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David Marr’s theory of the archicortex, a brain structure now more commonly

known as the hippocampus and hippocampal formation, is an epochal contri-

bution to theoretical neuroscience. Addressing the problem of how

information about 10 000 events could be stored in the archicortex during

the day so that they can be retrieved using partial information and then trans-

ferred to the neocortex overnight, the paper presages a whole wealth of later

empirical and theoretical work, proving impressively prescient. Despite this

impending success, Marr later apparently grew dissatisfied with this style of

modelling, but he went on to make seminal suggestions that continue to res-

onate loudly throughout the field of theoretical neuroscience. We describe

Marr’s theory of the archicortex and his theory of theories, setting them into

their original and a contemporary context, and assessing their impact. This

commentary was written to celebrate the 350th anniversary of the journal

Philosophical Transactions of the Royal Society.
1. Introduction
After burning so brightly with his neuroscience work and his later contributions

at the birth of the field of computational vision, David Marr (figure 1) died tragi-

cally young. His archicortex paper comes from the initial phase of his career, in

which he constructed whole intellectual edifices concerning how the cerebellar

cortex, the neocortex and the hippocampus could function as networks for learn-

ing and memory. In his first paper, he discussed how the Purkinje cells of the

cerebellar cortex could learn motor commands [1]. He then outlined how the

neocortex could perform unsupervised learning to store highly processed infor-

mation about inputs and thereby extract categories [2]. His third theory

described how the archicortex, the hippocampus and associated structures,

could function as a simple memory by storing information directly and temporarily,

prior to further processing in the neocortex [3]. It was this paper that was

published in the Philosophical Transactions. A posthumous book contains a notable

and comprehensive collection of these papers and his other work, including

invited commentaries [4].

The three early papers were strikingly different from all that had come before,

and indeed most since: Marr articulated computational problems, posed in math-

ematical terms, to be solved by these structures; he suggested how existing

anatomical and physiological knowledge related directly to the computations;

finally, he nailed his modelling colours firmly to the mast, making numerous pre-

dictions that were starkly graded according to the severity of their consequences

for the theory were they to be refuted.

Have such refutations indeed happened? We examine this question with a

focus on his theory of the hippocampus [3], also looking more widely at how it

has stood the test of time. Despite being wrong in some details, this work has

been hugely inspirational for other theories and experiments. Marr’s early studies

are of even greater note for the concerns about the overall philosophy and practice
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 David Marr - in La Jolla,
CA - 1974

David Marr - as a
schoolboy - 1960

Figure 1. Photographs of David Marr. (a) At school, aged about 12. (b) David
Marr (left) with his colleagues Francis Crick (back) and Tommy Poggio in Cali-
fornia, 1974. Reproduced with kind permissions of Peter Williams (a) and
Lucia Vaina (b).
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of modelling that were inherent in the original three papers, and

that he and Poggio, his close colleague, later crystallized [5].

This analysis was reported in the book Vision [6]. Their ideas

about different levels of analysis—computational, algorithmic
and implementational—have much resonance today, and are

especially relevant to the current debate within the neuroscience

community about attempts to build large-scale models of

the brain.

Already in his schooldays, David Marr was developing his

interests far beyond those provided by his formal education in

mathematics and physics. Stimulated by reading books such as

J. W. Dunne’s An Experiment with Time and W. Grey Walter’s

The Living Brain, he became enthused about the possibility of a

‘mathematical theory of the brain itself’. He then went up to

Trinity College Cambridge as a mathematics scholar. After

graduating, he studied physiology and anatomy before becom-

ing a PhD student with Giles Brindley who inspired him to

produce his first theory paper on the cerebellar cortex. He then

secured a Prize Fellowship at Trinity; notably, three of the four

awards that year were to neuroscience, the other recipients

being Tony Gardner-Medwin and Oliver Braddick—later to

become a distinguished physiologist and experimental psychol-

ogist, respectively. During this Fellowship, he completed his two

other early neural papers including the theory of archicortex. In

1970, he joined Sydney Brenner at the MRC Laboratory for Mol-

ecular Biology at Cambridge. Sydney encouraged him to

experience at first hand the rising discipline of Artificial Intelli-

gence by visiting Marvin Minsky and Seymour Papert at MIT.

This eventually led him to shift his focus towards computation

rather than implementation, and to his long partnership with

Tommy Poggio. Following a brave battle with leukaemia,

David Marr died in 1980.
2. Mathematical and computational modelling in
neuroscience

There are three main varieties of theoretical approaches in

neuroscience: data analysis, mathematical modelling and the one

that became clearer through Marr’s later work, namely

computational modelling.

Data analysis involves developing and deploying advan-

ced computational and statistical methods for analysing the

gargantuan volumes of data now being generated by an ever
wider variety of experimental techniques and assessing the

complex interactions among the multiple entities contained

within these data.

