additional file 1: Figure S1. (A-C) Performance of leave-one-TF-out
cross-validation of predicting binding sites of 17 TFs, as measured by area
under the ROC, with different parameters. (D) AUC of leave-one-TF-out
cross-validation by using different models. Figure S2 Distribution of a
mean LR score of (A) ESC enhancers [36] and (B) weakly conserved heart
enhancers [37] and a LR score of one million randomly selected bases in
the cis-region. Figure S3 (A) Comparing the feature coefficients estimated by
the logistic regression model without regularization (glm), and with elastic
net regularization (glmnet). (B-C) Comparing the LR score (chromosome 10,
mm10) predicted by the logistic regression model without regularization
(glm) and with LASSO regularization during three transitions. Figure S4
Number of (A) expressed (FPKM > 1) and (B) abundantly expressed (FPKM >
25) transcription factors with known PWMs. Figure S5 Predicted up- or
down-regulated genes on computationally inducing (A) Tcf3, (B) Sox2, ()
Nanog, and (D) Zfp281 five-fold in ESCs, compared with known up- or
down-regulated genes following the experimental induction of each
corresponding gene. p-values were determined using Fisher's exact
test. Figure S6 Graphic representation of predicted TFBS for (A) Gata4,
(B) Gata6 and (C) Bhlhe40. Figure S7 An extended time-varying DBN
that incorporates the effects of TF with unknown PWMs and non-TFs
(group Il genes). (A) Number of predicted outgoing edges for each
group Il gene in three transitions. (B) Number of group Il genes with
outgoing edges in three transitions. (C) The predicted sub-network that
include 57 group | genes and 43 group Il genes in CP-CM transitions.

Additional file 2: Table S1. Pathway analysis of TFs that are significantly
enriched in high LR score regions in three transitions. Table S2 The predicted
regulatory relations of 13,961 expressed genes. Table S3 The perturbation
networks for 189 TFs in ESCs and 4 in HL-1 cells compiled from muiltiple
studies.

Additional file 3: An extended time-varying dynamic Bayesian
network (DBN) model for non-transcription factors and transcription
factors with unknown positional weight matrices.
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