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Abstract

Extracellular vesicles (EV) produced by eukaryotic microbes play an important role during 

infection. EV release is thought to benefit microbial invasion by delivering a high concentration of 

virulence factors to distal host cells or to the cytoplasm of a host cell. EV can significantly impact 

the outcome of host-pathogen interaction in a cargo-dependent manner. Release of EV from 

eukaryotic microbes poses unique challenges when compared to their bacterial or archaeal 

counterparts. Firstly, the membrane-bound organelles within eukaryotes facilitate multiple 

mechanisms of vesicle generation. Secondly, the fungal cell wall poses a unique barrier between 

the vesicle release site at the plasma membrane and its destined extracellular environment. This 

review focuses on these eukaryotic-specific aspects of vesicle synthesis and release.

It is now broadly accepted that extracellular vesicles (EV) are released by microbes of all 

types. EV have been characterized from bacterial, archaeal, and eukaryotic microbes, and 

found to be important in a number of biologically relevant contexts, including virulence and 

pathogenesis [1,2]. While most research has focused on their biological significance, the 

mechanisms for EV synthesis, cargo loading, and transport to the extracellular space remain 

enigmatic, particularly for eukaryotic and Gram-positive microbes. Among EV-producing 

microbes, the best-studied are the Gram-negative bacteria, in which the outer membrane 

provides both origin location and resources for EV synthesis, and these studies have served 

as a model for other bacteria [3]. However, the huge morphological differences between 

bacteria and protozoans or fungi make extrapolating findings from one system to the others 

difficult. Eukaryotic microbes such as Saccharomyces cerevisiae and Cryptococcus 

neoformans were first proposed to release secretory vesicles several decades ago [4-6], 

based on ultrastructural studies. These findings were not followed up largely because it was 

believed that the fungal cell wall would preclude release of vesicles to the extracellular 

space and because of concern that they could be culture artifacts arising from self-assembly 

of lipids. In 2007, EV were shown to be released by C. neoformans to the extracellular 

environment and subsequently were associated with a variety of other fungi [7,8]. The 

observation that EV could be produced by fungi despite their cell wall led to a search for 

these structures in Gram-positive bacteria and found several EV-producing species [9,10]. In 

2008, proteomics suggested an EV secretory system in Leishmania donovani, which was 
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later confirmed to be its primary means of protein secretion [11,12]. Through the 

reinvigorated interest in fungal and protozoan EV in the last decade, coupled with advances 

in proteomic and lipidomic techniques, a more finely detailed role of EV release has begun 

to emerge.

The role of microbial-released EV in eukaryotic microbes is presumably similar to that in 

bacterial systems, namely the delivery of cargo such as enzymes and virulence factors in a 

concentrated form to mediate effects on the extracellular space. EV delivery solves the 

problem of dilution that inevitably follows release of any molecule at the cell membrane. 

Since volume increases with the third power of the distance from the membrane, the 

concentration of products released at the cell surface drops rapidly as a function of distance 

from the cell. Furthermore, fungi degrade complex biological structures such as cellulose 

and lignin and it is believed that efficient digestion requires a combination of enzymes 

[13,14]. Hence, EV allow concentrated delivery of cargo that can be used to digest targets 

and obtain nutrition. Cargo such as virulence factors can be concentrated for delivery to host 

cells, giving these vesicles a “virulence bag” function [10,15,16]. Vesicles can be delivered 

to distal host cells to deliver a larger impact than diffused soluble virulence factors. 

Phagocytic cells can internalize EV, which then influence innate immune response in a 

cargo-specific manner [17,18]. Intracellular pathogens can deliver their payload, including 

virulence factors working in tandem, to a single cell, where the cargo are immediately 

delivered to the host cell cytoplasm. Such direct cytoplasmic delivery was observed in 

vesicle-like structures protruding from Trypanosoma cruzi inside HeLa cells [19] and L. 

donovani inside macrophage cell lines [11]. One of the fascinating aspects of EV is that all 

have similar dimensions irrespective of type of cell of origin, on the order of 30 – 500 nm 

[7,19-21].

What differentiates eukaryotic microbial EV from their bacterial counterparts? Two distinct 

characteristics are important to keep in mind: (1) Eukaryotic microbes have multiple 

membrane sources that can serve as EV points of origin, while bacteria are limited to their 

envelope membranes and (2) some eukaryotic microbes, such as the fungi, have an 

additional barrier in the form of a cell wall that must be crossed before the EV can be 

released to the extracellular environment. This review will address these characteristics and 

their implications for eukaryotic EV export.