Mathematical modelling involves building formal

reductions based on descriptive and mechanistic models of

natural phenomena associated with the brain over the huge

range of spatial and temporal scales that characterize it.

These reductions have to take into account the complexity

and heterogeneity of the brain’s components. Mathematical

methods and computer simulations are used to explore

whether the mechanisms proposed are capable of accounting

for the phenomena they are intended to explain.

Computational modelling most interested Marr. He looked

upon the brain as a physical device that is performing compu-

tational tasks involving representing, processing and acting

upon information. That the brain can be interpreted as proces-

sing information provides a rich set of constraints on the

mathematical models, whose structure and dynamics have to

be appropriate to accomplish the computational tasks.

Marr distinguished three levels of computational modelling—

implicitly in his early writing, but later, transparently.

Examples are given in table 1:

(1) The computational level, at which the task and the logic of

its solution is described;

(2) the algorithmic level, which specifies how the information

associated with the computation is represented and the

procedures for performing the relevant manipulations;

and

(3) the implementational level, which describes how the

algorithms are realized in the nervous system.

One recurring theme in his work was the interaction

between levels. This was fluid in his early work, as seen most

clearly in his cerebellar cortex theory, which he developed to

address the beautiful three-dimensional structure of the neur-

onal network of the cerebellar cortex [11], and that had such

an impact among cerebellar physiologists. Equally, his neocor-

tical theory blended categorization, as an implication of the

exciting observations from Hubel & Wiesel of single neurons

in the visual cortex responding selectively to moving lines

and edges tilted at a particular angle [12], with statistical

notions of this operation associated with the then emerging

field of numerical taxonomy, an established focus of research

at Cambridge [13]. This was all under the guidance of a very

careful analysis of neocortical anatomy as implementation.

The algorithmic rendition of his theory of the hippocampus

was strongly influenced by what was then known about the

neuroanatomy, at least up to an impressive point. Some

facets were omitted—for instance, it did not incorporate the

substantial mechanistic complexities of actual neural elements

known at the time, such as the details of spike generation or

synaptic integration via extended dendritic trees.

Marr’s subsequent work, perhaps influenced by the Artifi-

cial Intelligence community at MIT, and perhaps as a reaction

to the overly precise predictions made from the neurobiology

in these earlier papers, focused on insulating computational

and algorithmic levels from the requirements of imple-

mentation [6]. Indeed, a tenet of computational theory is that

the same algorithm can be implemented in distinct ways in

different hardware. Read strictly, this could imply that it is

impossible to generate strong constraints that apply across

computational levels, a restriction that would undermine the



Table 1. Examples of ‘. . .the different levels at which an information-processing device must be understood. . .’ [6] from which example 1 was taken. Example 2
is based on Li and Zhaoping [7,8] and example 3 on Daw et al. and Montague et al. [9,10].

computational algorithmic implementational

1. performing

addition

using Arabic numerals, adding the least

significant digits first;

using a binary representation

using a machine with 10-toothed wheels;

using logic gates

2. visual salience assessing where the statistical structure of

images changes

dynamical interactions between hypercolumns in V1

3. optimal control learning a model of the world and planning

using the model;

learning the future worth of current actions

state-based prediction errors and working-memory for tree search;

temporal difference prediction errors realized in the phasic activity of

dopamine neurons
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programme of theoretical neuroscience. However, recent

thinking has recognized the potential for well-founded

computational accounts that exploit both weak and strong con-

straints across levels, and that furthermore tightly integrate

computational and mathematical modelling [14–16].

This discussion of Marr’s approach provides a basis for

understanding the sort of theory of the hippocampus for

which he was aiming, and equally a framework within

which to evaluate the extent to which these aims were met.

After discussing the model and its impact in these terms,

we will return to assess the wider impact of Marr’s modelling

philosophy and methodology.
3. Marr’s theory of archicortex
Marr regarded the archicortex’s computational task as acting

as a temporary store of raw information derived from sensory

experience: the hippocampus should memorize patterns of

neural activity representing events as they happen through

the day, with previously memorized patterns being retrieved

when cued by partial information. According to his neocortex

theory, the information stored in the hippocampus would

then be transferred periodically to the neocortex, to be

recoded via self-organization into a more categorical form

[2]. While the hippocampal model, therefore, lacked the

sophistication of the neocortex, building a model of ‘simple

memory’ was nevertheless, he asserted, still a ‘necessary tech-

nical exercise’. A more detailed explication of this exercise is

provided in Willshaw & Buckingham [17].

