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Abstract

We propose that the quantitative cancer biology community make a concerted effort to apply 

lessons from weather forecasting to develop an analogous methodology for predicting and 

evaluating tumor growth and treatment response. Currently, the time course of tumor response is 

not predicted; instead, response is- only assessed post hoc by physical exam or imaging methods. 

This fundamental practice within clinical oncology limits optimization of atreatment regimen for 

an individual patient, as well as to determine in real time whether the choice was in fact 

appropriate. This is especially frustrating at a time when a panoply of molecularly targeted 

therapies is available, and precision genetic or proteomic analyses of tumors are an established 

reality. By learning from the methods of weather and climate modeling, we submit that the 

forecasting power of biophysical and biomathematical modeling can be harnessed to hasten the 

arrival of a field of predictive oncology. With a successful methodology towards tumor 

forecasting, it should be possible to integrate large tumor specific datasets of varied types, and 

effectively defeat cancer one patient at a time.

1. Introduction

The past decade has witnessed a dramatic increase in our knowledge on cancer on multiple 

scales leading to a host of potential drug targets and subsequent clinical trials. Yet the 

outcome for many cancers has not improved (1). A fundamental reason for this sobering 

reality is that we do not have a validated theoretical framework to understand how tumors 

within the individual patient respond to treatment; that is, there is no accepted mathematical 

description that enables us to generate testable, patient-specific hypotheses. More 
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specifically, we do not have a theory that, given patient-specific data, can we reliably and 

reproducibly predict the spatiotemporal changes of that patient’s tumor in response to an 

intervention. Currently, providing optimal therapies for a specific tumor phenotype, 

particularly with combinations of therapies, is extraordinarily difficult, as the number of 

potentially important adjustable parameters, such as the order and dosages of therapy, is too 

large to span in clinical trials and patient heterogeneity in response is large. Clinical trials 

too frequently lead to inconclusive and confusing results such that approximately half are 

never even published in the peer reviewed literature (2). As our knowledge of cancer grows 

there is a desperate need to make real connections between those designing clinical trials 

and those studying mathematical models of tumor growth and treatment response so that the 

field of theoretical oncology can provide systematic, testable predictions of the response of 

individual patients to individual therapeutic regimens. We envision a diagnostic/prognostic 

toolkit containing experimentally validated, mathematical tumor models coupled with a 

battery of patient specific measurements to initialize and constrain a patient specific model. 

Oncologists could then select the most promising approach by systematically and 

exhaustively exploring, in silico, all relevant combinations of therapies. Unfortunately, there 

is not yet a theoretical approach that can harness the spectrum of cancer knowledge towards 

usable predictions.

Cancer is a multiscale problem that extends from the micro (DNA/RNA), to the meso 

(protein expression, cell behaviors), to the macro (organ function) scales, and critical to 

understanding cancer will be to model impacts at each level. Multiscale models (and the 

associated experiments), an active area of cancer research, will need time to develop. 

However, it may be possible to establish theories of clinical tumor progression that captures 

the behavior of an individual patient’s tumor well before the influence of underlying events 

on tumor scale behaviors is elucidated. That is, one does not require an exhaustive 

understanding, at all scales, of a phenomenon in order to form a useful theory. The history of 

science teems with examples of extraordinarily useful theories, whose development was 

driven by a need to quantitatively describe complex systems or complex behaviors, when the 

underlying principles were not known. One instructive example is weather modeling, which 

is guided in large part by the fluid equations with hydrostatic balance, also known as the 

primitive equations (3). We posit that the methods and paradigms of weather forecasting 

over the last century provide the most pertinent perspective on how to proceed when 

attempting to build a quantitative theory of cancer. While analogies between weather and 

tumor forecast are somewhat common in both the scientific and popular press (see. e.g., 

references 4 and 5), detailed steps for adapting the methods of meteorology to oncology are 

often overlooked. We establish some relevant parallels in the next section.

2. Guidance from the meteorologist

A “weather forecast” is a scientific estimate of weather conditions at some time in the 

future. There are essentially two steps in developing a weather forecast: 1) estimate the 

current physical state of the atmosphere (the “diagnostic phase”), and 2) use techniques to 

predict the future state of the atmosphere (“prognostic phase”). Once the diagnostic phase is 

complete, there are two main ways to develop a prognosis: one is based on historical data 
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(both near and long term), while the other employs mathematical models. We provide brief 

descriptions of both before discussing possible application to cancer.

