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A Multi-aspect Comparison Study of Supervised Word Sense
Disambiguation

HONGFANG LIU, PHD, VIRGINIA TELLER, PHD, CAROL FRIEDMAN, PHD

A b s t r a c t Objective: The aim of this study was to investigate relations among different aspects in supervised
word sense disambiguation (WSD; supervised machine learning for disambiguating the sense of a term in a context)
and compare supervised WSD in the biomedical domain with that in the general English domain.

Methods: The study involves three data sets (a biomedical abbreviation data set, a general biomedical term data set,
and a general English data set). The authors implemented three machine-learning algorithms, including (1) naı̈ve Bayes
(NBL) and decision lists (TDLL), (2) their adaptation of decision lists (ODLL), and (3) their mixed supervised learning
(MSL). There were six feature representations (various combinations of collocations, bag of words, oriented bag of
words, etc.) and five window sizes (2, 4, 6, 8, and 10).

Results: Supervised WSD is suitable only when there are enough sense-tagged instances with at least a few dozens of
instances for each sense. Collocations combined with neighboring words are appropriate selections for the context. For
terms with unrelated biomedical senses, a large window size such as the whole paragraph should be used, while for
general English words a moderate window size between 4 and 10 should be used. The performance of the authors’
implementation of decision list classifiers for abbreviations was better than that of traditional decision list classifiers.
However, the opposite held for the other two sets. Also, the authors’ mixed supervised learning was stable and
generally better than others for all sets.

Conclusion: From this study, it was found that different aspects of supervised WSD depend on each other. The
experiment method presented in the study can be used to select the best supervised WSD classifier for each ambiguous
term.

j J Am Med Inform Assoc. 2004;11:320–331. DOI 10.1197/jamia.M1533.

Word sense disambiguation (WSD) is the problem of tagging
the appropriate sense of a given word in a context. Resolving
sense ambiguity is one of the most important problems in
natural language processing (NLP) and is essential for any
kind of text-understanding task such as information extrac-
tion, information retrieval, or message understanding.1,2

Despite the wide range of approaches investigated, including
expert rules and supervised or unsupervised machine-
learning techniques, currently there is no large-scale, broad-
coverage, and highly accurate WSD system.3

One of the encouraging approaches to WSD is supervised
machine learning.2Given an ambiguouswordW, a supervised
WSD classifier is obtained by applying supervised machine

learning on a collection of sense-tagged instances of W, called
a sense-tagged corpus of W STC(W), in which the sense of W
in each instance has been tagged. Supervised approaches tend
to achieve better performance than other WSD approaches.4,5

However, supervised WSD suffers from the lack of a large,
broad-coverage, sense-tagged corpus. Currently, there are
two lines of research tackling this problem6,7: (1) design
efficient sampling methods to lower the cost of sense tagging
or (2) use a machine-readable dictionary (MRD) and a large
collection of raw text to obtain a raw sense-tagged corpus. In
several previous reports,8,9 we have shown that methods
based on MRD could be used to obtain a large, sense-tagged
corpus for ambiguous biomedical abbreviations. We also did
a comparison study in one report,8 but it was limited (with
one data set specialized in the medical reports domain,
a couple of existing machine-learning algorithms, and a few
feature representations that did not include collocations). The
main focus of that report was to propose an unsupervised
WSD method and not to compare different supervised
WSD classifiers. Results showed that further exploration of
supervised WSD was warranted. In this report, we inves-
tigated the relations among different aspects of supervised
WSD and comparedWSD in the biomedical domain with that
in the general English domain.

Here, we first present background and related work about
supervised WSD. We then describe our experiment on
supervised WSD involving several aspects: data set, feature
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representation, window size, and supervised machine-learn-
ing algorithm. Finally, the results are presented and discussed.

Construction of Supervised WSD Classifiers
Figure 1 shows the process of constructing a supervised WSD
classifier for W given a sense-tagged corpus, STC(W). The
input to the process is STC(W), and the output is a WSD
classifier, which can disambiguate W. The first component
transfers each instance in STC(W) to a feature vector. The
second component uses a supervised learning algorithm to
learn the disambiguation knowledge that forms a WSD
classifier for W.

Feature Representation
Supervised WSD approaches require transforming each
sense-tagged instance into a feature vector. Different kinds
of features have been exploited.2

� Local Co-occurring Words: Co-occurring words in the
context of an ambiguous word W in a fixed window are
critical to WSD. For example, in the sentence ‘‘A
spokesman said Healthvest has paid two of the three
banks it owed interest in October,’’ words such as paid and
banks tend to indicate that in this sentence interest has the
sense money paid for the use of money and not other
senses, such as readiness to give attention or activity
that one gives attention to (refer to Table 3 for sense
definitions for interest).

� Collocations: A collocation refers to a short sequence of
ordered words that occur together more often than by
chance. It is also important for the sense determination of
W. For example, in the phrase ‘‘the interest of,’’ the sense
of interest is the advantage, advancement, or favor sense
of interest even though words the and of are usually
included in the stop word list for word indexing of
information retrieval systems.

� Derived Features: Derived features are obtained from
words surrounding W in a window of a fixed size, taking
into consideration the orientation and/or distance from W.
A derived feature may also contain further linguistic
knowledge, such as part of speech (POS) tags, semantic
categories (e.g., classes in Roget’s Thesaurus) or stemming
techniques, which assign a common feature to inflected
forms of a root (e.g., discharged, discharging, and discharges
are treated as the same feature discharge).

Supervised Learning Algorithms
Several supervised learning algorithms have been adapted to
built WSD classifiers: naı̈ve Bayes learning,4 neural

networks,10,11 decision list,12 instance-based learning,13,14

and inductive logic programming.15 In the following, we
provide background information about several supervised
learning algorithms that we implemented or adapted.
Readers can refer to our previous studies,8,9 method section,
and the survey paper of Marquez16 for further detail. Note
that naı̈ve Bayes learning, decision list learning, and instance-
based learning were already adapted for WSD.8 We found
that instance-based learning took a long time to process while
the performance of naı̈ve Bayes learning and decision list
learning was not distinguishable given the same feature
representation and window size.