As in Marr’s two other contemporary neural models, the

archicortex model comprised several layers of interconnected

neurons with the connections specified probabilistically. This

network structure can be traced to the more abstract Per-

ceptron [18], an elegant mathematical account of the latter’s

capabilities having just been published by Minsky & Papert

[19]. The items to be stored in the model (called events) are

represented by patterns of activity over the so-called input
layer of neurons, storage being achieved through synaptic

plasticity. Retrieval occurs when a portion of a previously

stored event is presented to the input layer. Activity is propa-

gated to all the remaining layers through synapses connecting

one to the next, ultimately leading to a pattern of excitation

over the neurons in the final (or output) layer. This output

pattern is called the simple representation of the input pattern.

It is then passed through another set of return synapses of
variable strength directly back to the input layer. The

synapses each have a binary-valued modifiable component,

being strengthened by the coincidence of presynaptic and

postsynaptic activity. Together with these Hebbian synap-

ses [20], Marr proposed the existence of synapses with a

weak or ‘baseline’ unmodifiable component that would

enable postsynaptic cells to fire when activated (Brindley

synapses—named after Marr’s PhD advisor, Giles Brindley).

On the basis of reasonable calculations, Marr asserted that

events could be stored no faster than one per second, and that

information would be transferred to neocortex overnight,

when there would be no sensory input to provide unwanted

synaptic modification. He, therefore, set the memory capacity

at 105 (approx. the number of seconds in a day). He estimated

the number of neocortical pyramidal nerve cells to be used as

the input layer at 105, and the number in the output layer at

104. Arguing that there would be no capacity for the return

synapses to take part in pattern completion during retrieval,

he assumed that the simple representation was completed in

the output layer before being fed back to the input layer. No

detail was provided about the return projection—the intended

topic of a subsequent paper that sadly did not materialize.

Using his main mathematical result from the cerebellum

paper concerning the number of events that can be stored

and retrieved by a single Purkinje cell, he calculated that a

simple two-layer model with the modifiable synapses connect-

ing the input layer to the output layer directly would be

inadequate, as the proportion of nerve cells active (the activity
level) in a simple representation would be too low to be reliable.

He, therefore, concentrated on a three-layer model, with

information flowing from input to output through a middle

or codon layer. He assumed that there was a recurrent feedback

loop with modifiable synapses between output layer neurons.

The resulting collateral effect enabled a partially reconstructed

simple representation to be improved gradually, so that the

full simple representation could be reconstructed and sent

back to the input layer through the return pathway.

Marr sought to ensure that (i) the activity levels in the

various layers were not too low; and (ii) each event had a

unique representation in each layer. This implied mathemat-

ical constraints on the parameter values of the system—

principally the activity levels in each layer, the number of

cells in the middle layer and the density of connections

within each group of synapses. It then became crucial to set

the firing thresholds for each nerve cell receiving input

through modifiable synapses, something that he suggested,
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Figure 2. Schematic of a basic unit of Marr’s simple memory model. The
basic unit has two conceptual, connected parts, input (labelled A) and
output (B). ‘A’ shows the horizontally running fibres from the input layer
with modifiable Brindley synapses on cells of the intermediate layer
(‘codon’ cells, of which two are shown, c1 and c2). Inhibitory interneurons
control the threshold for codon cell firing so as to maintain a constant activity
level. Neurons of type S and G supply feed-forward inhibition by the
sampling of input fibre activity; those of type G also provide feedback inhi-
bition by sampling the codon cell activity. Using feedback and feed-forward
inhibition for controlling thresholds in this way was used by Marr in his cer-
ebellum paper [1]. ‘B’ shows codon cell fibres with modifiable synapses on
output cells V1 and V2. Collateral connections from one output cell to
another are also indicated. The threshold of firing on the output cells is con-
trolled by S and G interneurons, as above. In addition, the D cells innervate
the soma to perform a division. Both subtraction and division are needed for
correct threshold setting of the output cells, by means of which the correct
simple representation is gradually recreated from a partial input cue. The
return projection from output cells to input cells is not shown. Adapted
from fig. 5 of Marr [3].
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as in the cerebellum paper, could be achieved by a combi-

nation of divisive (somatic) and subtractive (dendritic)

inhibition. In the reconstruction of the simple representation

in the output layer, some cells may be inactive when they

should be active, whereas others may be spuriously active;

via what was described candidly as ‘suitable juggling’ of

the thresholds [3, p. 80], the number of genuinely active

cells would be expected to increase and the number of spur-

iously active cells to decrease, maintaining a constant activity

level, until the full simple representation emerges with an accu-

racy of a few per cent. Appropriate settings for the thresholds

depend on information about both the number and proportion

of a nerve cell’s afferent synapses that are active in storage

or retrieval. Marr calculated possible values of these two

parameters that, in combination, would yield the desired

memory capacity. He made calculations for different configur-

ations of (probabilistic) connectivity. In some configurations,

connections between all cells in one layer were allowed to the

cells in the next; in others the connections were restricted, to

reflect the topographic organization believed to exist within

some parts of the archicortex. All calculations were made for

105 cells in the output layer rather than the figure of 104 used

initially when he rejected the two-layer model.