The simplest approach based on historical data is “persistence forecasting”, which assumes 

that the tendency of the weather is to remain unchanged in the short term. “Climatological 

forecasting”, employs average weather statistics accumulated over decades to offer a short-

term forecast: If a prediction of temperature and precipitation is desired for a particular day, 

one averages the temperature and precipitation measured on that day for as far back as one’s 

dataset allows, and from these average values offers a forecast. A third method from 

historical data is the “analog method”, based on the assumption that weather repeats itself, at 

least in a general way. The idea is to match current conditions with similar conditions 

previously observed and construct a forecast based on the observations most frequently seen 

to follow those conditions in the database. The fourth approach is termed “trend 

forecasting”, which is based on determining the velocity of certain features (e.g., storm 

fronts) and extrapolating the future position of those features.

These historical data approaches are useful as they can provide reasonably accurate forecasts 

for short time periods into the future (generally, less than 24 hours). However, they cannot 

account for changes in intensity and direction and/or predict the formation or dissipation of 

major events over extended time (days or weeks). We argue that current clinical methods of 

predicting treatment response in cancer patients are akin to these “historical trend” methods 

and, consequently, suffer from the same severe limitations in predictive ability. The clear 

strategic and economic benefits of knowing what the weather will be tomorrow or next week 

encouraged the development of numerical weather prediction methods in the last century. 

The cost of health care and the aging population coupled with recent scientific and 

technological advancements provide both the incentive and the capacity to develop 

numerical tumor prediction methods now.

Numerical weather prediction (NWP) methods stem from a set of physical principles that 

govern the behavior of the atmosphere and that can be expressed by a system of equations. If 

these equations can be solved, one can provide a description of the future state of the 

atmosphere (i.e., a forecast) based on its current state. The diagnostic phase of a numerical 

weather model relies on a vast, global network of surface (land and sea) and air 

measurements to obtain reliable measures of temperature, cloud cover, humidity, 

precipitation, and wind velocity. It is difficult to overstress the importance of these 

measurements. For weather modeling, measurements in one particular region are insufficient 

to characterize the whole atmosphere because the system is both 1) heterogeneous, and 2) 

connected. Indeed, the forecaster must have a complete—and maximally accurate—picture 

of current conditions before the weather at future times can be predicted.

NWP is an “initial value problem”; i.e., in order to integrate the equations of atmospheric 

motion and project its state at future time points, one must specify the values of the 

independent variables at an initial time. Mathematically, the atmosphere is described in 

terms of a state vector, X(r, t0) = {X1(r, t0), X2(r, t0),…, Xn(r, t0)}, of the n model variables 

at grid points r and initial time t0 (i.e., the diagnostic phase). For meteorology, the Xi vary 

depending on the form of the equations but include some form of conservation of 
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momentum (horizontal velocity and hydrostatic balance), energy (temperature), air density, 

and specific humidity. Once obtained, X(r,t0), along with additional diagnostic quantities to 

close the system, are then substituted into the model equations and evaluated at future time 

points to generate the forecast (i.e., the prognostic phase).

Two key techniques commonly used in NWP that are concerned with providing the best 

possible forecast are appropriate for tumor modeling. The first technique is “dynamic model 

weighting”, by which multiple predictions (from multiple models) are weighed to provide a 

forecast that combines the most realistic aspects of various models given the particulars of 

the system under investigation. As it is rarely known, a priori, which model is most 

appropriate for describing a particular weather system, dynamic model weighing provides a 

method by which such uncertainty can be minimized by statistically determining how to 

combine the best predictions from multiple models (6). The second concerns “data 

assimilation,” which aims to improve upon a short term model forecast by incorporating all 

available observed data from a diverse suite of in situ and remotely gathered sources that is 

not regularly available at each temporal or spatial grid point, and using advanced numerical 

techniques to create an optimized, evenly-gridded representation of the state of the 

atmosphere in time and space with minimized error (7,8). One application of this technique 

to determine the relevance for tumor growth showed promise with a moderate degree of 

model error and measurement noise (9). Related to data assimilation is the process of 

“reanalysis,” which takes the most advanced data assimilation process to create a long-term 

data product for comparison to weather and climate models. This provides a consistent data 

source for analysis and model validation. One challenge for reanalysis products, which is the 

proper inclusion of changing data quality and coverage over the Earth’s past and present 

(10), would be minimal for tumor prediction because the methods and data sources could be 

applied evenly over the lifetime of the tumor prediction window.