Naı̈ve Bayes Learning (NBL)17 is widely used in machine
learning due to its efficiency and its ability to combine
evidence from a large number of features. An NBL classifier
chooses the category with the highest conditional probability
for a given feature vector, while the computation of
conditional probabilities is based on the naı̈ve Bayes
assumption that the presence of one feature is independent
of another given the category. Training a naı̈ve Bayes classifier
consists of estimating the prior probabilities for different
categories as well as the probabilities of each category for
each feature.

The Decision List Method (DLL)12 is equivalent to simple
case statements in most programming languages. In a DLL
classifier, a sequence of tests is applied to each feature vector.
If a test succeeds, then the sense associated with that test is
returned. If the test fails, then the next test in the sequence is
applied. This continues until the end of the list, where
a default test simply returns the majority sense. Learning
a decision list classifier consists of generating and ordering
individual tests based on the characteristics of the training
data.

Instance-based Learning (IBL)18 has appeared in several
areas with different names: exemplar-based, case-based, and
memory-based. It is a form of supervised learning from
instances based on keeping a full memory of training
instances and classifying new instances using the most
similar training instances. Instance-based classifiers can be
used without training if the similarity measure between two
instances is local, i.e., the similarity between two instances is
completely determined by their associated feature vectors.
Sometimes instance-based classifiers include a training phase,
in which a set of representative instances (to reduce the
number of training instances presented to the classifier) and/
or a similarity measure between two instances (to include
distributional information in the similarity measure) are

F i g u r e 1. The processing phases for constructing a WSD classifier for W.
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chosen. A critical component of instance-based classifiers is
the similarity measure.

Related Work and Current Status
There are several studies on supervised WSD. Bruce and
Wiebe 4 applied the Bayesian algorithm and chose features
based on their ‘‘informative’’ nature. They tested their work
on the interest corpus and achieved a precision of 79%. Towell
and Voorhees11 constructed a WSD classifier that combined
the output of a neural network that learns topical context with
the output of a network that learns local context to
distinguish among the senses of highly ambiguous words.
The precision of the classifier was tested on three words, the
noun line, the verb serve, and the adjective hard; the classifier
had an average precision of 87%, 90%, and 81%, respectively.
TheWSD system of Yarowsky12 used the decision list method
on features that consisted of both POS tags and oriented
distances of the surrounding words. He claimed that the
system had a precision of 99% when evaluated automatically
for the accent restoration task in Spanish and French. Ng and
Lee13,14 described a WSD system that uses the instance-based
method with multiple kinds of features. An ambiguous term
in an instance was assigned to the sense of its most similar
instance in the training set in the initial version; later the sense
was determined by a fixed number of the most similar
instances. They reported the systems had a precision of 87.4%
for the interest corpus13 and 58.7% and 75.2% for the two test
sets derived from the Defence of Science Organization in
Singapore (DSO) corpus.14

Currently, there is little agreement on feature representation,
preference of window sizes (i.e., the number of neighboring
words that should be included as sources for deriving
features), and the best choice of supervised learning
algorithms for WSD applications. It is generally believed that
nouns require a larger window than verbs.19 Larger values of
window sizes capture dependencies at longer range but also
dilute the effect of thewords closer to the term. Leacock et al.20

tested a window size of 50, while Yarowsky12 argued that
a small window size of 3 or 4 had better performance. A small
window size has the advantage of requiring less system space
and running time. Leacock et al.20 showed that various
supervised learning algorithms tended to perform roughly the
same when given the same evidence. Mooney21 reported that
naı̈ve Bayes learning gave the best performance on disambig-
uating the line corpus among seven learning algorithms
tested. Ng and Lee13 reported that the performance of
instance-based classifiers was comparable to naı̈ve Bayes
classifiers. Yarowsky12 stated that decision list classifiers had
at least as goodperformance as naı̈ve Bayes classifierswith the
same evidence and also had the advantage of easy in-
terpretation, easy modification, and easy implementation.

Most previous comparison studies of supervised WSD
classifiers isolated different aspects, such as data set, feature
representation, window size, and supervised learning algo-
rithm. In our previous study,8 we used only one data set
specializing in the biomedical domain. This research is
a multi-aspect comparison study of supervised WSD aimed
at investigating the relations among these aspects. In
addition, this report adapted two new techniques of
machine-learning algorithms for the purpose of WSD. A
new technique involved combining NBL with IBL, and a new
technique consisted of a modification to DLL.

Experimental Methods
The experiment involved four aspects: data set, feature
representation, window size, and machine-learning algo-
rithm. Each aspect is described in more detail below.

Data Sets
There are three data sets used in the experiment. The first data
set, ABBR, contains 15 ambiguous abbreviations. The gold
standard instances for ABBR were constructed utilizing the
fact that authors sometimes define abbreviations when they
are first introduced in documents using parenthesized
expressions [e.g., Androgen therapy prolongs complete remission
in acute myeloblastic leukemia (AML)] and that these
abbreviations have the same senses within the same
documents (for details, refer to Liu et al.9). Note that in Liu
et al.,9 there were 34 ambiguous three-letter abbreviations. We
excluded 18 of them in which the majority sense in the gold
standard set was more than 90% to avoid the comparison
biases. The abbreviation EMG was also excluded because
three of four associated senses (i.e., exomphalos macroglossia
gigantism, electromyography, electromyographs, electromyogram)
were closely related. Additionally, for terms with more than
3,000 sense-tagged instances, we randomly chose about 3,000
instances to avoid the bias these terms could introduce when
computing the overall performance. Table 1 gives details
about the set.

The second set, MED, contains 22 ambiguous general
biomedical terms. The gold standard instances were derived
manually byWeeber et al.22 There were 50 terms in that study.
We excluded 12 that Weeber et al. considered problematic, as
well as 16 terms in which the majority sense occurred with
over 90% of instances. Note that in the study byWeeber et al.22

an occurrence of an inflected variant (e.g., discharged is
considered as an occurrence of discharge) of an ambiguous
word was considered to be an ambiguous occurrence. In our
study, however, only occurrences of the exact same ambig-
uous term were considered as occurrences of that term and
were included in the MED set. Table 2 provides details.

