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Evolutionary biology

Siderophore cooperation of the bacterium
Pseudomonas fluorescens in soil

Adela M. Luján, Pedro Gómez† and Angus Buckling

ESI, Biosciences, University of Exeter, Penryn, Cornwall TR10 9FE, UK

While social interactions play an important role for the evolution of bacterial

siderophore production in vitro, the extent to which siderophore production

is a social trait in natural populations is less clear. Here, we demonstrate

that siderophores act as public goods in a natural physical environment of

Pseudomonas fluorescens: soil-based compost. We show that monocultures

of siderophore producers grow better than non-producers in soil, but non-

producers can exploit others’ siderophores, as shown by non-producers’

ability to invade populations of producers when rare. Despite this rare

advantage, non-producers were unable to outcompete producers, suggest-

ing that producers and non-producers may stably coexist in soil. Such

coexistence is predicted to arise from the spatial structure associated with

soil, and this is supported by increased fitness of non-producers when

grown in a shaken soil–water mix. Our results suggest that both producers

and non-producers should be observed in soil, as has been observed in

marine environments and in clinical populations.
1. Introduction
Despite being one of the most abundant elements in the Earth’s crust, iron is a

major limiting factor for bacterial growth, because most of the iron in natural habi-

tats is in the insoluble Fe(III) form [1]. In response to iron limitation, microbes have

evolved numerous mechanisms to scavenge iron from their surroundings. One

mechanism is the facultative production and uptake of extracellular siderophores,

low molecular weight ferric-specific ligands [1]. The role of these compounds is to

deliver iron into the cell via specific receptor and transport systems. A crucial fea-

ture of siderophore production is that it is a form of public goods cooperation

under iron limitation: siderophores benefit all bacteria within the locality that

are capable of taking up the siderophore–iron complex, but their production is

metabolically costly to the producer [2]. This makes siderophore secretion open

to invasion by non-producing ‘cheats’, who pay none of the costs of siderophore

production [2,3], but can still use siderophores produced by nearby cells.

The involvement of siderophores as a public good cooperative trait in

Pseudomonas spp. has been well-established both in vitro (P. aeruginosa and

P. fluorescens; although only when iron is sufficiently limited [4,5]) and in

animal models (references in [6]). However, the relevance of social interactions

for the evolution of siderophore production in natural populations is less clear.

Studies of clinical populations of P. aeruginosa [6] and marine populations

of Vibrio spp. [7] have identified both siderophore producers and non-producers

and hence are consistent with the view (but do not prove) that siderophore pro-

duction is a public good. In addition, it has been reported that P. fluorescens’
pyoverdine synthesis genes are expressed in soil and on plant surfaces [8,9]

and that P. putida can take up siderophores produced by other rhizosphere

microorganisms to regulate its iron status [10].

Here, we investigate whether P. fluorescens siderophore production is a

public good in a natural physical environment of this bacterium: soil-based
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Figure 1. Growth of P. fluorescens producers and non-producers in soil microcosms. Bars represent mean values (+ s.e.m.) of producer (black) and non-producer
(white) growth rates obtained every 6 days over the course of the experiment. Growth rates were determined in monoculture (a) or coculture (b) acidic and neutral
soil microcosms.
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compost. We determine whether siderophore production

confers a population growth rate benefit, whether non-

producers can exploit the siderophore of producers and

whether frequency-dependent selection, which is predicted

to arise in spatially structured environments [11], operates

between producers and non-producers in both structured

and unstructured (soil–water mix) environments.
2. Material and methods
(a) Bacterial strains
Pseudomonas fluorescens SBW25 [12] was used as the siderophore

producer, and strain PBR840, a pvdL knockout mutant of SBW25

[13] that does not produce siderophores, was used as the non-

producer. It had been previously determined that PBR840

growth was significantly reduced compared with that of the

wild-type only under iron-depleted conditions; there was no sig-

nificant difference in growth between the wild-type and PBR840

strains in iron-rich environments [13].

(b) Culturing conditions
Microcosms were set up in 9 cm Petri dishes containing 30 g of

twice-autoclaved compost soil (Verve Multi-Purpose Compost,

UK). Strains were grown overnight in King’s medium B (KB; 180

r.p.m., 288C). Two different soil types differing in their pH range

were used in order to manipulate iron availability to the bacteria:

acidic soil (70% peat, pH ¼ 4, model: 9751G), where the largest

proportion of Fe is in its ferrous form and is expected to be avail-

able to the bacteria; and neutral soil (0% peat, pH ¼ 7, model:

9757G), where iron availability is limited, because the Fe(III)

form predominates [14]. Soil pH was determined with soil–

water suspensions (1 : 1 wt/vol.) using a Jenway 3510 pH meter.