Marr incorporated the then available knowledge of the

neuroanatomy of the hippocampus and related brain struc-

ture in great detail. In particular, he suggested that it is the

anatomy of the principal cell types that determines the func-

tion of the archicortex to be a memorizer (in the same way

that the different cell types of the neocortex specify it as a

classifier). The paper is replete with diagrams showing con-

nectivity among neurons within the hippocampal formation

(figure 2). The input layer was proposed to be the pyramidal

cells in neocortex, the stellate cells in entorhinal cortex and

presubiculum formed the codon layer, and the output layer

embraced the dentate gyrus and the CA1, CA2 and CA3 pyr-

amidal cells of the hippocampus; modern interpretations

identify the codon layer with the dentate gyrus and the

output layer with CA3, where there is a known feedback

loop. Marr also suggested how particular memorizing cell

types could be used for threshold setting through inhibition.

Finally, he furnished a large list of predictions accompanied

by numbers of stars: a three-star prediction would dismantle

the theory were it to be disproved; a no-star prediction was

merely a strong hint.
4. Marr’s theory in its own time
Marr’s theory hails from an era when much less was known

about the psychological and computational roles of the hip-

pocampus, and indeed its neurobiology. However, there

was still a considerable contemporary psychological and

physiological context which he did not mention (perhaps a

relief to the reader of what is an intricate paper, lacking the

relaxed style of his book Vision [6]).

The development of Marr’s simple memory idea may have

been influenced by the striking observations made on a series

of patients who had been given bilateral surgical resection of

the temporal lobes for the relief of epilepsy [21]. The best

known of these, Henry Molaison (patient HM), experienced

relief from seizures following the operation but, more strikingly,

he displayed profound anterograde amnesia: while he could hold

information in short-term memory for a few minutes, he could
not form long-term memories. Detailed study of HM through

the 1960s until his death in 2008 by Brenda Milner, Suzanne

Corkin and their students substantiated and elaborated upon

the initial clinical observations [22].

This unexpected finding led immediately to attempts to

model the syndrome in non-human primates and rats. These

efforts were largely unsuccessful as there was no deficit in

learning after damage to the hippocampus. Indeed, contem-

porary hypotheses suggested that the hippocampus may be a

behavioural inhibition system [23] on the basis that hippocam-

pal lesioned rats could learn but had great difficulty in either

giving up or changing learned habits. It was not until some

years later that the first successful animal models of amnesia

were developed [24,25], building on the idea that memory for

events and the capacity to acquire new habits are mediated

by distinct neural systems. Either Marr did not know of these

initial unsuccessful attempts to model the syndrome or,

wisely ignoring them, he focused on the fascinating anatomy

of the hippocampal formation as being ideal for ‘simple

memory’—keeping track of the events of the day in precisely

the way that patient HM could not.
(a) Evaluation of the modelling
As noted, Marr’s archicortex model bears a strong family

resemblance to his three other network models of learning

and memory with their three layers of nerve cells
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(input!codon!output), linked together randomly with

modifiable synapses. They use the same mechanisms for

synaptic modification and for setting the thresholds on the

firing of cells in the codon and output layers. The principal

differences between the three lie in whether they act as clas-

sifying or memorizing devices (determined by the

anatomy) and the use to which the codon layer is put.

In the cerebellar model, the single output cell is taught to

respond selectively to many different input patterns. An effi-

cient way of producing high storage capacity is to use

patterns with low activity levels. The codon layer acts to

transform the input patterns with high but variable activity

levels into patterns of more constant and lower activity so

as to make any two patterns more distinct from one another

( pattern separation). This is most easily done if the codon layer

contains many more neurons than the input layer, as in the

cerebellum. Marr calculated that 7000 mossy fibres (inputs)

would influence the single Purkinje cell (output cell) through

200 000 granule cells (codons), achieving a reduction in

activity level from between 1 and 25% in the input to 0.25%

in the codon layer. By contrast, in the neocortex model, the

codon cells act to pick out common features of the input pat-

terns to enable each output cell to learn all patterns of a

particular class. For the archicortex model, without ascribing

a specific function to the codon layer, he may have thought it

would facilitate pattern completion (recovery of a stored pattern

from a fragment). There is no pattern separation as the activity

levels are roughly the same in each layer of the model.

Marr’s calculations showed that in his model, simple rep-

resentations could be established and recalled from partial

information. Had it been possible to carry out computer simu-

lations, he might have been able to extend his model to:

(i) investigate how to incorporate the missing final step in his

model of reconstructing the input pattern through the final

feedback pathway and (ii) specify a working threshold-setting

strategy. Most significantly, had he kept the same number of

output layer cells (105) from the outset, rather than switching

from 104 to 105, there would have been no reason to reject the

two-layer model. One major simulation which confirmed the

validity of his assumptions (albeit on a 1/100 size model)

found that the performances of two- and the three-layer

models were broadly equivalent [17,26]. His choice of a

three-layer rather than a two-layer model seems to rest on

using constraints from an implementational rather than a com-

putational perspective. Similar simulation techniques verified

Marr’s calculations for the cerebellum model [27] and explored

the computations performed in the neocortex model [28].