Vesicle origin

Studies on model organisms such as S. cerevisiae and metazoan species such as 

Caenhorrabditis elegans have demonstrated two primary sources for extracellular vesicles. 

The first are multivesicular bodies (MVBs), which fuse with the plasma membrane to 

release their intraluminal vesicles to the extracellular space. The second is the plasma 

membrane itself, which can bud and pinch off away from the cell, forming an independent 

extracellular vesicle [22,23]. Although nomenclature remains field-specific, leading to 

discrepancies, these subpopulations will be referred to here as exosomes and microvesicles, 

respectively. The different mechanisms of vesiculogenesis have implications in membrane 

and cargo composition.
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Exosome formation, composition, and release

Exosome formation relies on the formation of intracellular MVBs, which in turn relies on 

the endosomal sorting complex required for transport (ESCRT) protein complex [24]. 

Alternative mechanisms for MVB formation are described in mammalian cells [25], and 

may play a yet-unknown role in eukaryotic microbes. Evidence for ESCRT protein 

involvement in exosome formation was first suggested by proteomic analyses, which 

identified ESCRT members as EV-associated proteins [16,26]. Maturing endosomes, or 

MVBs, can be trafficked to the lysosome for degradation, but can also be steered toward the 

plasma membrane, where MVB fusion with the plasma membrane results in release of 

intraluminal vesicles (ILV) (Figure 1). This process was confirmed to play a role in 

eukaryotic microbial EV when mutations in ESCRT-related genes of S. cerevisiae decreased 

EV output compared to wild type [23]. Interestingly, the absence of ESCRT machinery does 

not drastically effect the remaining S. cerevisiae EV protein composition [23]. Visual 

confirmation of this process for C. neoformans and T. cruzi [19,27] was later made via 

electron microscopy. Ubiquitin machinery, known to stimulate formation of ILV within an 

MVB, has also been found associated with EV [11,16,27], and therefore may play a broader 

biological role than solely lysosomal targeted vesicle cargo selection.

Most work on eukaryotic microbial EV has centered on entire EV populations, without 

separating exosomes from microvesicles. These studies have found phospholipids such as 

phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine to be large 

constituents of EV membranes across a variety of species, including P. brasiliensis, C. 

neoformans, and Histoplasma capsulatum [7,28-30]. In P. brasiliensis, lipidomics 

comparing fatty acid and sterol incorporation of two separate isolates revealed similarities in 

composition but differences in proportions between whole cell lipid extracts and EV extracts 

[28]. This supports the idea that EV originate from specific organelles, rather than 

nonspecific membrane sources. Sterol composition varies between fungal species, with 

brassicasterol, ergosterol, and lanosterol dominating in both P. brasiliensis cells and EV and 

ergosterol and obtusifoliol dominating in C. neoformans. In C. neoformans, the cell-surface 

glycosphingolipid glucosylceramide is also incorporated in EV membrane composition 

[29,31], revealing a new role for this lipid virulence factor.

Two subpopulations of EV have been identified in T. cruzi through differential 

centrifugation. Trypanosomal exosomes are released near the flagellar pocket, a location 

with few subpellicular microtubules relative to the rest of the T. cruzi cell body [19], and are 

smaller in size than trypanosomal microvesicles. This is in contrast to the fungi C. 

neoformans and S. cerevisiae, which on average release larger vesicles as exosomes than 

microvesicles [23,27].

Microvesicle formation, composition, and release

Microvesicles, also called ectosomes [19] form directly from the plasma membrane (Figure 

1). This is generally thought to involve the plasma membrane budding away from the cell in 

a “reverse endocytosis”-like event, as imaged in L. donovani [12]. Formation of 

microvesicles may also require the ESCRT protein complex, which can be redirected to the 

plasma membrane to form the protrusion away from the plasma membrane. An additional 
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mechanism in C. neoformans forms microvesicles through plasma membrane invagination 

and subsequent fusion, resulting in a “scooped out” section of plasma membrane 

independent of the originating cells [32] (Figure 1). The suggestion that vesicles form by 

inverted macropinocytosis provides a mechanism outside the ESCRT protein complex 

function. Vesicle production was also altered by knockdown of the secretory gene SEC6 in 

C. neoformans, where it participates as part of the exocyst complex [33,34]. These 

redundancies could help explain why a true EV-null strain has proven difficult to identify by 

genetic means, as the mechanisms for generating and releasing these EV are likely multiple 

and redundant and possibly independent.