Microcosms were inoculated with approximately 3 �
106 colony forming units (CFU) g21 of either producers, non-pro-

ducers or a 1 : 1 mixture of both and placed in an environmental

chamber at 268C and 80% humidity. Every 6 days, soil samples

(1 g) were collected as previously described [15]. The resultant

soil washes were diluted, plated onto KB agar and incubated for

2 days at 288C to determine CFU g21 of soil [15]. In the mixed cul-

tures, producers and non-producers were differentiated by their

green and white colonies, respectively. Six replicates were assayed
per treatment, although one of the mixed cultures in neutral soil

was discarded. For each time interval, the growth rate of each

strain was calculated as r ¼ ln(Nf/Ni), where Ni is the starting

density at time i and Nf is the final density at time f.

(c) Short-term competition experiments
The relative fitness of non-producers was assessed in neutral soil

with the following proportions of non-producers in the initial popu-

lation: 0.01, 0.5 and 0.99. A total of approximately 3 � 106 CFU g21

of cells was inoculated into 30 ml glass universals containing 3 g

of twice-autoclaved soil. The use of tubes allowed a comparison

with structured and mixed soil environments (see below). Six

replicates were performed for each treatment, and bacterial

population densities were determined after 6 days as mentioned

above. We calculated the parameter v ¼ (x1(1 2 x0))/(x0(1 2 x1))

to evaluate the non-producers’ fitness, where x0 and x1 are the

initial and final non-producers’ frequencies, respectively.

Values of v ¼ 1, .1 and ,1 indicate equal, higher and lower

non-producers’ fitness, respectively [11]. Soil–water mix exper-

iments were carried out by adding 9 ml of sterile double-

distilled H2O to the respective tubes, and the incubation was

performed with constant agitation (180 r.p.m.).

(d) Statistical analyses
Linear-mixed models, two-way ANOVA and one-sample t-tests

were employed to assess statistical differences (electronic

supplementary material).
3. Results
We first examined the benefits of siderophore production in

P. fluorescens bacterial populations in acidic and neutral soils by

measuring growth rates of producers and non-producers

during 30 days as monocultures. We found that siderophore

producers had a higher mean growth rate than non-producers

under both soil conditions (figure 1a; generalized linear

model: F1,21 ¼ 45.23, p , 0.0001), whereas the growth rate of

producers and non-producers did not differ between soils

(figure 1a; F1,21 ¼ 1.1, p . 0.2). This suggests that siderophore

production is beneficial for P. fluorescens growth in soil, as

reported in vitro [3]. Note that producers’ final cell densities
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Figure 2. Relative non-producer fitness (a) and final population cell density (b) at different initial ratios of producers : non-producers in soils differing in spatial
structure. Non-producers’ relative fitness (v; mean+ s.e.m.) and final density (mean+ s.e.m.) were determined after 6 days of growth in static (black) and shaken
(white) soil microcosms. Asterisks indicate significant differences ( p , 0.05) from 1 after Benjamini – Hochberg corrections from multiple comparisons.

rsbl.royalsocietypublishing.org
Biol.Lett.11:20140934

3

were 3.2 and 2.4 times higherafter 30 days of growth than those of

non-producers in acid and neutral soils, respectively (electronic

supplementary material, S1).

We next investigated whether siderophore production is a

costly public good in soil by determining how producers and

non-producers influence each other’s growth rates. Non-

producers showed a significant increase (GLM: F1,20¼ 31.23,

p , 0.0001) in their growth rate in the presence of producers

relative to their growth rate in monoculture (figure 1a,b),

with no effect of soil type (GLM: F1,20¼ 0.21, p . 0.2); the

producers’ growth rate declined in the presence, versus

the absence, of non-producers (GLM: F1,20 ¼ 4.42, p , 0.05),

with no effect of soil type (GLM: F1,20¼ 0.007, p . 0.2). These

results show that siderophore production is an individually

costly public good in soil. However, in contrast to the results

of in vitro studies [3,6,11], we found that non-producers were

not able to outcompete producers in soil, where the relative fit-

ness of the non-producers (v) was not significantly different

from 1 (one-sample t-test: acidic t5 ¼ 1.36, p ¼ 0.23; neutral

t4 ¼ 1.03, p ¼ 0.36; electronic supplementary material, S2).