Marr discussed how to clear the memory periodically, but

without coming to a clear algorithmic solution. Instead of set-

ting all synapses to zero overnight once the patterns had been

re-presented to neocortex, he considered either the selected

deletion of the synapses activated by particular simple rep-

resentations or the gradual decay of all synapses (which he

said requires simpler assumptions). Subsequent work by a

variety of authors has shown that having all synapses

decay lowers memory capacity [29–31].
5. Marr’s theory in modern terms
Later in his career, Marr became focused on the computational

level, leading to much debate about his own views about his

earlier models. At the very least, we can see this work as a
noble failure—it was an astonishing achievement for a mathe-

matician to synthesize so much disparate data into a whole.

A later review reminded a new generation of neuroscientists

how the combination of specific features of hippocampal anat-

omy coupled with activity-dependent synaptic plasticity could

mediate distinct components of memory [32]. It also discussed

further concepts such as pattern completion, pattern separation

and the role of sleep in memory reactivation, all mentioned in

Marr’s original works.

(a) Systems consolidation
Marr’s theory that the archicortex acts as a temporary store to

enable events to be appropriately recoded in the neocortex

lies firmly within the domain of long-term memory, rather

than being a limited capacity short-term memory of the kind

used to remember, e.g. telephone numbers. Its interaction

with neocortex is now referred to as ‘systems memory consoli-

dation’. This has been the subject of experimental work for

over a century, but only more recently considered theoretically

[33]. The complementary learning systems framework of

McClelland et al. [34,35] is perhaps the best worked out compu-

tational model of systems memory consolidation, and is very

much in the spirit of Marr’s original ideas. Consolidation is

best seen as a process by which memory traces become stabil-

ized and integrated into neocortical networks that sustain and

expand upon the memory. The standard view is that this pro-

cess is a long and gradual one [33], whereas according to Marr

it would happen over the course of a single night. This distinc-

tion has quantitative implications for understanding the

temporal characteristics of retrograde amnesia, which refers to

the forgetting of information learned prior to damage to the

hippocampus. The experimentally somewhat controversial

prediction is that older memories should be remembered

more proficiently.

The consolidation idea has been refined in several ways.

First, the concept of ‘transfer’ of information from hippo-

campus to cortex is no longer accepted. Instead, parallel

encoding is now considered explicitly, with hippocampal–

neocortical interactions serving to stabilize neocortical traces

selectively. Second, according to a multiple trace theory,

event memory can be subdivided into context-specific episo-

dic memory that is stored in hippocampus (‘what, where and

when’), and semantic memory for ‘facts’ stored in neocortex

[36]. Episodic memory is analogous to Marr’s recording of

events—the memory of things that happen during the day.

Semantic memory is the corpus of factual knowledge

acquired through formal training or from our interpretation

and recoding of events. Third, new work on frameworks of

semantic knowledge in both animals and humans suggests

that activated prior knowledge can guide or at least influence

the process of systems memory consolidation, and thereby

decrease the time it takes [37,38]. These challenge the

notion that the simple memory is the only fast component

of the system. Even in the complementary learning systems

framework, the gradual creation of categories in neocortex

occurs using plasticity mechanisms that are just as fast in

the neocortex as in the hippocampus [34].

(b) Spatial memory
One important algorithmic assumption was that the hippo-

campus and related structures are incapable of generating

systematic representations of their own and instead merely
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inherit random representations from neocortical input. The first

hints that this is incorrect had already been evident in the

discovery of hippocampal place cells [39]. This led to the sugges-

tion that the hippocampus processes places and contexts [40].

The observation of place cells was followed by that of head-

direction cells reflecting directionality [41,42]; and of grid cells

which provide a metric for transitions through space [43,44].

Research on the human brain, using both intracranial electro-

physiological recording and functional magnetic resonance

imaging (fMRI) has confirmed the presence of place and grid

cells in humans [45–47]. The huge interest in spatial learning

and memory continues to this day.

This research has led to the conjecture that critical processing

by the hippocampal formation includes representation of

location within an orientationally anchored metric repre-

sentation of space, with recovery of past events involving

remembering where they took place. Much recent neural circuit

analysis is endeavouring to work out implementational details.