The third set, ENG, contains four ambiguous general English
words (i.e., line, interest, hard, and serve), which have been
used frequently in the general English domain to evaluate the
performance of WSD. We downloaded the sense-tagged
instances of these words from Ted Peterson’s Web site
(http://www.d.umn.edu/;tpederse/data.html). The sense-
tagged instances for interest were created by Bruce and
Wiebe.4 Each instance of interest was tagged with one of six
possible Longman Dictionary of Contemporary English
(LDOCE) senses. The sense-tagged instances for line, hard,
and serve were contributed by Leacock et al.20,23 and senses
were defined using WordNet. Table 3 describes the set.

Feature Representations and Window Sizes
Six different feature representations were studied for
a given window size n, which will be referred to as ‘‘A,’’
‘‘B,’’ ‘‘C,’’ ‘‘D,’’ ‘‘E,’’ and ‘‘F,’’ respectively. Each word was
normalized to unify derivable forms associated with the
same word, and all numbers were unified to the string XXX.
Four feature representations (i.e., ‘‘A,’’ ‘‘B,’’ ‘‘C,’’ and ‘‘E’’)
depended on window sizes, while the window sizes for
feature representations ‘‘D’’ and ‘‘F’’ were constant. Let
‘‘. . .wLn. . .wL2wL1WwR1wR2. . .wRn. . .’’ be the context of
consecutive words around the term W to be disambiguated.
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Referring to this context, feature representations are de-
scribed as follows:

� A—All words with their corresponding oriented distances
within the window, i.e., Ln/wLn,. . ., L2/wL2, L1/wL1, R1/wR1,
R2/wR2,. . ., and Rn/wRn, where L is for left, R is for right,
and the number is for the distance.

� B—All words with their corresponding orientations
within the window, i.e., L/wLn,. . ., L/wL2, L/wL1, R/wR1, R/
wR2,. . ., and R/wRn.

� C—All words within the window, i.e., wLn,. . ., wL2, wL1,
wR1, wR2,. . ., and wRn.

� D—All words with their corresponding orientation within
a window of size 3 and the three nearest two-word
collocations, i.e., L/wL3, L/wL2, L/wL1, R/wR1, R/wR2, R/wR3,
L2L1/wL2_wL1, L1R1/wL1_wR1, and R1R2/wR1_wR2.

� E—Features in representations ‘‘C’’ and ‘‘D.’’
� F—Features in representation ‘‘D’’ and all words in the

context except W.

For purposes of illustration, features of CSF in Instance 1with
a window size of 3 are shown in Table 4.

Instance 1. At the same time, other researchers explored CSF
parameters in multiple sclerosis, treatment of experimental optic
neuritis, corticosteroid treatment of multiple sclerosis, and
variations and mimickers of optic neuritis.

Supervised Learning Algorithms Implemented
We experimented with four different supervised learning
methods, including naı̈ve Bayes learning, traditional decision
list learning, our mixed supervised learning, and our

implementation of decision list learning; the last two were
our adaptation of naı̈ve Bayes learning and tradition decision
list learning. The first two algorithms were introduced in
the background section; our detailed adaptation of the
algorithms is presented below.

Naı̈ve Bayes Learning
We used the Witten-Bell discounting technique25 to avoid
zero probability in the algorithm. Witten-Bell discounting is
based on a simple intuition about zero-frequency events: the
probability of seeing a zero-frequency feature is estimated by
the probability of seeing a feature for the first time. Let N be
the occurrences of all features in the training set, T be the
number of different features appearing in the training set, and
Z be the number of different features that have zero-
frequency in the universe. The frequency of unseen features is

T

Z
3

N

ðN þ TÞ
However, Z is not known in the WSD problem. We used

T

1003 ðN þ TÞ
as the frequency of unseen features by assuming Z ¼ 1003N.

Traditional Decision List Learning
We used the algorithm that was implemented by
Yarowsky.12 Each individual feature f consists of a test. All
tests are ordered according to their log–likelihood ratios:

Table 1 j Information about the Abbreviation Set ABBR

W SID Sense Definition N W SID Sense Definition N

APC APC1 antigen-presenting cells 1,356 MAC MAC1 membrane attack complex 231
APC2 adenomatous polyposis coli 430 MAC2 macrophage 40
APC3 atrial premature complexes 8 MAC3 mycobacterium avium complex 535
APC4 aphidicholin 37 MAC4 macandrew alcoholism scale 18
APC5 activated protein c 479 MAC5 monitored anesthesia care 19

ASP ASP1 antisocial personality 54 MAC6 mental adjustment to cancer 19
ASP2 asparaginase 17 MAS MAS1 mccune albright syndrome 31
ASP3 aspartic acid 8 MAS2 meconium aspiration syndrome 81
ASP4 ankylosing spondylitis 2 MCP MCP1 metacarpophalangeal joint 8
ASP5 aspartate 60 MCP2 multicatalytic protease 9

BPD BPD1 borderline personality disorder 208 MCP3 metoclopramide 157
BPD2 bronchopulmonary dysplasia 465 MCP4 monocyte chemoattractant protein 185
BPD3 biparietal diameter 233 MCP5 membrane cofactor protein 102

BSA BSA1 body surface area 354 PCA PCA1 para chloroamphetamine 210
BSA2 bovine serum albumin 2,808 PCA2 passive cutaneous anaphylaxis 376

DIP DIP1 desquamative interstitial pneumonia 31 PCA3 patient controlled analgesia 507
DIP2 distal interphalangeal 81 PCA4 posterior communicating artery 5

FDP FDP1 fructose diphosphate 8 PCA5 posterior cerebral artery 112
FDP2 formycin diphosphate 2 PCA6 principal component analysis 343
FDP3 fibrinogen degradation product 382 PCP PCP1 p chlorophenylalanine 1
FDP4 flexor digitorum profundus 39 PCP2 pentachlorophenol 341

LAM LAM1 lipoarabinomannan 103 PCP3 phencyclidine 1,071
LAM2 lymphangiomyomatosis 22 PCP4 pneumocystis carinii pneumonia 812
LAM3 leukocyte adhesion molecule 2 PEG PEG1 polyethylene glycols 52
LAM4 lymphangioleiomyomatosis 56 PEG2 percutaneous endoscopic gastrostomy 18

RSV RSV1 respiratory syncytial virus 1,335 PVC PVC1 polyvinylchloride 473
RSV2 rous sarcoma virus 619 PVC2 premature ventricular contraction 98

Total # of abbreviations: 15 Total # senses: 69 Total # instances: 24,407

The first and fifth columns are abbreviations. The second and sixth columns are their sense identifications (SID). The third and seventh columns
are corresponding sense definitions, and the fourth and eighth columns (N) are their numbers of sense-tagged instances in the training set.
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log
Occuðs; fÞ

Occuð fÞ � Occuðs; fÞ

� �

where s is the majority sense that co-occurs with f, Occu(f) is
the number of occurrences of f, and Occu(s,f) is the number of
occurrences of f appearing in instances of W that are
associated with the sense s. The default test returns the
majority sense. For features (f) that co-occur with only one
sense, a smoothing factor 0.1 is added to the total occurrences
of f.

