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ABSTRACT
Background: Data privacy is a major concern in
spatial epidemiology because exact residential locations
or parts of participants’ addresses such as street or zip
codes are used to perform geospatial analyses. To
overcome this concern, different levels of aggregation
such as census districts or zip code areas are mainly
used, though any spatial aggregation leads to a loss of
spatial variability. For the assessment of urban
opportunities for physical activity that was conducted
in the IDEFICS (Identification and prevention of dietary-
and lifestyle-induced health effects in children and
infants) study, macrolevel analyses were performed,
but the use of exact residential addresses for micro-
level analyses was not permitted by the responsible
office for data protection. We therefore implemented a
spatial blurring to anonymise address coordinates
depending on the underlying population density.
Methods: We added a standard Gaussian distributed
error to individual address coordinates with the
variance s2 depending on the population density and
on the chosen k-anonymity. 1000 random point
locations were generated and repeatedly blurred 100
times to obtain anonymised locations. For each
location 1 km network-dependent neighbourhoods
were used to calculate walkability indices. Indices of
blurred locations were compared to indices based on
their sampling origins to determine the effect of spatial
blurring on the assessment of the built environment.
Results: Spatial blurring decreased with increasing
population density. Similarly, mean differences in
walkability indices also decreased with increasing
population density. In particular for densely-populated
areas with at least 1500 residents per km², differences
between blurred locations and their sampling origins
were small and did not affect the assessment of the
built environment after spatial blurring.
Conclusions: This approach allowed the investigation
of the built environment at a microlevel using
individual network-dependent neighbourhoods, while
ensuring data protection requirements. Minor influence
of spatial blurring on the assessment of walkability was
found that slightly affected the assessment of the built
environment in sparsely-populated areas.

BACKGROUND
Data privacy is a major issue in conducting epi-
demiological studies. In spatial epidemiology,

data protection becomes an even more
important concern, since the exact residential
location or parts of participants’ address infor-
mation such as street names or zip codes are
used to perform geospatial analyses.1 2 To over-
come this concern different levels of aggrega-
tion such as census districts or zip code areas
are mainly used for spatial analyses of disease
patterns or to assess the built environment in
the neighbourhood of participants.1 3 Any
administrative division, however, leads to a loss
of spatial variability and the use of address
proxies based on centroids of aggregated areas
induces large positional discrepancies.3–5

Considering built environment research, the
use of ego-centred neighbourhoods based on
the home address of participants is recom-
mended to assess environmental exposure of
the built environment on a microlevel and to
investigate its influence on physical activity of
residents.6–8

Complementary to the overall examination
programme of the IDEFICS study (Identi-
fication and prevention of dietary- induced
and lifestyle-induced health effects in children
and infants),9 we performed environmental
analyses in German study regions using geo-
graphic information systems (GIS) to investi-
gate the impact of the built environment on
the physical activity of children.10 The
IDEFICS study was conducted from 2006 to
2012 as a longitudinal multicentre study exam-
ining 16 228 children aged 2–9 years from

Strengths and limitations of this study

▪ Spatial blurring only induces small differences in
values of the walkability index between blurred
locations and their origins.

▪ Impact of spatial blurring on the association
between walkability and physical activity could
not be investigated.

▪ The use of a large simulated data set enabled us to
identify differences in the walkability index and to
calculate the k-anonymity of blurred points.
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eight European countries at baseline to investigate the
aetiology of lifestyle-related and nutrition-related diseases.9

In one German study region, pilot analyses of the built
environment were conducted on a macrolevel considering
school catchment areas as aggregation level to assess the
living environment of participating children.10