How discrete events are represented, and how they are anchored

in present or future time and space to a specific context, remains

poorly understood—though the notion of the hippocampus

acting as a type of distributed associative memory [48–50] that

binds events to context has been discussed extensively in the

neuroscience literature [32,51,52]. Certainly, the recovery of the

stored representation of an event may now be seen to be one

that involves remembering where that event took place, a less

abstract process than that envisaged by Marr.
(c) Cellular and subcellular processing
Marr provided what looked like a very clear guide to testing the

implementation of his model. However, it actually turns out to

be very difficult to do so convincingly. For instance, the degree

of abstraction necessary in treating all the complexities of the

internal connections within the hippocampus as being just

part of the output layer renders many of the implementational

suggestions rather moot. Thus, it can be criticized even at the

coarse level of connectivity at which the model could have

made contact with the neural substrate—the more so for lacking

any information about the input–output relationship with the

neocortex. The theory was on far firmer ground at the level of

synaptic plasticity; and indeed, Marr mentioned (in a footnote)

Lømo’s initial observations about synaptic potentiation later

collected and expanded in the well-known paper of Bliss &

Lømo [53].

Certainly, he was prescient in imagining that the axonal

targets of inhibitory neurons could be on the cell soma or

the dendrites (e.g. figs. 3–5 of [3]). It took many years and

the elegant work of Somogyi and his colleagues in Oxford

before their combined electrophysiological, immunocyto-

chemical and ultrastructural studies at the single-cell level

confirmed that distinct types of inhibitory neuron within

the hippocampal formation (now at least 25 types) have

differential patterns of connectivity [54].

The existence of oscillatory activity in the hippocampus had

been established at the time of Marr’s paper, but he made no

reference to it. A theta rhythm (5–12 Hz) could be gating the

memory-encoding activity of N-methyl-D-aspartate (NMDA)

receptors [55], or acting as a rapid phase-regulator of encoding

and retrieval [56]. Additional noteworthy rhythms include hip-

pocampal sharp waves seen in field-potentials, which Buszáki

[57] has suggested may be mediating hippocampal–neocortical

interactions during consolidation and which have also been
implicated in hippocampal replay after sleep [58]. New work

has suggested that gamma rhythms (30–80 Hz) may play a

role in gating the inputs to the hippocampal formation from

layer II and layer III of the entorhinal formation [59]. All these

ideas are at the forefront of experimental work with many details

to beworked out, but it seems certain that Marr would have been

excited by this more ‘dynamic’ conception of his simple memory.

An implementational absentee from Marr’s theory was

neuromodulation. As well as their possible role in novelty,

dopamine neurons are also known to report prediction errors

associated with rewards [60], with similar potential consequen-

ces for memory [61,62]. Acetylcholine has been implicated in

modern versions of Marr’s theories, regulating synaptic drive

and efficacy so that retrieval of existing memories and storage

of new ones can be appropriately separated [63–65].

Regulation of synaptic efficacy is central to the capacity of

the memory to store information. Of the two types of synapse

envisaged by Marr, the Hebb synapse [20] was later identified

with long-term potentiation (LTP; [53,66]); the Brindley synapse

may exist but there is no firm evidence. Since 1971, once the

actions of glutamate on the four receptor subtypes, AMPA,

NMDA, kainate and mGLUR were understood (GLU-A,N,K

and M, respectively), many aspects of synaptic plasticity such

as associativity and cooperativity could be accounted for. Marr

might have been intrigued that the NMDA receptor has the bio-

physical properties necessary for detecting the conjunction of

presynaptic activity and postsynaptic depolarization, that is

then signalled with a different ion (Ca2þ) from that mediating

fast synaptic transmission by AMPA receptors (Naþ); and that

metabotropic glutamate receptors could inform postsynaptic

signalling cascades about the magnitude of presynaptic input

without regard to the level of postsynaptic depolarization. In

addition, the hippocampal slice preparation, allowing studies

in which drugs could be washed out as well as into living

brain, led to increased understanding of activity-dependent

synaptic plasticity, including the critical role that NMDA recep-

tors play at the time of induction [67]. Synapses are now

regarded as bidirectionally modifiable, exhibiting both LTP

and long-term depression (LTD), which has been shown to

have implications for storage capacity [68]. There are numerous

observations such as that blocking NMDA receptors impairs

memory formation [69], and the recent finding that synaptic

plasticity is also shown by inhibitory interneurons [70].
(d) Pattern separation and pattern completion
Arising out of the modern interpretation of the dentate gyrus

and CA3 cells as the codon layer and the output layer,

respectively, there has been both experimental and theoretical

work on the role of the collaterals in taking partial patterns

and returning their original, complete, matches. One such

study involved the restricted genetic ablation of NMDA

receptors on pyramidal neurons in CA3 in mice, leaving

fast synaptic transmission intact but impairing plasticity

[71]. When trained on a spatial task with a rich set of extra-

maze cues, the knock-out mice were impaired when required

to recall with all but one cue absent (figure 3a). In rats whose

CA3 had undergone an excitotoxic lesion, there was a para-

metric disintegration in performance when required to

remember a maze location for a short period of time as

more spatial cues were removed (figure 3b; [72]).