To examine whether non-producer fitness was affected

by the spatial structure generated by soil [11], we performed

experiments competing producers and non-producers at

different initial ratios in structured (static) or unstructured

(soil–water mix) soil microcosms. After 6 days, we found that

non-producers’ relative fitness was higher in the soil–water

mix than in soil (figure 2a; two-way ANOVA: F1,29¼ 8.78, p ¼
0.006), and the frequency-dependent fitness was affected by

whether soil was static or mixed (figure 2a; frequency �
environment, F2,29¼ 4.5, p ¼ 0.019). Specifically, non-producers

had a fitness advantage over producers only when initially rare

(frequency of 0.01) in soil (figure 2a; one-sample t-test: p ¼ 0.04,

corrected for multiple comparisons [16]) but equal fitness to pro-

ducers when initiated at 0.5 or 0.99. By contrast, non-producers

could invade in soil–water mix when initiated at frequencies

of both 0.01 and 0.5 (figure 2a; 0.01: p ¼ 0.003; 0.5: p ¼ 0.006, cor-

rected for multiple comparisons [14]). We also found that total

population growth was greater in static soil (figure 2b; two-

way ANOVA: F1,29¼ 9.47, p ¼ 0.004) and when non-producers

were rare (figure 2b; F2,29¼ 61.94, p , 0.0001).
4. Discussion
Our findings demonstrate that siderophore production by

P. fluorescens is a cooperative public good in soil compost.

As previously established in vitro [3], we found a growth rate

cost to non-producer relative to producer when populations

were grown as monocultures. In addition, non-producer

growth rate was increased and producer growth rate decreased

when the two were cocultured. However, while non-producers

could invade when rare, they could not outcompete produ-

cers. Consistent with previous observations [7,17], these

results suggest that social interactions affect the evolution of

siderophore production in natural populations.

Iron is more soluble and biologically available at low pH [1],

and given that siderophore production is regulated in response

to iron availability [1], we hypothesized less difference in

growth between siderophore producers and non-producers

in acidic versus neutral soils. However, we found no effect of

soil type. The most likely explanation is that although the solu-

bility of inorganic Fe might be relatively high in acidic soils

(approx. 1028 M at pH 4; [16]), it is still far below that required

for bacterial growth. Consistent with this view, the presence of

high concentrations of siderophores has been reported for a var-

iety of soil–water extracts obtained from soils with different pH

ranges [18]. Moreover, it has been established that under aerobic

conditions the Fe(III) requirements of the least-demanding

microorganism species would be met only at very acidic pH

[13]. However, we cannot exclude that the lack of effect of soil

type is due to differences other than the availability of iron

between the two soil types.

Although we cannot discard potential confounding effects

of the addition of water to the soil microcosms, the spatial

structure of soil is likely to have contributed to the inability of

non-producers to outcompete producers, as shown by an

increase in non-producer fitness in the soil–water mix. This is

presumably both because spatial structure is likely to limit the

diffusibility of siderophores, meaning that producers will

preferentially benefit from their own siderophores, and because

neighbouring cells that will benefit from siderophores from the

focal cell are more likely to be clone mates of the producing cells
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(i.e. relatedness is high [19,20]). Spatial structure is also pre-

dicted to result in negative frequency-dependent fitness and

coexistence of producers and non-producers if selection is

sufficiently strong [11]. While we observed a fitness advantage

for rare non-producers in soil, we were unable to detect an

advantage for rare producers. A possible explanation for this

asymmetry is that the fitness advantage of non-producers

when rare is also driven to some extent by a greater population

size when producers are common [11,21], as was observed

here at low and intermediate non-producer frequencies. This

could also explain why non-producers had higher fitness at

both low and intermediate than at high frequencies in the

unstructured soil–water mix.

Our results suggest that the evolution of siderophore

production can be affected by social interactions in the soil

environment, although an important caveat is that we do

not consider the impact of the other resident soil microbiota.

The ability of non-producers to invade but not outcompete

producers suggests both producers and non-producers

should be observed in soil, as they have been observed in

marine environments [7] and in clinical [6,17] populations.
These data add to the small but growing body of literature

[7,17,22–24] suggesting that microbial exoproducts are

important for social interactions in natural populations (but

see Bozdag & Greig [25]).
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