Linking individual and environmental data based on
administrative areas has two main disadvantages. First,
the use of school catchment areas, which are defined by
the municipality, reduces the variability of environmental
variables of participants, for example, by calculating
average values of these variables in oftentimes large
areas.6 Second, administrative areas are artificially
defined and as such do not necessarily reflect individual
characteristics or patterns in physical behaviour. Adjacent
school catchment areas, for instance, may capture the
living environment of children living near schools, but
children living at the border of one area may be influ-
enced by characteristics of an adjacent area, which is
referred to as the container effect.4 Hence, assessing the
environment of participants based on their exact home
address provides the best information on the individual
living environment. Such an approach may also overcome
the modifiable area unit problem which results from arti-
ficial areas and varying sizes of aggregation levels.7 In the
IDEFICS study, however, the use of exact address coordi-
nates of participants was not permitted by the office for
data protection of Lower Saxony, which was responsible
for the two German study regions.
We therefore considered a geomasking approach to

anonymise address data of participants in the German
study regions of the IDEFICS study, which provides a
simple method to blur participants’ address coordinates
by adding a standard Gaussian error.2 11 According to
Cassa et al,11 this approach only slightly affects cluster
detection based on spatial scan statistics, but it is not
clear how the assessment of built environment measures
is affected.6 8 Thus, we calculated the walkability index
according to Freeman et al12 in ego-centred network-
dependent neighbourhoods around randomly generated
point locations and their repeatedly blurred counter-
parts. Differences between the value of the index based
on sampling origins and based on blurred locations
were considered to assess whether this approach has an
effect on walkability measures. Hence, the simulation
study was conducted to investigate the effect of spatial
blurring on walkability measures that are calculated on a
microlevel while ensuring data protection requirements.

METHODS
Spatial blurring
Implementing a fixed standard Gaussian error in a
varying urban environment does not provide a proper
disturbance that prevents the reidentification of
addresses of participants’ home with regard to
k-anonymity, where one participant should not be reiden-
tified from at least k−1 individuals.11 13 14 For example, a

fixed disturbance value used for one study region possibly
allows to reidentify participants in sparsely-populated sub-
districts, because anonymised addresses may be located
close to less than k residents. In densely-populated sub-
districts of the study area, such a disturbance value may
be too large and could be reduced while still preventing
reidentification of participants within k residents.11

To consider the variability of population density within
a study region, we implemented a procedure to anonym-
ise given coordinates ai¼(bi; ci); ai [ R2; of participants
i¼1; . . . ;n on a surface W , R2. In detail, we added a
spatial blurring Si¼(Xi; Yi) based on independent
Gaussian distributed errors Xi; Yi � N (0;s 2

i ) for both
components to obtain the anonymised coordinates
ai þ Si¼(bi þ Xi; ci þ Yi), where Si � N (0;s 2

i I2) and I2 is
the two-dimensional identity matrix. Anonymised coordi-
nates ai þ Si are located in a 3si circle around the ori-
ginal address coordinates with probability of about
99.7%, due to the Gaussian distribution. Hence, we con-
sidered the area jBj¼9s 2

i p to define the degree of anon-
ymisation using the expected age-specific number ks of
residents that provides k-anonymity given as
ks¼jBj pARDA, where RDA is the number of residents
per km² and pA [ [0; 1] is the age-specific percentage
of residents in a given subdistrict A , W. Based on the
parameter of k-anonymity ks, we derived the variance s 2

i
of the spatial blurring as being inversely proportional to
the underlying population density pA � RDA of the spe-
cific age group as

s 2
i (A) ¼

ks
9p � pA � RDA

:

In summary, the variance of the Gaussian error will be
calculated for any coordinate based on the underlying
population density of the considered age group and the
chosen k-anonymity. The blurring is then induced by
the inverse Gaussian distribution with mean value of
zero and the given variance and is added to the original
coordinates. Coordinates in densely-populated areas will
be blurred less, and vice versa.

Built environment measures
Spatial data on land use and population density were
provided by the land registry office of Lower Saxony.
Data on footpath network were obtained from the
OpenStreetMap project (http://www.openstreetmap.
org) and validated using official data. Additionally, bus
stops were digitalised based on available maps and lists
provided by the public transit company.10 ArcGIS 10.0
(ESRI 2011. ArcGIS Desktop: Release 10. Redlands) was
used to process and digitalise spatial data as well as to
generate random locations within the study region.
The walkability index was calculated based on ego-

centred network-dependent neighbourhoods capturing
an area that can be reached within 1 km based on
the street network.6 8 For both, circular and network-
dependent neighbourhoods, the appropriate size of
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buffers that should be used to assess built environment
measures is still discussed in the literature. Commonly
used buffer distances range from 400 to 3200 m and are
mainly defined according to walking distances.7 Thus,
we determined the distance of 1 km based on a 10 to
15 min walking distance. Network-dependent neighbour-
hoods around blurred points and their origins were cal-
culated using the network analyst-tool in ArcGIS 10.0.
Walkability measures were calculated within these ego-