Because of their putative plasma membrane origin, microvesicle membranes closely reflect 

the exterior of the originating cell. In T. cruzi, microvesicles contain surface glycoproteins 

and an inner plasma membrane leaf protein that is not found in T. cruzi exosomes [19]. 

Surprisingly, the T. cruzi microvesicle population contained more cytoplasmic cargo than 

the exosome population, suggesting two different mechanisms for cargo loading in this 

organism.

Architectural challenges of vesicle release

Among eukaryotic microbes, fungal cells pose the unique problem of a thick cell wall that 

EV must cross to reach the extracellular environment. This cell wall is composed of a 

crosslinked mesh of beta-glucans, chitin, and mannoproteins. The pore size of the S. 

cerevisiae cell wall varies by strain from 50 – 200 nm, but can change based on cell wall 

remodeling enzymes, extracellular pH, culture growth phase, and accumulation of deposits 

such as melanin under distinct conditions [35]. The puzzle of how EV, which can be as large 

as 500 nm [29], cross this mesh remains largely unanswered, although these extremely large 

EV are relatively rare in vesicle populations, and their formation from fusion of smaller 

vesicles has not been ruled out. Three nonexclusive hypotheses can explain how vesicles 

cross the cell wall: (a) channels exists in the cell wall through which vesicles are guided to 

the extracellular environment, (b) cell wall-remodeling enzymes temporarily alter the cell 

wall as vesicles are released, and (c) the cell wall is unchanged and vesicles are forced 

through small pores by yet to be characterized mechanical or other physical forces (Figure 

2).

Evidence to support these non-mutually exclusive hypotheses is scattered in the literature. 

Movement of the cell wall was observed ten years ago in S. cerevisiae [36], and found to be 

consistent with the speed of kinesins and other microtubule motor proteins. EV proteomics 

reveals actin, tubulin, and kinesins associated with EV from C. neoformans, H. capsulatum, 

and P. brasiliensis [7,16,26,27]. One explanation could be the presence of cytoskeletal-like 

channels that exist to help guide EV through the cell wall to the extracellular environment. 

Ultrastructural studies have yet to discern obvious channels surrounding EV in the cell wall, 

which would strengthen the argument for their existence. Alternatively, cytoskeletal proteins 

could function to guide EV to the proper site of release, or propel them through dense cell 

wall matter similar to Listeria monocytogenes usurping of cytoskeletal actin [37,38].
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Several observations suggest cell wall remodeling may occur to facilitate vesicle release. 

First, cell wall pore size is affected by stressful conditions. S. cerevisiae cell wall pore size 

doubles from 200 nm to 400 nm under oxidative stress [35], but decreases as cells enter 

stationary phase [39]. These alterations may be enough to allow release of even the larger 

double-membrane EV, but also may limit the growth phase for optimal EV release. Second, 

proteomics have identified several enzymes involved in cell-wall remodeling that are 

associated with EV preparations. These include both cell-wall degrading machinery, such as 

amylase and endochitinase, and cell-wall synthesis machinery, such as glucanosyltransferase 

and chitin synthase proteins. These cell-wall metabolism enzymes have been identified in S. 

cerevisiae, H. capsulatum, C. neoformans, and P. brasiliensis, suggesting a pan-fungal 

association of cell wall machinery with EV [7,16,23]. In fact, proteomics on EV from the 

Gram-positive bacterium Staphylococcus aureus also reveals the presence of cell wall-

altering enzymes [40], suggesting cell wall manipulation may be a common mechanism to 

overcome the cell wall obstacle for many microbial species. Alternative hypotheses, such as 

recruitment of EV to the site of cell-wall insult, must be ruled out before these enzymes can 

be determined to play a role in EV release via cell wall remodeling.