3. Numerical Tumor Prediction

An effective field of predictive oncology would develop a comprehensive and systematic 

method for predicting the future status of an individual tumor given an optimal 

representation of its initial conditions and an appropriate biophysical model. It is now well 

known that tumors are a mosaic of different cells with tremendous heterogeneity across 

scales and between patients even in the same disease sub-type (11,12). The currently 

employed “climatological” and “analog” approach for tumor forecasting based on an 

average of prior patients response has limited applicability to forecast an individual tumor 

development. The persistence and trend forecasting approaches also have limited applicable 

in oncology as tumors are temporally and spatially dynamic; thus, forecasting that a tumor 

will maintain its current status (in the case of persistence forecasting) or continue to evolve 

as it has in the past (in the case of trend forecasting) will be accurate only for a short period 

of time. We note that persistence forecasting is used for patients for whom “watchful 

waiting” is appropriate. Of course, persistence forecasting does not provide insights into if 

and when relapse occurs.)

What would clinical oncology look like if a predictive NWP-equivalent were available? 

Based on numerical tumor prediction (NTP) algorithms, a patient would be given a 
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personalized quantitative output charting the course of the disease. This would include levels 

of confidence in the prediction itself, as well as a time intervals for future interventions, 

controls, and updates. While the goal is ambitious (as was the conceit in the early 20th 

century that we could accurately predict the weather), the success of NWP provides a 

roadmap and optimism that NTP can be a reality in the near future.

In analogy to NWP, the first step towards developing NTP is to characterize the state vector 

of the tumor; that is, we need to form a complete diagnosis of the state of the tumor. In order 

to achieve this we must determine what (independent) tumor variables are the most critical 

for quantitatively summarizing tumor status. This is no small challenge, but a candidate list 

has been developed by Hannahan and Weinberg (13). We then form a spatio-temporal 

equation for each tumor variable and link these to each other so that model variables can 

influence each other; in the parlance of mathematics, we would build a coupled system of 

partial differential equations describing the evolution of the tumor mass (rather than also 

including energy and momentum as is done in NWP). Figure 1 illustrates this approach.

We note that there is no shortage of mathematical models of tumor growth in the literature 

(see, e.g., 14–17), but they are not typically of the kind that can readily be populated by data 

that are measured clinically at multiple time points with any reasonable spatial resolution. 

Models must be recast to deal with data that can be measured on an individual basis. 

Furthermore, dynamic model weighting should be used to eliminate bias that may exist in 

particular models by combining the predictions of multiple, independent models. Data 

assimilation can be used to provide updates to the tumor forecasts by including new data 

points as they become available. It should also be noted that much biological and clinical 

progress can be made without a comprehensive initial state vector; indeed, the first NWP 

model used only seven independent variables (pressure, temperature, density, humidity, and 

three velocity vectors; 18). Regardless of what state variables are chosen for a particular 

model, the data simply must be acquired from the system (i.e., the patient) for which the 

prediction is to be made. Initializing predictive models using data culled from population 

statistics or the literature will not guide the way any more than the historical trend forecasts 

do for weather prediction.

4. Clinical Oncology Settings Likely to Benefit

Selecting an optimal treatment regimen for a tumor phenotype, and predicting how an 

individual patient will respond to a treatment regimen are two areas most likely to benefit 

quickly from the approach described in Figure 1. Currently, in the best cases, treatment 

regimens are selected based on molecular phenotype and/or genotype (e.g., breast cancer) 

while, in the worst cases, untargeted chemotherapy is employed (e.g., pancreatic cancer). If 

we were able to initialize a reasonable model of tumor growth dynamics with a 

characterization of an individual tumor’s initial state vector, then it would be possible to 

systematically run a series of in silico simulations to determine how this particular tumor 

will respond to an array of treatment regimens. That is, we could run a myriad of patient 

specific virtual clinical trials to determine the optimal regimen and timing for that particular 

patient. This is an especially attractive features in the combination therapy setting where one 