Our Decision List Learning
In the traditional implementation of decision list learning,
a smoothing factor is added to the occurrence of features that
occur with only one sense. However, it is not clear what the
suitable smoothing factor is. In our implementation of
decision list learning (ODLL), we separated features that
co-occur with only one sense from others to avoid the
estimation of a smoothing factor. Two sets of tests are derived
during the learning. The first set consists of features that co-

occur with only one sense and are ordered according to the
following formula:

log
Occuð fÞ
OccuðsÞ

� �

where Occu(s) is the number of occurrences of the sense s. The
second set consists of features (f) that co-occur with multiple
senses and are ordered according to their log–likelihood ratio:

log
Occuðs; fÞ

Occuð fÞ � Occuðs; fÞ

� �

Given a novel instance, the first set is applied first; if the sense
cannot be determined by the first set, the second set is then
applied, and the default test returns the majority sense.

Mixed Supervised Learning
After observing that the existence of instances with rare
senses deteriorates naı̈ve Bayesian classifiers, we im-
plemented our mixed supervised learning algorithm

Table 2 j Detailed Information for General Biomedical Terms MED

w SID Sense Definition N w SID Sense Definition N

COLD M1 cold temperature
(Natural Phenomenon)

86 MOLE M1 mol (Quantitative Concept) 83

M2 common cold (Disease) 6 M2 mole the mammal 1
M3 chronic obstructive airway disease 1 None none of above 16
M5 cold sensation (Qualitative Concept) 2 MOSAIC M1 spatial mosaic (Spatial Concept) 45
None none of above 5 M2 mosaic (Organism Attribute) 52

DEGREE M1 degree , 1. (Qualitative Concept) 63 None none of above 3
M2 degree , 2. (Intellectual Product) 2 NUTRITION M1 nutrition (Organism Attribute) 45
None none of above 35 M2 science of nutrition 16

DEPRESSION M1 mental depression 85 M3 feeding and dietary regimens 28
None none of above 15 None none of above 11

DISCHARGE M1 discharge (Body Substance) 1 PATHOLOGY M1 pathology (Occupation or Discipline) 14
M2 patient discharge 74 M2 pathology , 3. (Pathologic Function) 85
None none of above 25 None none of above 1

EXTRACTION M1 extraction (Laboratory Procedure) 82 REDUCTION M1 reduction—action
(Health Care Activity)

2

M2 extraction, NOS
(Therapeutic Procedure)

5 M2 reduction (chemical)
(Natural Phenomenon)

9

None none of above 13 None none of above 89
FAT M1 obese build (Organism Attribute) 2 REPAIR M1 repair–action 52

M2 fatty acid glycerol esters (Lipid) 71 M2 wound healing 16
None none of above 27 None none of above 32

GROWTH M1 growth , 1. (Organism Function) 37 SCALE M2 intellectual scale 65
M2 growth , 2. (Functional Concept) 63 None none of above 35

IMPLANTATION M1 Blastocyst implantation, natural 17 SEX M1 coitus (Organism Function) 15
M2 implantation procedure 81 M2 sex (Individual Behavior) 5
None none of above 2 M3 gender (Organism Attribute) 80

JAPANESE M1 Japanese language 6 ULTRASOUND M1 ultrasonography 84
M2 Japanese population 73 M2 ultrasonic shockwave 16
None none of above 21 WEIGHT M1 weight (Qualitative Concept) 24

LEAD M1 lead (Element) 27 M2 body weight (Organism Attribute) 29
M2 lead measurement, quantitative 2 None none of above 47
None none of above 71 WHITE M1 white color 41

MAN M1 male (Organism Attribute) 58 M2 Caucasoid race 49
M2 men (Population Group) 1 None none of above 10
M3 Homo sapiens (Population Group) 33

Total # of terms: 22 Total # senses: 66 Total # instances: 2,200

The first and fifth columns are general biomedical terms. The second and sixth columns are their sense identifications (SID). The third and
seventh columns are corresponding sense definitions, and the fourth and eighth columns (N) are their numbers of sense-tagged instances in the
training set. Note that we did not list senses that have no occurrence in the sense-tagged corpus. Also, general biomedical terms may have senses
that are not biomedical; all meanings not presented in the UMLS are designated with one sense ‘‘None.’’
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(MSL), which contains a naı̈ve Bayesian classifier and an
instance-based classifier. The mixed supervised learning
algorithm can be stated as follows:

� Split the training set into two parts, I and II, where part I
contains instances associated with senses that have at least
ten associated instances and occur more than 1% of the
total number of instances; all remaining instances are
included in part II.

� Build a naı̈ve Bayes classifier trained on part I and an
instance-based classifier trained on part II.

� For a novel instance, the instance-based classifier predicts
its sense with the majority vote sense of all instances with
a relatively high similarity ($0.5). If there is such a sense,
return the predicted sense; else return the predicted sense
of the naı̈ve Bayes classifier.

The similarity measure for the instance-based classifier is
weighted. Assume the numbers of non-zero feature values for
two instances are T1 and T2, then a weight of 2/(T1+T2+1) is
assigned to each collocation, 1.5/(T1+T2+1) to each oriented
word, and 1/(T1+T2+1) to each of the other features. Note
that if there are no instances in part II of the training set, our
mixed supervised learning algorithm is the same as naı̈ve
Bayes learning.

