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Abstract
The World Health Organization estimates that diabetes 
mellitus (DM) will become the seventh leading cause 
of death during the next two decades. DM affects 
approximately 350 million individuals worldwide 
and additional millions that remain undiagnosed 
are estimated to suffer from the complications of 
DM. Although the complications of DM can be seen 
throughout the body, the nervous, cardiac, and 
vascular systems can be significantly affected and 
lead to disorders that include cognitive loss, stroke, 
atherosclerosis, cardiac failure, and endothelial 
stem cell impairment. At the cellular level, oxidative 

stress is a significant determinant of cell fate during 
DM and leads to endoplasmic reticulum stress, 
mitochondrial dysfunction, apoptosis, and autophagy. 
Multiple strategies are being developed to combat the 
complications of DM, but it is the mechanistic target 
of rapamycin (mTOR) that is gaining interest in drug 
development circles especially for protective therapies 
that involve cytokines and growth factors such as 
erythropoietin. The pathways of mTOR linked to mTOR 
complex 1, mTOR complex 2, AMP activated protein 
kinase, and the hamartin (tuberous sclerosis 1)/tuberin 
(tuberous sclerosis 2) complex can ultimately influence 
neuronal, cardiac, and vascular cell survival during 
oxidant stress in DM through a fine interplay between 
apoptosis and autophagy. Further understanding of 
these mTOR regulated pathways should foster novel 
strategies for the complications of DM that impact 
millions of individuals with death and disability.
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Core tip: The pathways of mechanistic target of 
rapamycin (mTOR) linked to mTOR complex 1, mTOR 
complex 2, AMP activated protein kinase, and tuberous 
sclerosis 1/tuberous sclerosis 2 complex can offer novel 
strategies for the complications of diabetes mellitus 
to prevent death and disability for the millions of 
individuals afflicted with this disorder.
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THE GROWING THREAT FROM DIABETES 
MELLITUS
The incidence of diabetes mellitus (DM) throughout 
the world is increasing at an exponential rate such 
that the World Health Organization predicts that DM 
will be the seventh leading cause of death by the year 
2030[1]. In 2013, greater than a million deaths were 
attributable to DM that is believed to affect 347 million 
individuals throughout the world. In the United States, 
21 million individuals are diagnosed with DM and 
another 8 million individuals are estimated to suffer 
from DM but are currently undiagnosed[2]. Reduced 
activity, increased body weight, and poor nutritional 
intake are considered significant factors that can lead 
to adult onset DM[3,4]. Duration of obese-years rather 
than body mass index can become a significant risk for 
developing DM[5]. 

DM is defined as being either non-insulin dependent 
(type 1) or insulin dependent (type 2)[6,7]. Type 1 DM 
occurs in approximately 5%-10% of DM patients and 
is an autoimmune disorder with the presence of alleles 
of the human leukocyte antigen class Ⅱ genes within 
the major histocompatibility complex. Destruction of 
pancreatic β-cells with inflammatory infiltration of the 
islets of Langerhans results in lost insulin production 
and regulation. About 90% of patients with type 1 
DM have increased titers of autoantibodies (type 1A 
DM). The remaining 10% of type 1 DM individuals do 
not have serum autoantibodies and are considered 
to have maturity-onset diabetes of the young that 
can be a result of β-cell dysfunction with autosomal-
dominant inheritance (type IB DM). Type 2 DM occurs 
in approximately 80%-90% of individuals with DM 
greater than the age of 40. Although approximately 
10% of individuals with type 2 DM may have elevated 
serum autoantibodies similar to type 1 DM, type 2 
DM represents a progressive deterioration of glucose 
tolerance with early β-cell compensation that has 
cell hyperplasia followed by a decrease in β-cell mass. 
Insulin resistance ensues as well as impairments in 
insulin secretion. Insulin resistance also may be a 
component of type 1 DM in some patients. Defective 
insulin secretion can result from impaired β-cell function, 
chronic exposure to free fatty acids and hyperglycemia, 
as well as the absence of inhibitory feedback through 
plasma glucagon levels. 

CLINICAL IMPLICATIONS OF DM IN THE 
NERVOUS, CARDIAC, AND VASCULAR 
SYSTEMS
As a disease that affects all systems of the body, DM 
can lead to multiple clinical impairments especially in 
the nervous, cardiac, and vascular systems. DM results 
in cognitive loss not only through vascular disease and 
stroke[8], but also during chronic neurodegenerative 

disorders such as Alzheimer’s disease[9,10]. Insulin 
resistance similar to its occurrence in DM also has been 
reported in patients with Alzheimer’s disease, suggesting 
that degenerative disorders such as Alzheimer’s disease 
could be mediated in some patient populations by 
impaired cellular metabolism[11]. DM also results in 
neuropsychiatric disorders[12,13], retinal disease[14-16], and 
peripheral nerve disorders[17]. In the cardiac system, 
DM can lead to sympathetic nerve dysfunction[18], 
cardiac fibrosis[19,20], ischemic reperfusion injury[21], 
cardiomyocyte injury[22], and cardiac hypertrophy[23]. DM 
also can significantly impact endothelial cells either 
in the brain or elsewhere in the body. Exposure to 
elevated glucose levels can result in endothelial cell 
senescence[24], dysfunctional mobilization of endothelial 
progenitor cells from the bone marrow[25], injury to the 
neuroglialvascular unit[14], loss of angiogenesis[26], and 
endothelial cell injury and loss[27-33].