drug is designed to target tumor associated vasculature while another is designed to target 
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the tumor cells themselves (Figure 2); indeed, such trials are common and frequently have 

unclear results (see. e.g., 19–21). Another promising avenue for this modeling approach is in 

situations where one drug has the potential to sensitize the tumor to a second therapy. Such 

is the case in, for example, triple negative breast cancers that are sensitive to PI3K inhibitors 

which, in turn, may increase their susceptibility to DNA damaging agents (22). An 

important feature of this theoretical approach is that it generates predictions that 

experimentally testable in pre-clinical animal models of cancer.) An early, and successful 

example of this has already been achieved (23) using very limited patient specific data and 

this speaks to the power of the paradigm. Once a therapeutic approach is selected, we are 

then faced with the difficulty of using early treatment changes to predict long term response.

Currently, responses are not predicted, they are assessed post hoc by physical exam, or 

structural ultrasound, magnetic resonance imaging, or computed tomography. Many patients 

are forced to undergo invasive biopsies during their therapy, and others are found to have 

received ineffective therapy only after months of treatment. The ability to identify—early in 

the course of therapy—patients that are not responding to a given regimen is highly 

significant. In addition to limiting patients’ exposure to the toxicities associated with 

unsuccessful therapies, it would allow patients the opportunity to switch to a potentially 

more efficacious treatment. As there are typically many therapeutic options available, and 

many more being developed, switching treatment early in the course of therapy is a very real 

option—but only if a reliable method to determine early response were available. 

Unfortunately, existing methods of determining early response are inadequate. A 

particularly exciting area to apply this approach is in the neoadjuvant setting, where patients 

who achieve a complete pathological response at the time of surgery is predictive (for many 

cancers) of improved survival (24–27). Thus, if it were possible to predict before therapy, 

test early in therapy, and then change (if needed) therapy, long term survival could be 

significantly improved.

5. Modeling Successes in Clinical Oncology

As was recently, and elegantly, described by Larry Norton (28), mathematical modeling 

actually guided the development of medical oncology in the 1960s when Skipper et al 

developed the concept of the “log-kill hypothesis” (29). This hypothesis states that when 

tumor growth increases by a constant fraction per unit time (i.e., the growth is exponential), 

then treatment with a cytoxic therapy results in tumor shrinkage by a constant fraction over 

time. This paradigm led to many ideas (eventually accepted as dogma) on how to properly 

test and use anticancer drugs (28). Of course, it was subsequently established that tumors do 

not exhibit unrestrained exponential growth in vivo, and tumor growth is better characterized 

by logistic or Gompertzian growth (30). This development, in turn, led to important 

repercussions for dosing schedules for cancer patients. Thus, historically, mathematical 

modeling has played a key role in drug development and clinical trial design. More recently, 

there has been promising evidence of the utility of patient specific modeling using clinically 

available data.

Chmielecki et al employed mathematical modeling to develop a theoretically optimum 

dosing schedule for non-small cell lung cancers with mutations in the epidermal growth 
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factor receptor (EGFR) gene (31). Briefly, the group incorporated knowledge of the 

different growth kinetics of drug-sensitive and resistant EGFR-mutant cells into an 

evolutionary model constrained by clinically available data. Their model led to the 

prediction that high-dose pulses of erlotinib combined with a continuous low dose of the 

drug can significantly delay the onset of resistance. This hypothesis is now being tested in a 

prospective clinical trial (32).

Bozic et al also employed evolutionary dynamics to predict the effects of combination 

therapy for patients receiving the targeted therapy vemurafenib (33). One exciting result 

generated by their model is that combination therapy with two drugs given simultaneously is 

more effective than if the therapies are given sequentially thereby providing important 

guidance for the design of subsequent clinical trials.

There have also been efforts to use clinically available data to predict response, after the 

treatment regimen has been selected. Neal et al developed and applied a patient specific 

model of glioblastoma multiforme (GBM) growth to predict, at the first post-radiation 

treatment time point, progression free and overall survival (34). Their model is based on a 

realization of the reaction diffusion model that describes GBM growth in terms of cellular 

proliferation and random diffusion. Those two parameters are then determined on a patient 

specific basis and used to project tumor development forward in time. An extension of the 

“personalized” reaction diffusion equation was put forward by Weis et al who coupled the 

random diffusion term to tissue mechanical properties (35). Applying this model to breast 

cancer patients receiving neoadjuvant chemotherapy achieved an area under the receiver 

operator characteristic curve of 0.81 for predicting, after the first cycle of treatment, which 

patients would go on to achieve a pathological complete response (36).