Evaluation Methods
For each ambiguous word W in the three data sets, we
derived 88 WSD classifiers for W: eight were represented
using a pair (ml, fp1), and 80 were represented by a tuple
(ml, fp2, ws). The aspect ml is a supervised learning
algorithm with four choices: naı̈ve Bayes learning (NBL),
traditional decision list learning (TDLL), our implementation
of decision list learning (ODLL), and our mixed supervised
learning (MSL); fp1 and fp2 are feature representation
aspects, where fp1 has two values ‘‘D’’ and ‘‘F,’’ and fp2

has four values ‘‘A,’’ ‘‘B,’’ ‘‘C,’’ and ‘‘E’’ (refer to Table 4 for
these feature representations). The aspect ws is the window
size with five values (2, 4, 6, 8, and 10). For multiple
occurrences of W in an instance, features were derived for
each occurrence, and the final feature vector was presented
to learning algorithms containing all derived features.

We applied the ten-fold cross-validation method to measure
the performance (i.e., measures were averaged over the
results of the ten folds), in which the performance of
classifiers was measured using precision (i.e., the ratio of
the number of instances tagged correctly to the number
of instances in the training set). Note that we assigned the
majority sense to instances that failed to be tagged by
classifiers. We controlled each ten-fold partition so that the
same partition was used to evaluate each classifier.

Results
The overall running time for the experiment was about 13
hours; we did not keep track of the running time for each
classifier. The overall performances of different classifiers for
sets ABBR, MED, and ENG are listed in Tables 5, 6, and 7,
respectively. Table 8 lists the best classifier for each word from
these sets.

Table 3 j Information about General English Word Set
ENG

Word SID Sense Definition N

HARD HARD1 difficulty 3,455
HARD2 laborious, heavy 502
HARD3 contradiction to soft 376

INTEREST INTEREST1 readiness to give
attention

361

INTEREST2 quality to causing
attention to be given to

11

INTEREST3 activity, etc., that
one gives attention to

66

INTEREST4 advantage, advancement
or favor

178

INTEREST5 a share in a company
or business

500

INTEREST6 money paid for the
use of money

1,252

LINE LINE1 cord 373
LINE2 division 374
LINE3 formation 349
LINE4 phone 429
LINE5 product 2,218
LINE6 text 404

SERVE SERVE1 work for or be a servant to 1,814
SERVE2 be sufficient; be adequate,

either in quality or quantity
1,272

SERVE3 do duty or hold offices;
serve in a specific function

853

SERVE4 provide (usually but not
necessarily food)

439

Total # of words: 4 Total # senses: 19 Total #
instances:
15,983

The first column lists each word. The second and third columns are
associated sense identifications (SID) and sense definitions. The last
column (N) is the number of sense-tagged instances for associated
sense in the training set.

Table 4 j Six Options of Feature Representation for the
Instance ‘‘At the same time, other researchers explored CSF
parameters in multiple sclerosis, treatment of experimental
optic neuritis, corticosteroid treatment of multiple sclerosis,
and variations and mimickers of optic neuritis.’’

FP Features Example (window size = 3)

A Words with
oriented distance
within the window

L3/other, L2/researcher, L1/explore,
R1/parameter, R2/in, R3/multiple

B Words with
orientation
within the window

L/other, L/researcher, L/explore,
R/parameter, R/in, R/multiple

C Words within the
window

other, researcher, explore, parameter,
in, multiple

D Three collocations,
oriented words
within a window
size 3

L/researcher, L2L1/researcher_explore,
L/explore, L1R1/explore_parameter,
R/parameter, R1R2/parameter_in, R/in

E Features in C and D L/researcher, L2L1/researcher_explore,
L/explore, L1R1/explore_parameter,
R/parameter, R1R2/parameter_in,
R/in, other, researcher, explore,
parameter, in, multiple

F Features in D and
all other words

L/researcher, L2L1/researcher_explore,
L/explore, L1R1/explore_parameter,
R/parameter, R1R2/parameter_in,
R/in, at, the, . . . of, optic, neuritis

FP ¼ feature representation.
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Our results showed that supervised WSD achieved the best
performance on the set of abbreviations, the second best on
the set of general English terms, and the worst for general
biomedical terms. For abbreviations, naı̈ve Bayes learning

and our mixed supervised learning achieved the best perfor-
mance when using feature representation ‘‘F,’’ with an overall
precision of more than 98%. For general biomedical terms, the
traditional decision list achieved the best performance with

Table 5 j Overall Performance of Different Classifiers for Abbreviations

Precision for Abbreviations ABBR (95% confidence interval) %

FP WS NBL MSL TDLL ODLL

A 2 90.9 (61.1) 91.8 (61.1) 90.7 (61.2) 90.6 (61.2)
4 91.8 (61.1) 93.4 (61.0) 91.9 (61.1) 92.1 (61.1)
6 91.6 (61.1) 94.1 (60.9) 91.4 (61.1) 92.0 (61.1)
8 90.8 (61.1) 93.9 (60.9) 91.3 (61.1) 91.9 (61.1)
10 90.4 (61.2) 94.1 (60.9) 91.0 (61.1) 91.8 (61.1)

B 2 91.4 (61.1) 92.0 (61.1) 90.9 (61.1) 90.7 (61.2)
4 94.5 (60.9) 94.8 (60.9) 93.3 (61.0) 93.0 (61.0)
6 95.5 (60.8) 95.7 (60.8) 93.8 (61.0) 94.0 (60.9)
8 96.0 (60.8) 96.1 (60.8) 93.9 (60.9) 94.2 (60.9)
10 96.3 (60.7) 96.4 (60.7) 94.1 (60.9) 94.3 (60.9)

C 2 91.7 (61.1) 92.1 (61.1) 91.3 (61.1) 91.0 (61.1)
4 94.6 (60.9) 94.7 (60.9) 93.5 (61.0) 93.1 (61.0)
6 95.9 (60.8) 95.9 (60.8) 94.1 (60.9) 94.1 (60.9)
8 96.3 (60.7) 96.3 (60.7) 94.3 (60.9) 94.4 (60.9)
10 96.9 (60.7) 96.8 (60.7) 94.6 (60.9) 94.7 (60.9)

E 2 90.0 (61.2) 93.1 (61.0) 91.7 (61.1) 92.3 (61.1)
4 94.6 (60.9) 95.8 (60.8) 93.9 (60.9) 94.6 (60.9)
6 96.2 (60.8) 96.8 (60.7) 94.7 (60.9) 95.4 (60.8)
8 97.2 (60.7) 97.4 (60.6) 95.1 (60.9) 95.8 (60.8)
10 97.6 (60.6) 97.7 (60.6) 95.3 (60.8) 96.2 (60.8)

D NA 84.0 (61.5) 91.0 (61.1) 91.7 (61.1) 92.0 (61.1)
F NA 98.6 (60.5) 98.5 (60.5) 95.7 (60.8) 96.7 (60.7)

The machine learning algorithm has four choices: NBL, MSL, TDLL, and ODLL. The feature representation (FP) has six options: A, B, C, D, E, and
F, where A, B, C, and E have five different window sizes 2, 4, 6, 8, and 10. The 95% confidence interval for each precision value (p) in the table is
p 6 0.5;1.5%.