Similar studies have been used to examine pattern separ-

ation, a function that Marr studied in great detail for his
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cerebellum model. The modern notion is that granule cells of

the dentate gyrus (DG) have a similar function to granule

cells in Marr’s model of the cerebellum in mapping similar

input patterns to dissimilar representations. One study

showed that rats trained to distinguish the locations of two

objects were impaired selectively after DG lesions as an

inverse function of the spatial distance between the objects,

suggesting that pattern separation had been impaired

(figure 3c) [73]. Likewise, selective deletion of the NR1 sub-

unit of NMDA receptors in the DG of the mouse (impairing

plasticity rather than activity) resulted in animals able to

learn a context fear-conditioning task, but unable to dis-

tinguish two similar contexts associated with the learning

task (figure 3d ) [74]. Single-unit recordings from CA3

(figure 3e, upper) and DG (figure 3e, lower plot) by Leutgeb

et al. [75] have shown that signals from the entorhinal cortex

could be decorrelated by changes in the pattern of firing in

the dentate gyrus by the recruitment of non-overlapping

cell assemblies in CA3, consistent with the expectations of

Wills et al. [76]. Similar studies in humans, using fMRI,

have also been conducted [77].
(e) A broader view of archicortex
Other computations have also been ascribed to the archicortex.

For instance, it may be as involved in constructing (i.e. imagining)

possible future events as it is in reconstructing (i.e. remembering)

past events [78–81]. This implicates it in mechanisms for plan-

ning, such as of possible trajectories in space [82,83]. Equally,

the hippocampus might offer abstract representations for sensory

stimuli [84,85], effectively binding together disparate infor-

mation about objects in just the way that place cells bind

together disparate information to generate a code for location

[40]. A third idea is that the hippocampus is a comparator, detect-

ing and highlighting unpredictability and anomalies. This has

implications for issues such as anxiety [86], and the influence

of novelty on memory processing [55,87]. Dopaminergic neurons

in the ventral tegmental area (one of the neuromodulatory absen-

tees mentioned above) might communicate novelty to the

hippocampus and thereby enhance the synaptic persistence of

associated events as outlined in the synaptic-tagging and capture

theory [55,88,89], although the possibility of a contribution by

other neuromodulatory afferents needs also to be considered.

In either case, the simple memory could hold information for
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longer periods and enable the overnight, sleep-associated,

memory consolidation process to favour these events, giving

rise to very long-lasting representations.
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6. An appreciation
Neuroscience is maturing as a discipline and, despite frequent

comments to the contrary, we now know a great deal more

about the brain than we did in 1971. However, the relationship

between its empirical and theoretical branches is far from

mature. The modelling philosophy and methodology that

Marr created for his three detailed models of the 1970s, and

then substantially refined in Vision in 1982, remains influential

in theoretical circles. However, it is at risk of being forgotten by

the wider community where addressing mechanistic issues

without thinking about the functions or algorithms performed

in a brain area appears prevalent. In an essay broadly sym-

pathetic to the original tri-partite structure, Marr’s former

colleague Tommy Poggio finds himself wondering how evol-

ution and learning would fit in and whether they also

should be considered as separate levels [90]. An additional

concern is that the field is now polarizing around either imple-

mentational or computational explanations, with the danger of

the two never meeting. Marr’s legacy bears significantly on the

profitability of current endeavours of each type, including

hypothesis-free ‘omic’ neuroscience; for example, the collection

of immense amounts of data about the connections between all

neural elements [91] or global-scale mathematical modelling

without a specific computation in mind, such as attempts by

the Human Brain Project to build huge-scale simulations of

the brain (see https://www.humanbrainproject.eu). The

same could be said of implementation-free computational

approaches that aim to explore whether the brain functions

according to optimality principles.

Within the milieu of theoreticians seeking support for

their general theories of the brain, Marr was one of the first to

investigate whether specific computational tasks can be

implemented on the available neural machinery. A common

reading of his later work is that it is appropriate and sufficient

to start from the computational level; divorced from imple-

mentational considerations, information processing can be

readily formulated as optimal inference and control, using

ideas from fields such as statistics, operations research, econ-

omics and machine learning. However, as recognized

throughout the book Vision, these accounts are limited. In all

but the very simplest circumstances, optimal inference and con-

trol are radically intractable for animal or machine alike, and so

are formally limited or even useless. It is essential to use heuristics

and approximations to the original computational specification.

The viability and ultimate performance of a heuristic depends

critically on the properties of the substrate on which it is

implemented. This opens a critical channel of reverse communi-

cation between Marr’s three levels. Marr recognizes this point in

Vision [6, ch. 7], which features imaginary dialogues between a

defender of the top-down approach and a sceptic, based on con-

versations between himself, Tommy Poggio and Francis Crick. In

one exchange he accepts that the available neural infrastructure

may force a ‘poor man’s version’ of the computation to be

implemented rather than the computation itself [6, p. 339].