It is important to stress that each of these (illustrative) studies was based on clinically 

available data and their results indicate that clinically relevant “forecasts” can be made to 

both optimize the therapeutic regimen, and then predict which patients will respond to that 

regimen.

6. Potential Limitations

In general, the factors that dramatically affect the accuracy of initial value problems are: 1) 

inadequate mathematical representation of the processes being modeled, 2) errors in the 

initial conditions (i.e., errors in the diagnostic phase), and 3) inadequate model resolution 

(i.e., physical spacing between the measurements). Unfortunately, all three of these 

limitations are well-represented in oncology. In addition to lacking clinically relevant 

mathematical descriptions of tumor growth and treatment response, we have an incomplete 

description of the state vector described in Figure 1. Our assessment of initial conditions is 

frequently based on sampling a small portion of tissue via, for example a biopsy, and this is 

almost certainly not adequate to characterize the entire tumor (12). One would desire the 

state vector used to initialize the NTP model to be populated at every grid point associated 

with the scale at which the tumor forecast is to be made. Furthermore, just as in NWP, if too 

small an area is chosen to make a prediction, then the forecast will be quite poor as 

information from outside the forecast area spreads into the forecast area. Similarly, in 
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cancer, it is critical to not only characterize the tumor itself, but also the surrounding 

healthy-appearing tissue.

We have previously stressed the importance of using quantitative noninvasive imaging 

methods to help address this issue (37). Of course, the spatial resolution available from 

(even advanced) imaging methods are limited to a several hundred microns and this 

coarseness will obscure more subtle features whose importance will almost certainly grow 

with time. However, it could be that such subtleties are not required to answer many 

clinically relevant questions; that is, perhaps a mesoscale model making predictions on bulk 

tumor properties is appropriate for predicting (say) progression free survival in a particular 

patient. Indeed, such “mesoscale” predictions that lack local area specifics and tend to be 

less precise (e.g., long range forecasts are not specific—make claims like warmer/cooler, 

wetter/drier than historical mean) are still of critical use in NWP for the transportation, 

agricultural, and energy industries. Thus, it may be that similar predictive power in oncology 

is “good enough” to indicate whether or not an individual patient will beat the average 

progression free or overall survival?

7. Conclusion

In this paper we have proposed that the cancer community can learn much from the 

phenomenological models that enable numerical weather prediction. Following such an 

approach potentially enables optimal pairing of treatment regimen with tumor phenotype, 

and predicting how an individual patient will respond to a particular regimen. All of this is 

predicated on initializing models with patient specific data obtained early after diagnosis to 

predict future patient status. Just as the problem of calculating future events based on present 

events has seen enormous advances in the physical sciences over the last century, it must be 

tacked in all earnest for oncology. Indeed, this is the whole goal of science: the calculation 

of future events based on present events. Oncology should be no different.
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Figure 1. 
The figure presents an overview of how numerical tumor prediction would work in practice. 

The diagnostic phase consists of assembling the appropriate patient specific data (panel a) 

and building the initial state vector, T(r,t0) (panel b), which provides an initial snapshot of 

the key biological characteristics of the tumor at position r and initial time t0. In this 

example, T(r,t0) consists of a series of genomic, Gi(r,t0), and imaging, Ii(r,t0), 

measurements. The initial state vector then initializes the predictive model (panel c) which is 

projected forward in time to yield a final state vector (panel d) which is then interpreted 

(panel e) to give a snapshot of the key biological characteristics of the tumor at some future 

time point, tf.
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Figure 2. 
The scheme in figure 1 is easily extended to allow for patient specific clinical trials. Namely, 

after collecting the data to build the initial state vector, T(r,t0) (panel a), the data is used to 

initialize a predictive model (panel b) that includes the effects of therapy. Here, “therapy” 

can be any of n different regimens that systematically vary (for example) dose, timing, and 

order of multiple treatments (panel c) to yield multiple final state vectors, Ti(r,t0) (panel d). 

The ith therapy yields the ith final state vector which is then compared to select the optimal 

therapeutic regimen for the particular patient under investigation.
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