Table 6 j Overall Performance of Different Classifiers for General Medical Terms

Precision for General Biomedical Terms MED (95% confidence interval) %

FP WS NBL MSL TDLL ODLL

A 2 59.7 (66.5) 72.0 (65.9) 70.9 (66.0) 71.4 (66.0)
4 46.6 (66.6) 69.6 (66.1) 74.6 (65.8) 73.0 (65.9)
6 37.1 (66.4) 67.1 (66.2) 74.3 (65.8) 71.0 (66.0)
8 32.5 (66.2) 65.2 (66.3) 74.8 (65.7) 71.4 (66.0)
10 30.7 (66.1) 63.5 (66.4) 74.7 (65.7) 69.8 (66.1)

B 2 62.2 (66.4) 71.8 (65.9) 74.8 (65.7) 75.3 (65.7)
4 58.1 (66.5) 71.1 (66.0) 77.0 (65.6) 76.5 (65.6)
6 57.6 (66.5) 72.9 (65.9) 77.2 (65.5) 76.9 (65.6)
8 56.4 (66.6) 71.7 (66.0) 76.5 (65.6) 74.3 (65.8)
10 56.0 (66.6) 71.8 (65.9) 77.1 (65.6) 73.6 (65.8)

C 2 63.6 (66.4) 72.2 (65.9) 76.0 (65.6) 75.4 (65.7)
4 60.8 (66.5) 71.8 (65.9) 77.1 (65.6) 76.4 (65.6)
6 64.0 (66.3) 75.6 (65.7) 77.6 (65.5) 77.1 (65.6)
8 64.6 (66.3) 76.4 (65.6) 77.1 (65.6) 75.5 (65.7)
10 64.5 (66.3) 76.1 (65.6) 76.9 (65.6) 74.4 (65.8)

E 2 49.4 (66.6) 68.7 (66.1) 75.2 (65.7) 75.2 (65.7)
4 51.6 (66.6) 71.9 (65.9) 77.7 (65.5) 76.5 (65.6)
6 53.9 (66.6) 72.3 (65.9) 76.4 (65.6) 76.2 (65.6)
8 57.7 (66.5) 74.0 (65.8) 77.4 (65.5) 77.0 (65.6)
10 56.9 (66.5) 74.7 (65.7) 77.3 (65.5) 76.6 (65.6)

D NA 45.1 (66.6) 66.6 (66.2) 75.0 (65.7) 75.9 (65.7)
F NA 63.0 (66.4) 77.8 (65.5) 78.0 (65.5) 74.0 (65.8)

The machine learning algorithm has four choices: NBL, MSL, TDLL, and ODLL. The feature representation (FP) has six options: A, B, C, D, E, and
F, where A, B, C, and E have five different window sizes 2, 4, 6, 8, and 10. The 95% confidence interval for each precision value (p) in the table is
p 6 5.5;6.6%.
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feature representation ‘‘F,’’ with an overall precision around
75%. For general English words, naı̈ve Bayes learning and our
mixed supervised learning achieved the best performance
when using feature representation ‘‘E’’ with a window size of
10, with an overall precision of 90.8%. However, naı̈ve Bayes
learning with feature representation ‘‘D’’ or feature represen-
tation ‘‘A’’ in some cases had the worst performance for each
set. For example, naı̈ve Bayes learning with feature represen-
tation ‘‘D’’ had a precision of 84.0% compared with more than
90% achieved by other classifiers for abbreviations.

Table 8 indicates that (1) abbreviations usually achieved the
best performance using a larger window size with naı̈ve
Bayes learning or our mixed supervised learning; (2) there is
no particular preference for feature representation, window
size, or machine-learning algorithm for general biomedical
terms; and (3) our mixed supervised learning achieved the
best performance with feature representation ‘‘E’’ associated
with a large window size ($6) for hard, interest, and serve, and
naı̈ve Bayes learning achieved the best performance using
feature representation ‘‘F’’ for the noun line.

Comparisons between the decision list learning algorithms
and naı̈ve Bayes learning with our mixed supervised learning
for different word sets are shown in Figures 2 and 3, which
also show the overall performance of classifiers with different
window sizes. These figures indicate that naı̈ve Bayes
learning was unstable and varied dramatically for different
feature representations. For example, naı̈ve Bayes learning
had the worst performance for feature representation ‘‘D’’ but
had the best performance for feature representation ‘‘F’’ when
testing on abbreviations.

For a fixed window size ‘‘ws’’ and a fixed feature represen-
tation option ‘‘fp’’ (p-values were computed using one-tailed
paired t-test):

� The performance of our implementation of decision list
classifiers for abbreviations was better than that of
traditional decision list classifiers (p , 0.0013). However,
the opposite held for the other two sets (p , 0.001).