centred neighbourhoods using the spatstat-package
(1.33.0)15 in R (3.0.1):16

▸ Number of residents per km2,
▸ Land use mix based on the entropy of land use types,
▸ Number of intersections per area to assess the street

connectivity,
▸ And number of bus stops per area to assess public

transit density.
To standardise all four measures, z-scores of each vari-

able were calculated based on mean and SD of walkabil-
ity measures determined separately for sampling origins
and for each blurring step. Z-scores of all four measures
were then summed up to the walkability index according
to Freeman et al.12 Thus, the walkability score is a stan-
dardised non-dimensional score with mean value 0 and
a SD of 4 based on the four standardised components.

Study data
We focussed our analyses of the built environment on
one German survey region of the IDEFICS study to valid-
ate the approach of spatial blurring.10 For this purpose,
we thus considered built environment measures that
were assessed in the city of Delmenhorst, Lower Saxony,
which covers an area of about 62 km² with about 77 300
residents. The baseline survey of the IDEFICS study was
conducted in 2007/2008 and geographical data were
assessed for the same year.9

We generated 1000 random locations i¼1; . . . ; 1000;
based on the underlying population density of the
age-group that was eligible for the IDEFICS study within
subdistricts in the study area of Delmenhorst which are
presented in figure 1. We performed the spatial blurring
based on the presented approach using data on residen-
tial density and the age-specific percentage of children
below the age of 12 per subdistricts. These data were
provided by the municipality of Delmenhorst. Randomly
generated sampling origins i¼1; . . . ; 1000 were repeat-
edly blurred 100 times, j¼1; . . . ; 100; based on the
underlying age-specific population density pA � RDA and
a given k-anonymity ks using the spatstat-package
(1.33.0) and the sp-package (1.0–13) in R (3.0.1).
With regard to statistics of aggregated areas, thresholds

for k-anonymity of 5 or 10 are commonly used to prevent
the reidentification of participants.13 14 However, deter-
mining k-anonymity for spatial analyses leads to a trade-off
between geomasking of addresses and resulting
k-anonymity, which has significant computational chal-
lenges.14 17 To identify the best approach that provides a
compromise between geomasking and k-anonymity, we

blurred sampling origins considering values of ks¼10; 15
as a parameter for the blurring variance s2

i . By this, we
assumed that our virtual participants should not be reiden-
tified among 10 and 15 residents of the same age group,
respectively. We chose values greater than k¼5 as param-
eter for k-anonymity, since shifting original addresses of
participants through spatial blurring can result in anon-
ymised locations that fall into sparsely-populated areas
where common thresholds of k-anonymity may not be ful-
filled anymore. We therefore calculated the observed
k-anonymity k̂i;j of blurred locations j¼1; . . . ; 100 and
origins i¼1; . . . ; 1000 for each parameter ks based on the
underlying age-specific population density within 3si

circles and evaluated if the observed k-anonymity k̂i;j did
not fall under a threshold of k¼5.

Statistical analyses
To investigate the variation of the simulated blurring,
mean, SD, and range of the simulated blurring

jsij¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2i þ y2i

q
were calculated for each sampling origin.

Additionally, the mean, SD, and range of k̂i;j of blurred
locations were also calculated for each sampling origin.
Spatial blurring and k̂i;j were depicted depending on the
underlying population density. The walkability index was
calculated based on ego-centred neighbourhoods of
1000 sampling origins i and of 100 000 blurred
locations j. Owing to the spatial blurring, locations fell
outside the study area and neighbourhoods could not
be calculated for 480 (ks¼10) and 476 (ks¼15) blurred
locations. Differences in values of the walkability index
between blurred locations and their related origins were
calculated to assess changes in the index that were
induced by spatial blurring. For each sampling origin i
mean differences of walkability indices of blurred loca-
tions j to the related origin were calculated and dis-
played depending on the underlying population density.
All statistics were calculated in SAS 9.3 (SAS Institute
Inc., Cary, North Carolina, USA).