During DM, oxidative stress is an important driver 
of cell injury[4,6,34-39]. In murine animal models of type 2 
DM, oxidative stress can lead to elevated glutathione 
levels and increased lipid peroxidation[23]. “Highly-oxidized 
glycated” low density lipoproteins that can occur in DM lead 
to oxidative and endoplasmic reticulum stress in human 
retinal capillary pericytes. Subsequently, mitochondrial 
dysfunction and cell death with apoptosis and autophagy 
ensues[15]. Exposure of glucolipotoxicity caused by elevated 
plasma glucose and lipid levels to pancreatic β-cells 
promotes oxidative stress with cytochrome c release, 
caspase activation, and apoptosis[40]. Advanced glycation 
end products (AGEs), entities that promote complications in 
DM[41], lead to the release of reactive oxygen species (ROS) 
and caspase activation[37]. In addition, high fat diets[42] 
as well as free fatty acids have been shown to release 
ROS, lead to mitochondrial DNA damage, and impair 
pancreatic β-cell function[43]. In cardiomyocytes[20,22,44], 
neurons[8,15,30,45,46], and endothelial cells[14,25,27-29,47], exposure 
to elevated glucose levels foster oxidant stress mechanisms 
that can impair cellular function and lead to cell death. 
In clinical studies, patients with type 2 DM display serum 
markers of oxidative stress with ischemia-modified 
albumin[48]. Interestingly, elevations in serum glucose can 
increase antioxidant enzyme levels in human endothelial 
cells, suggesting that some cells may initiate a reparative 
process against oxidative stress injury[49]. Of note, chronic 
hyperglycemia is not necessary to lead to oxidative stress 
injury, since even brief periods of hyperglycemia generate 
ROS[50]. Clinical correlates support these experimental 
studies to show that both acute glucose swings as well 
as chronic hyperglycemia can trigger oxidative stress 
mechanisms during type 2 DM[51]. 

NOVEL STRATEGIES FOR DM WITH 
MECHANISTIC TARGET OF RAPAMYCIN
Numerous cellular pathways can lead to oxidative 
stress during DM. As a result, multiple therapeutic 
avenues are being pursued to develop therapy against 
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the complications of DM. These strategies include the 
recent focus upon sirtuins[24,47,52-56], protein tyrosine 
phosphatases[57,58], broad antioxidant therapies[3,7,17,31,34,

38,59], forkhead transcription factors[56,60-63], and growth 
factors[32,64-68].

In reference to growth factors, the cytokine and 
growth factor erythropoietin (EPO) serves as a provocative 
model for potential treatments for the complications of 
DM (Figure 1). EPO blocks cell injury in studies of diabetic 
retinal degeneration[14], maintains endothelial cell integrity 
during experimental models of DM[27,28], facilitates wound 
healing during DM[65], reduces high glucose-induced 
oxidative stress in renal tubular cells[69], maintains cellular 
mitochondrial function and energy metabolism[32], and 
regulates the detrimental effects of obesity in animal 
models[33]. Although EPO affects multiple cellular signal 
transduction pathways in the body[70,71], of particular 
interest are the signal transduction pathways of the 
mechanistic target of rapamycin (mTOR) controlled by 
EPO that are intimately linked to cellular metabolism and 
DM[72-76]. mTOR can influence neuronal, glial, and cell to 
cell activity[77,78]. EPO uses mTOR to protect cells against 
oxygen-glucose deprivation[79,80], limit cell injury during 
β-amyloid exposure[81], control bone homeostasis[82], 
improve cognitive function in models of sepsis-associated 
encephalopathy[83], foster retinal progenitor cell survival 
during oxidant stress[84], and promote the neuronal 
phenotype of adult neuronal precursor cells[85]. 

mTOR, also known as the mammalian target of 
rapamycin and FK506-binding protein 12-rapamycin 

complex-associated protein 1, is a 289-ku serine/
threonine protein kinase. mTOR is encoded by a 
single gene FRAP1[86-88] and is a component of the 
protein complexes mTOR complex 1 (mTORC1) and 
mTORC2 (Figure 1). Rapamycin, an agent that inhibits 
mTOR activity, blocks mTORC1 by preventing the 
phosphorylation of mTOR. In some cases with chronic 
administration, rapamycin also can inhibit mTORC2. 
mTORC1 is composed of raptor (regulatory-associated 
protein of mTOR), the proline rich Akt substrate 40 
ku, deptor (DEP domain-containing mTOR interacting 
protein), and mLST8/G L (mammalian lethal with Sec13 
protein 8, termed mLST8). Two important targets of 
mTORC1 through mLST8 that promote mTOR kinase 
activity are p70 ribosomal S6 kinase and the eukaryotic 
initiation factor 4E-binding protein 1[89,90]. mTORC2 is 
composed of rictor (rapamycin-insensitive companion 
of mTOR), deptor, mLST8, the mammalian stress-
activated protein kinase interacting protein (mSIN1), 
and the protein observed with rictor-1 (Protor-1)[75,91]. 