There are likely to be a variety of fates for EV crossing the fungal cell wall. Lipidomics of 

P. brasiliensis EV and cell wall extracts show a similar lipid composition [28,41,42]. This 

suggests some vesicles may persist or linger in the cell wall, either intact or as fragments 

after breaking while in the wall. Bursting EV within the cell wall may serve to deliver some 

EV cargo, such as alpha-galactosyl residues, to the wall [8]. Bursting vesicles may also 

account for some of the lipids observed within the cell wall itself [42,43]. An experimental 

approach to study cell wall transit is the use of melanized cells to influence cell wall 

permeability, rigidity, and vesicle release. Melanin is produced by a number of fungi and is 

known to accumulate in the cell wall. In fact, melanin has been proposed to be synthesized 

in vesicles that are then trapped in the cell wall [21]. Cell wall melanization decreases the 

cell wall pore size, charge, and hydrophobicity [44,45]. Melanization also correlates with 

increased numbers of vesicle-like structures between the plasma membrane and the cell wall 

[27]. These structures may represent “trapped” vesicles unable to traverse the less porous 

cell wall, indicating a potential new tool to track vesicle production and the initial 

interactions with the cell wall.

EV cargo influences

EV secrete a variety of cargo, and proteomics of P. brasiliensis revealed a similar number of 

EV-released protein cargo (205) as soluble-released proteins (260). More EV-released 

proteins than soluble-released proteins lacked predicted secretory signals (39%, compared to 

31%) [26], while 98% of the L. donovani secreted proteins lack classical secretion signals 

despite exosomes comprising 52% of the protein secretome [11,12]. These data are 

consistent with EV as a nonconventional means of protein secretion, with a yet-unknown 

signal for incorporation as EV cargo.

The idea that environmental stimuli influences microbial secretion is well established and 

temperature, CO2 concentration, iron concentration, and immune cell presence can each 

change microbial secretomes. It follows that a host environment can also affect EV secretion 
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and cargo composition. Individual variables such as temperature and pH can affect EV 

release and cargo selection in Leishmania donovani [11], with an increase in pH correlating 

to an increase in virulence factor EF-1α incorporation. Antibody binding was shown to have 

an active effect on C. neoformans secretion, although the differences in radiolabeled lipid 

secretion was not measurable [46].

Understanding genetic control of vesicle release and cargo selection has only recently 

begun. Knockdown of SEC6 in C. neoformans decreases the number of EV, suggesting a 

role of exocyst in EV release [33]. Cargo selection studies have shown the C. neoformans 

apt1 flippase mutant releases EV lacking normal polysaccharide cargo [47], while both C. 

neoformans and S. cerevisiae GRASP protein mutants have shown that post-Golgi secretion 

events are required for the release and inclusion of polysaccharide into EV [23,48]. In L. 

donovani, EV from strains lacking the zinc-dependent metalloprotease GP63 have markedly 

different protein cargo composition and induce a greater in vivo inflammatory response than 

wild-type EV [49]. Learning more about genetic regulation of vesicle cargo will help answer 

the question of how cargo is selected for inclusion and how these cargo influence disease 

outcome.

Major unsolved problems in EV biology

The past decade has seen an upsurge in EV-focused studies, resulting in great strides toward 

understanding the protein and lipid composition of EV, the inducing conditions for EV 

synthesis, and the role in pathogenesis of EV. Yet many questions remain, such as how EV 

vesicle cargo is selected and incorporated or what molecular machinery is required to 

generate and release EV. The role of EV in eukaryotic microbiology is an exciting frontier 

with important implications in the host-pathogen interaction dynamic.
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Highlights

• Eukaryotic microbes face unique challenges in releasing extracellular vesicles

• Eukaryotic microbes release exosomes and microvesicles via distinct 

mechanisms

• Nonexclusive hypotheses for vesicle transit through the cell wall are proposed

• Genetic regulation of vesicle cargo selection and release remains an important 

focus
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Figure 1. 
Vesicle exit from eukaryotic microbes. Both protozoa (left) and fungi (right) generate 

extracellular vesicles by multiple means: (i) Exosomes exit via multivesicular body fusion 

with the plasma membrane while (ii) microvesicles exit by plasma membrane budding away 

from the cytoplasm. In fungi, there is evidence for (iii) golgi involvement in vesicle 

production and (iv) “scooping out” of cytoplasm by inverted macropinocytosis.
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Figure 2. 
Three nonexclusive models of vesicle exit through the fungal cell wall: (a) Channels guide 

vesicles through the wall toward the extracellular environment; (b) cell wall remodeling 

enzymes increase pore size to facilitate vesicle release; (c) vesicles move into the wall due to 

still-uncharacterized physical or mechanical forces.
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