Bottom-up accounts that focus purely on the implemen-

tation are attractive because they treat neuroscience as any

other natural science. This provides a transparent way to
construct models of neural phenomena at multiple scales of

investigation. However, these endeavours face two problems.

The first is that, as explained at length in Vision, such accounts

ignore the information processing problems—including the

fundamental problem of representation that is central to under-

standing the brain but is irrelevant, or certainly less relevant,

in most other domains of natural science. For example, for the

case of memory, without the notion of adequate retrieval of

past patterns from partial information, the elements and

neural circuits of the hippocampus would seem incomprehensi-

bly complicated. As evident in Marr’s treatments, such concepts

can be a key source of constraints on the structure of the

implementation, which is most valuable in the face of the mag-

nitude of the problem. The second problem is one of

heterogeneity, which is more subtle and also more pernicious.

Conventional approaches to modelling natural phenomena

over multiple scales depend critically on homogeneity, i.e. that

the innumerable entities at the finer levels of description (such

as the sextillions of molecules in a gas, or the million or so cor-

tical nephrons in a human kidney, or the roughly 6000

sodium channels at a node of Ranvier of an axon) can be treated

as being at least statistically equivalent. These statistics can then

be averaged over time and/or space to derive approximate laws

of bulk behaviour applicable at a less detailed temporal or

spatial scale (such as the gas laws in physics, or the Hodgkin–

Huxley equations; [92]). This approach is the bread-and-butter

of statistical physics, with the macroscopic measures reflecting

the average properties of microscopic interactions. However,

many aspects of the brain are highly heterogeneous over

many temporal and spatial scales.

One implementational approach to heterogeneity is just to

measure it in all its complex richness—the ‘omics’ strategy. How-

ever, the number of such measurements is impossibly large even

for a single organism (e.g. the location of every ion channel on

every dendrite). Worse, in a strongly nonlinear system such as

the brain in which microscopic changes can have macroscopic

effects, generalization across time, and between individuals, is

very hard. Building a nominally faithful bottom-up simulation,

as the Human Brain Project aims to do, is equally problematic.

A second implementational approach is to assume that the

heterogeneity of the brain arises from a deeper form of hom-

ogeneity, for instance, through a statistical sampling process,

and to try to work with the latter. One example is Marr’s

assumption that the input patterns of activity are generated

from independent samples drawn from a simple distribution.

Another is Peter’s principle that neurons choose to make

synapses randomly whenever an axon is sufficiently close to

a dendrite [93]. Unfortunately, such simple relationships do

not seem to hold—input patterns will actually contain substan-

tial correlations from shared coding; in consequence, cortical

wiring exhibits higher order relationships in which generating

and verifying more complicated forms is hard [94,95].

An alternative approach to the heterogeneity problem is to

argue that it arises through contingency, being tightly regulated

to realize algorithmic goals. The heterogeneity will therefore

reflect the developmental trajectory of the organism—the expla-

nation for the precise strength of connections between

excitatory and inhibitory cells would be merely that it occurs

to ensure that excitation does not outweigh inhibition and

cause instability. Such effects would only be apparent in

deeply buried patterns of correlations in ‘omic’ observations,

ones that it would probably be impossible to extract without

the algorithmic understanding.

https://www.humanbrainproject.eu
https://www.humanbrainproject.eu


rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

370:201

9
7. Conclusion
David Marr sits comfortably with such luminaries as Norbert

Wiener, Warren McCulloch, Walter Pitts, Horace Barlow and

Donald MacKay as one of the most notable early theoretical

neuroscientists. Marr’s Philosophical Transactions paper

appeared in 1971, ironically the year of the first annual meet-

ing of the Society for Neuroscience—a meeting that now

attracts 30 000 attendees. Few of them may now know of

Marr, though many should. As we have tried to reflect, for

a paper that firmly embraces the complexities of the hippo-

campus (as opposed to concentrating on important but

narrower questions such as the mechanism by which spikes

are generated), it is quite remarkable how relevant it remains

to this day despite so much more now being known. Marr

was notably visionary, as well as impressively brave, and

he went to great lengths to show how his theories can, at

least in principle, be falsifiable. The Royal Society can take

credit for recognizing a special talent and allowing him to

publish his ideas at length in its journals.
4

Nevertheless, despite the prescience of this and his other

papers, their enduring legacy comes through their influence

on contemporary ideas about understanding particular sys-

tems of the brain in terms of the computations they carry

out with the neural hardware available. His methodology

gave the intellectual infrastructure within which almost all

subsequent modelling has been performed. He thereby pro-

vided a means to establish the communication between

levels that is necessary to make lasting progress, a lesson

that modern attempts that focus too narrowly on one level

at the expense of others ignore at their peril.
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