RESULTS
Figure 2 presents statistics of the simulated blurring jsij
and the resulting k̂i;j compared to the initial si and the
threshold of k¼5, respectively. Mean shift of jsij is close to
the initial variance si for both values of ks. Spatial blur-
ring induced higher values of about 200–500 m for areas
with less than 1000 residents per km² (ks¼10) and for
areas with less than 1500 residents per km² (ks¼15),
respectively. Accordingly, mean and maximum shift jsij
decreased for densely-populated areas with more than
1500 residents per km². The maximum shift jsij showed
values of 150 m (ks¼10) or 200 m (ks¼15) at most, while
mean jsij decreased from 48 to 32 m (ks¼10) and 58 to
39 m (ks¼15) (figure 2, top). Summing up, for both
values of k-anonymity the mean and maximum shift
decreased with increasing residential density. Assuming a
higher value of k-anonymity (ks¼15), that is a participant
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cannot be reidentified from at least 15 residents, the shift
of the coordinates was slightly higher compared to the
lower value of k-anonymity.
Mean observed k-anonymity k̂i;j leveled off at the

chosen parameter ks. On the basis of higher value of
k-anonymity ks¼15; the observed k̂i;j was higher than
based on the lower value ks¼10 (figure 2, bottom). For
both parameters, the observed k-anonymity k̂i;j showed
values below the threshold of k¼5 and even reached
zero. Overall, the observed k-anonymity k̂i;j fell below
k¼5 for 4.3% (ks¼10) and 1.2% (ks¼15) of blurred
address locations, respectively. In other words, on
average the assumed parameter of k-anonymity was met.
However, assuming the less restrictive k-anonymity
(ks¼10 compared to ks¼15), the blurred coordinates
were more likely to be reidentified from less than five
residents after spatial blurring.

Values of walkability indices of 1000 original loca-
tions i showed mean and SD of 0:92 �10�15 and 2.9
and ranged from −10.5 to 6.6. Figure 3 shows mean
differences in the walkability indices between blurred
locations j and their related sampling origins i
depending on the underlying population density RDA.
Each dot shows the mean difference between the walk-
ability index based on the neighbourhood of the sam-
pling origin and walkability indices based on the
neighbourhoods of 100 blurred locations of this
origin. For both values of k-anonymity ks, the mean
difference strongly decreased for a higher population
density and did not exceed a value of 1 for at least
1000 residents per km² with only some exceptions.
Summarising, it became obvious that the walkability
index remained rather stable when shifting the
address coordinates in densely-populated areas

Figure 1 Distribution of random

points and age-specific

population density of subdistricts

in the study region Delmenhorst,

Germany.
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whereas it showed some more variability in sparsely-
populated areas. For the more restrictive k-anonymity,
a slightly higher difference between the walkability
indices based on the blurred locations and the ori-
ginal location was observed.

DISCUSSION
The simulated spatial blurring that we conducted was
based on randomly generated locations. In densely-
populated areas, it resulted in only small shifts for most
original locations. Owing to the population-dependent
si, the blurred points were rather strongly shifted in
sparsely-populated areas, but the shift was less than 50 m
on average for densely-populated areas with at least 1500
residents per km². Apparently, a stronger shift was
observed for ks¼15 than for ks¼10, whereas for ks¼15

the resulting k-anonymity k̂i;j fell under the threshold of
k¼5 only in 1.2% of blurred locations.
Mean differences between walkability indices based

on blurred points and on their related sampling origins
showed similar patterns. For sparsely-populated areas,
spatial blurring in most cases had a stronger impact on
the walkability index. However, for blurred locations in
densely-populated areas with at least 1000 residents per
km², spatial blurring only led to differences in the walk-
ability index of about 0.5–1 at most for both values of
ks¼10; 15. Compared to the range of the walkability
index of original locations, these differences were
acceptable and only slightly affected the assessment of
built environment measures. On the basis of this
approach, the use of anonymised individual coordinates
of the home address was allowed by the office for data
protection of Lower Saxony. In summary, we can

Figure 2 SD si of the spatial blurring jSij and summary statistics of the simulated spatial blurring jsij (top) and of resulting k̂i ;j
(bottom) depending on the underlying population density RDA and two parameters ks¼10; 15.