Table 7 j Overall Performance of Different Classifiers
for General English Words

Precision for General English Words ENG (%)

FS WS SVM NBL MSL TDLL ODLL

A 2 84.4 83.8 83.9 83.0 81.9
4 86.0 85.2 85.5 83.5 81.0
6 85.6 83.8 84.4 82.6 79.0
8 85.4 82.9 83.7 82.1 77.4
10 84.9 81.5 82.5 81.4 75.8

B 2 84.3 84.3 81.6 82.4 81.1
4 86.8 85.5 85.6 82.7 79.9
6 87.1 84.9 85.0 81.8 78.2
8 87.0 83.3 83.4 80.3 75.8
10 86.9 82.7 82.7 79.5 74.2

C 2 84.0 82.9 83.0 80.8 79.6
4 86.9 83.6 83.6 81.4 78.3
6 87.2 83.6 83.7 80.6 77.0
8 86.8 82.5 82.5 79.2 75.0
10 86.5 81.7 81.8 78.8 74.2

E 2 85.9 84.8 83.6 84.9 83.8
4 88.8 88.9 89.3 86.1 84.9
6 89.5 90.4 90.6 85.8 84.5
8 89.7 90.5 90.6 85.2 84.1
10 89.6 90.8 90.8 85.2 83.8

D NA 85.4 83.2 82.6 85.5 84.5
F NA 89.2 89.2 89.3 83.8 82.6

The machine-learning algorithm has four choices: NBL, MSL, TDLL,
and ODLL. The feature representation (FP) has six options: A, B, C,
D, E, and F, where A, B, C, and E have five different window sizes 2,
4, 6, 8, and 10. The 95% confidence interval for each precision value
(p) in the table is p 6 1.4;2.1%.

Table 8 j Best Classifier for Each Word in Three Data
Sets

Word Best Classifier Precision (%)

ANA {F,0,MSL|NBL} 100.0
APC {F,0,NBL} 99.0
ASP {C,10,MSL} 90.8
BPD {E,8,MSL|NBL} 98.4

{F,0,MSL|NBL}
BSA {F,0,MSL|NBL} 99.5
DIP * 100.0
FDP {F,0,MSL|NBL} 98.8
LAM {C,10,MSL|NBL}
MAC {F,0,MSL|NBL} 98.4
MAS {C,10,MSL|NBL} 100.0

{F,0,MSL|NBL|ODLL}
MCP {E,10,NBL} 99.1
PCA {F,0,MSL|NBL} 99.4
PCP {E,10,MSL} 98.2
PEG {F,0,MSL|NBL} 96.7
PVC {F,0,MSL|NBL} 99.3

{E,10,MSL|NBL}
RSV {F,0,MSL|NBL} 98.4
LINE {F,0,MSL|NBL} 90.0
SERVE {E,10,MSL|NBL} 91.8
INTEREST {E,6,MSL} 91.9
HARD {E,8|10,MSL|NBL} 92.1
COLD {C,2,ODLL} 90.9
DEGREE {E,4,MSL|TDLL} 98.2
DEPRESSION {A,8,ODLL} 88.8
DISCHARGE {E,10,MSL} 90.8

{B,8,ODLL}
EXTRACTION {C,8,TDLL} 89.7
FAT {A|B,4,ODLL} 85.9
GROWTH {F,0,MSL|NBL} 72.2
IMPLANTATION {A,8,TDLL} 90.0
JAPANESE {F,0,TDLL} 79.8

{B,2,MSL}
LEAD 91.0
MAN {C,2,MSL} 91.0
MOLE {F,0,MSL|TDLL} 91.1
MOSAIC {F,0,MSL} 87.8
NUTRITION {C,10,TDLL} 58.1

{C,8,MSL|NBL}
PATHOLOGY {A,10,TDLL} 88.2
REDUCTION {E,2,ODLL|MSL|TDLL} 91.0
REPAIR {E,8,TDLL} 76.1
SCALE {E,6,MSL|NBL} 90.9
SEX {A,4,ODLL},

{E,8|6|10,ODLL}
89.9

ULTRASOUND {D,3,ODLL} 87.8
WEIGHT {C,8,TDLL|NBL} 78.0

{E,6,NBL}
WHITE {E|C,4,ODLL} 75.6

Note that when there is no rare sense, our mixed supervised learning
is the same as naı̈ve Bayes learning.
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� The performance of mixed supervised learning classifiers
for all sets was generally superior to that of naı̈ve Bayes
classifiers (p , 0 .001).

� The performance of naı̈ve Bayes classifiers was much
worse than other classifiers for general biomedical terms
(p , 0.0001).

Discussion
Note that the results obtained in this study for general English
words cannot be compared with results reported in other
studies4,13,20,21,25 fornotusing the commonevaluationmethod.
But some of our findings are consistent with findings reported
in these studies. For example, we found that naı̈ve Bayes
learning achieved the best performance on disambiguating the
word line, which is consistent with the finding of Mooney.21

We believe that supervised WSD is suitable when there are
enough sense-tagged instances. For example, the best
classifier for ASP (with a total of 141 gold standard instances)
achieved a precision of 90.8%, while the precision of the best
classifier for APC (with a total of 2,310 gold standard
instances) achieved a precision of 99.0% even though they
have the same number of senses (i.e., five). There are at most
100 instances for each general biomedical term with an
average of 33.3 instances, while averages of other sets are at
least several hundred instances. All supervised WSD
classifiers performed with a precision of less than 80% for
general biomedical terms, while most classifiers achieved
around 90% for general English words andmore than 90% for
abbreviations. The overall performances of supervised WSD
classifiers differ among data sets. Almost all classifiers

F i g u r e 2. The comparison of naı̈ve Bayes learning and our supervised mixed learning. ABBR stands for abbreviations, MED
for general biomedical terms, and ENG for general English words.
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achieved better overall performance for set ABBR than those
for sets MED and ENG. One possible reason is that senses of
abbreviations are domain-specific, and most of them are
generally quite unrelated, which makes the disambiguation
task easier than others. For example, the abbreviation PCA
has six senses that are comparable to the general English
words line and interest. The best classifier for PCA achieves
a precision of more than 99%, while the best classifiers for line
and interest achieve precisions of lower than 93%. The best
choice of window size is also related to data sets. For
example, the performance of classifiers for abbreviations
increases when the window size increases, but the perfor-
mance for general English words usually decreases when the
window size increases after a size of 4.

Feature representations ‘‘E’’ or ‘‘F’’ together with large
window sizes achieved the best performance for almost

every abbreviation. However, feature representation ‘‘A,’’
which contains words with their oriented distances, and
feature representation ‘‘D,’’ which contains all words with
their corresponding orientation within a window of size 3
plus the three nearest two-word collocations, performed
much worse than others for abbreviations. This difference
may be because feature representations ‘‘A’’ and ‘‘D’’ failed to
capture critical keywords that indicated their biomedical
senses. Moreover, features derived using ‘‘A’’ were sparse
compared with others, a problem not shared by ‘‘E’’ and ‘‘F.’’