In addition to phosphoinositide 3-kinase and protein 
kinase B (Akt)[6,92], mTOR signaling also is governed by 
AMP activated protein kinase (AMPK)[75,91]. AMPK can 
control the activity of the hamartin (tuberous sclerosis 
1)/tuberin (tuberous sclerosis 2) (TSC1/TSC2) complex 
that is an inhibitor of mTORC1. AMPK phosphorylates 
TSC2 as well as Raptor to block the activity of mTORC1 
during energy stress[93]. AMPK also controls TSC1/2 
activity through RTP801 (REDD1/ product of the Ddit4 
gene). AMPK activity can increase REDD1 expression, 
such as in the presence of hypoxic environments, to 
suppress mTORC1 activity by releasing TSC2 from its 
inhibitory binding to protein 14-3-3[94]. 

AMPK can have dual roles in cell survival (Figure 
1). AMPK activation can suppress β-amyloid (Aβ) 
production[95], regulate tau phosphorylation[96], limit 
oxidative stress that can lead to hypertension[97], 
increase cell survival during hypoxia[98], and promote 
autophagy that may resolve memory impairment[99]. 
However, in other experimental models, AMPK activity 
has been suggested to influence neuroinflammation[100], 
lead to aberrant Aβ stress[96] and Aβ toxicity[101], result 
in cardiac dysfunction[102], and result in the hypertrophy 
of cardiac tissues[103]. In regards to cellular metabolism 
with AMPK[104], AMPK can reduce insulin resistance 
and diminish oxidative stress mediated through the 
programmed cell death pathway of autophagy[105], 
reduce myocardial ischemia in experimental models of 
diabetes[21], be necessary for proper metabolic function 
of cells[106], and block adipocyte differentiation, lipid 
accumulation, and obesity[107]. Loss of AMPK may lead 
to insulin resistance[108].

TARGETING APOPTOSIS AND 
AUTOPHAGY WITH mTOR FOR DM
For the development of new strategies against DM with 
mTOR, a careful balance in the activity of the programmed 
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Figure 1  Cellular signaling of mechanistic target of rapamycin in diabetes 
mellitus. mTOR is a component of the protein complexes mTORC1 and 
mTORC2 with two important targets of p70S6K and 4EBP1 that promote mTOR 
kinase activity. mTOR signaling is controlled by AMPK that oversees the activity 
of TSC1/TSC2, an inhibitor of mTORC1. During periods of oxidative stress in 
DM, EPO uses mTOR to protect cell survival from programmed cell death injury. 
For example, EPO blocks cell injury in studies of diabetic retinal degeneration, 
maintains endothelial cell integrity during experimental models of DM, and 
regulates the detrimental effects of obesity in animal models. AMPK can have 
dual roles in cell survival. AMPK can limit oxidative stress that can lead to 
hypertension and reduce insulin resistance through autophagy that can have 
linked pathways to apoptosis. However, under other circumstances AMPK also 
can lead to neuroinflammation and cardiac dysfunction. Ultimately, a careful 
balance in the activities of autophagy and apoptosis is required through mTOR 
to foster cell survival during DM. mTOR: Mechanistic target of rapamycin; DM: 
Diabetes mellitus; AMPK: AMP activated protein kinase; EPO: Erythropoietin; 
p70S6K: p70 ribosomal S6 kinase; 4EBP1: 4E-binding protein 1; mTORC1: 
mTOR complex 1; TSC1/TSC2: Tuberous sclerosis 1/ tuberous sclerosis 2.
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FUTURE CONSIDERATIONS
DM is a significant and growing disorder throughout the 
world that leads to increased disability and death through 
multiple complications in the nervous, cardiac, and vascular 
systems. Current therapies for these complications are 
limited. As a result, novel therapeutic strategies are 
required to address the cellular mechanisms of oxidant 
stress and cell injury that can mediate complications 
of DM. Given the recent discovery that cytoprotective 
strategies against oxidative stress, i.e., EPO, employ 
mTOR, the mTOR signaling pathways that include AMPK 
and TSC1/TSC2 have become increasingly recognized as 
a potential targets for the treatment of the complications 
of DM. However, future work will need to concentrate 
upon the complex relationship that the programmed cell 
death pathways of apoptosis and autophagy hold over 
cellular survival and longevity to attain both efficacy and 
safety for mTOR targeted strategies.
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