Figure 3 Mean difference in walkability indices between original coordinates and blurred coordinates (dots) depending on the

underlying population density RDA for parameters ks¼10; 15.
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therefore recommend ks¼15 as a reasonable comprom-
ise between an acceptable shift and k-anonymity. Based
on the SD of walkability measures in our study, a differ-
ence of 0.5 is equivalent to 17% of the SD. In larger
study regions with higher variation in built environment
characteristics, the walkability index can show a higher
range, as for example in Freeman et al,12 where the
index showed values from −7.9 to 11.7. Thus, the
effect of spatial blurring might be even lower depend-
ing on the size and environmental variability of the
study area.
Our findings concerning the assessment of built envir-

onment measures are similar to the results of Cassa et al11

who showed that the spatial blurring only slightly affected
cluster detection analyses. However, some limitations
have to be discussed. Cassa et al18 deduced a vulnerability
of spatial blurring which may enable adversaries to rei-
dentify individuals based on the mean coordinates of
multiple anonymised versions of the original data.
Deriving ego-centred neighbourhoods based on address
coordinates, that were only blurred once, should reduce
the risk of reidentification of study participants.
Sparsely-populated areas, such as parts in the centre

of the study area, induced larger changes in the walk-
ability index if these areas were adjacent to densely-
populated areas. Different approaches, such as the
donut method,19 may reduce the geomasking error and
should restrict effects of sparsely-populated areas within
or at the edge of the study area as long as thresholds for
k-anonymity are maintained.
Using a large simulated data set is the major strength

of our study, since the knowledge about the origins and
the outcome of our approach enabled us to identify the
difference in the walkability index and to calculate the
k-anonymity of blurred points. Repeating the spatial
blurring multiple times for one origin also controlled
for the variation in our results.
However, consequences for real study samples have to

be further investigated. In the IDEFICS study, the major-
ity of the participating children lived in urban and
densely-populated areas of the study region.10 Thus, the
spatial blurring should not affect the investigation of the
built environment in the majority of the study sample.
Rural and sparsely-populated areas may have an effect
on the assessment of the built environment, due to the
changes in walkability indices of blurred locations that
were found in our analyses. Excluding participants that
live in areas with less than 1000 residents per km²
should ensure that spatial blurring does not lead to an
undesired bias in the walkability index. However, the
association of physical activity and built environment
might then again be affected due to differences in the
physical behaviour between residents of urban and rural
neighbourhoods. Thus, the exclusion of participants in
sparsely-populated areas still needs to be further
investigated.
Eventually, we only inferred the effect of spatial blur-

ring on the assessment of built environment measures,

but not on the association between physical activity
levels of residents and walkability in their neighbour-
hood. Thus, further analyses based on data of partici-
pants whose addresses are allowed to be used in spatial
analyses are necessary to determine the effect of spatial
blurring on the association between built environment
and physical activity levels.
Taking the strengths and limitations into account, the

effect of spatial blurring on built environment measures
and on the walkability index was found to be relatively
small. This supports the feasibility of the presented geo-
masking approach for densely-populated areas with at
least 1000 residents per km². The use of point locations
to assess the built environment on a micro-level is a
strong advantage compared to the use of administrative
areas and may compensate both, the disadvantages of
spatial blurring and of a potential exclusion bias of parti-
cipants that live in sparsely-populated areas.7 8

Investigating the association between physical activity
levels of residents and the walkability of their neighbour-
hood, we may therefore conclude that a small change in
the walkability index may only slightly influence the
assessment of built environment measures.

CONCLUSION
The presented approach allows to assess the built envir-
onment on a microlevel while ensuring data protection
requirements. It facilitates to determine the urban
neighbourhood of each participant using ego-centred
network-dependent neighbourhoods based on anon-
ymised address coordinates. Small differences were
found in the walkability index which should only slightly
affect further assessment of the built environment. As a
result of the spatial blurring, available individual contact
details, such as address information, can be used to
assess environmental exposure combining individual
and environmental data on a microlevel while ensuring
data protection requirements.
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