The difference between feature representations ‘‘C’’ and ‘‘E’’ is
the inclusion of collocations in ‘‘E.’’ Classifiers associated with
‘‘E’’ outperform the corresponding classifiers using feature
representation ‘‘C’’ given fixed value combinations of other
aspects (p , 0.001). This indicates that the inclusion of
collocations is important for supervisedWSD. However, since

F i g u r e 3. The comparison of traditional decision list learning and our decision list learning. ABBR stands for abbreviations,
MED for general biomedical terms, and ENG for general English words.
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collocations by themselves do not achieve good performance,
the ideal feature representation would be a combination of
collocations with other techniques such as bag of words and
oriented words.

Naı̈ve Bayes learning did not perform well when there were
rare senses in the training set. NBL was also unstable with
respect to feature representations and window sizes. Our
mixed supervised learning, which combines naı̈ve Bayes
learning with instance-based learning, overcomes these
disadvantages and achieves relatively better performance
(p , 0.001).

The study shows that there is no single combination of feature
representation, window size, and machine-learning algo-
rithm that has a stable and relatively good performance for all
ambiguous terms. The choice of the best classifier for each
term depends on the number of sense-tagged instances for
that term as well as its associated domain. The experimental
method presented in the study can be used to select the best-
supervised WSD classifier for each ambiguous term.

Note that in the study, we did not investigate the predication
power of classifiers that were produced through bagging or
boosting multiple weak classifiers.26 One possible direction of
future work is to apply bagging or boosting techniques to
supervised WSD and see the potential improvement when
using these techniques.

Limitations
The study has several limitations. We used a predetermined
number 3,000 to reduce the number of instances for a specific
term. However, different machine-learning algorithms exhibit
different sensitivities to sample size. We plan to perform
a sample sensitivity study to investigate the relation between
machine-learning algorithm and sample size.

Additionally, we used only precision to measure the
performance. Measures such as the multiclass receiver-
operating characteristic (ROC) curve could be used, but it
would be very complicated because the numbers of classes as
well as the numbers of instances were different among terms
in the same data set as well as from different data sets. It is
caused by the nature of our task: different terms have
different numbers of senses and frequency in the same
domain, and the same term has different numbers of senses
and frequency in different domains. It is also the reason why
our comparisons among different data sets were not equally
footed.

Conclusion
We conducted an experiment that compared feature repre-
sentation, window size, and supervised learning algorithms
and concluded that supervisedWSD is suitable only when we
have enough sense-tagged instances (with at least a few
dozens of instances for each sense). Collocations combined
with neighboring words are appropriate feature rep-
resentations. For terms with unrelated biomedical senses,
a large window size (e.g., the whole paragraph) should be
used, while for general English words a moderate window
size between 4 and 10 is sufficient. For abbreviations, our
mixed supervised learning was stable and generally better
than naı̈ve Bayes learning, and our implementation of

decision list learning performed better than traditional
decision list learning.

This study shows clearly that the different aspects of
supervised WSD depend on each other. The experiment
method presented in the study can be used to select the best-
supervised WSD classifier for each ambiguous term.

References j

1. Ide N, Veronis J. Introduction to the special issue on word sense
disambiguation: the state of the art. Computational Linguistics.
1998;24(1):1–40.

2. Ng HT, Zelle J. Corpus-based approaches to semantic in-
terpretation in natural language processing. AI Magazine.
1997;winter:45–64.

3. Kilgarriff A, Rosenzweig J. Framework and results for English
SENSEVAL. Comput Humanities. 1999;34:1–2.

4. Bruce R, Wiebe J. Word-sense disambiguation using decompos-
able models. Proceedings of the Thirty-Second Annual
Meeting of the Association of Computational Linguistics. 1994:
139–46.

5. Ng HT. Getting serious about word-sense disambiguation.
Proceedings of the ACL SIGLEX Workshop on Tagging Text
with Lexical Semantics: Why, What and How? 1997:1–7.

6. Engelson SP, Dagan I. Minimizing manual annotation cost in
supervised training from corpora. Proceedings of the Thirty-
Fourth Annual Meeting of the Association of Computational
Linguistics. 1996;34:319–26.

7. Fujii A, Inui K, Tokunaga T, Tanaka H. Selective sampling for
example-based word sense disambiguation. Computational
Linguistics. 1998;24(4):573–97.

8. Liu H, Lussier Y, Friedman C. Disambiguating ambiguous
biomedical terms in biomedical narrative text: an unsupervised
method. J Biomed Inform. 2001;34:249–61.

9. Liu H, Johnson SB, Friedman C. Automatic resolution of
ambiguous terms based on machine learning and conceptual
relations in the UMLS. J Am Med Inform Assoc. 2002;9:621–36.

10. Veronis J, Ide N. Very large neural networks for natural language
processing. Proceedings of the European Conference on Artifi-
cial Intelligence. 1990:366–8.

11. Towell G, Voorhees EM. Disambiguating highly ambiguous
words. Computational Linguistics. 1998;24(1):125–46.

12. Yarowsky D. Decision lists for lexical ambiguity resolution:
application to accent restoration in Spanish and French.
Proceedings of the Thirty-Second Annual Meeting of the
Association of Computational Linguistics. 1994:88–95.

13. Ng HT, Lee HB. Integrating multiple knowledge sources to
disambiguate word sense: an exemplar-based approach. Pro-
ceedings of the Thirty-Fourth Annual Meeting of the Association
of Computational Linguistics. 1996:40–7.

14. NgHT. Exemplar-basedword sense disambiguation: some recent
improvements. Proceedings of the Second Conference on Empir-
ical Methods in Natural Language Processing. 1997:208–13.

15. Mooney R. Inductive logic programming for natural language
processing: In: Muggleton S (ed). Inductive Logic Programming:
Selected Papers from the 6th International Workshop. New York,
NY: Springer Verlag, 1997.

16. Marquez L. Machine learning and natural language
processing. Technical Report LSI-00-45-R, Departament de
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