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Abstract. Patients with spinal cord injuries can develop 
severe neurological damage and dysfunction, which is not 
only induced by primary but also by secondary injuries. 
As an evolutionarily conserved pathway of eukaryotes, the 
JAK‑STAT pathway is associated with cell growth, survival, 
development and differentiation; activation of the JAK‑STAT 
pathway has been previously reported in central nervous 
system injury. The JAK‑STAT pathway is directly associ-
ated with neurogenesis and glia scar formation in the injury 
region. Following injury of the axon, the overexpression and 
activation of STAT3 is exhibited specifically in protecting 
neurons. To investigate the role of the JAK‑STAT pathway 
in neuroprotection, we summarized the effect of JAK‑STAT 
pathway in the following three sections: Firstly, the modula-
tion of JAK‑STAT pathway in proliferation and differentiation 
of neural stem cells and neural progenitor cells is discussed; 
secondly, the time‑dependent effect of JAK‑STAT pathway in 
reactive astrocytes to reveal their capability of neuroprotection 
is revealed and lastly, we focus on how the astrocyte‑secretory 
polypeptides (astrocyte‑derived cytokines and trophic factors) 
accomplish neuroprotection via the JAK‑STAT pathway.
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1. Introduction

Every year >10,000 people in China are victims of spinal 
cord injury (SCI) due to traffic accidents, sports injuries and a 
number of other accidents (1). Patients with SCI may develop 
severe neurological damage and dysfunction (1,2). Primary 
injury (mechanical injury) is the characteristic pathophysi-
ology of acute SCI, which is followed by a phase of ‘secondary 
injury’ involving ischemia, calcium‑ and sodium‑mediated 
cellular injury, cell death, inflammation and apoptosis (3,4). 
As an evolutionarily conserved pathway of eukaryotes, the 
JAK‑STAT pathway is associated with cell growth, survival, 
development and differentiation (5).

JAK‑STAT is an intracellular signaling pathway that involves 
the activation of two families of proteins: The Janus kinases 
(JAK) and the signal transducer and activator of transcriptions 
(STAT). JAK is a class of four cytoplasmic protein tyrosine 
kinases that includes JAK1, JAK2, JAK3 and TYK2 (6). The 
STAT family contains seven  transcription factors: STAT1, 
STAT2, STAT3, STAT4, STAT5A, STAT5B and STAT6 (7). 
The JAK‑STAT pathway is a highly regulated and efficient 
system which predominantly regulates gene expression (5). This 
pathway includes the activation of cell membrane receptors by 
polypeptides, such as growth factors, hormones, or cytokines, 
which induce the activation of JAK in cell membranes (8‑11). 
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Protein tyrosine phosphorylation is a significant biochemical 
mechanism, by which growth factors or cytokines regulate 
cellular processes. Initially, JAKs undergo tyrosine phosphoryla-
tion with cell membrane receptor binding (12,13). Subsequently, 
phosphorylated JAKs activate STATs in the cytoplasm 
through tyrosine phosphorylation, leading to the dimerization 
of STATs (9,12,14,15). The STAT dimers translocate to the 
nucleus, where they bind to specific cis‑elements, followed by 
the transcription of various target genes (9,16).

The activation of JAK and STAT has been observed in 
the motoneurons of rats (17,18). Activation of the JAK‑STAT 
pathway has been previously reported in central nervous system 
(CNS) injury (19‑22). The JAK‑STAT pathway is directly asso-
ciated with neurogenesis and glia scar formation of the injury 
region. Following an injury of the axon, the overexpression 
and activation of STAT3 are induced specifically in protecting 
neurons (17). Other studies have reported activation of STAT3 
in reactive astrocytes of damage regions (19,23). In the intact 
spinal cord, STAT3 is localized predominantly in motoneu-
rons and dendrite‑like structures in the anterior horn (24).

This report reviews the following: i) Modulation of the 
JAK‑STAT pathway in proliferation and differentiation of 
neural stem cells (NSCs) and neural progenitor cells (NPCs); 
ii) the time‑dependent effect of JAK‑STAT pathway in reactive 
astrocytes; and iii) astrocyte‑secretory polypeptides promoting 
neuroprotection via the activation of the JAK‑STAT pathway.

2. Modulation of JAK‑STAT pathway in proliferation and 
differentiation of NSCs and NPCs

Following a SCI, endogenous NSCs and NPCs proliferate and 
migrate to the lesion region, where they differentiate exclu-
sively into astrocytes (25,26). Previous studies have confirmed 
the existence of NSCs and NPCs in the spinal cord, which has 
increased the possibility of the spinal cord having the capability 
to self‑repair in response to injury or disease through the appli-
cation of endogenous NSCs and NPCs (27,28). Furthermore, 
recent studies have demonstrated that transplanted NSCs 
can replace the lost neurons and glia following SCI, as well 
as forming functional relays to reconnect the spinal cord 
through the lesion (29,30). Additionally, the modulation of the 
JAK‑STAT pathway has been revealed in the proliferation and 
differentiation of NSCs and NPCs (31,32).

JAK‑STAT pathway promotes astrogliogenesis. Bonni et al (33) 
were the first to report the role of the JAK‑STAT pathway in 
glial differentiation. The authors validated, in cortical precursor 
embryo cells, that activation of the ciliary neurotrophic factor 
(CNTF) receptor subsequently activates JAK1, STAT1 and 
STAT3 and induces the differentiation of NSCs and NPCs into 
astrocytes. Several additional studies have also confirmed the 
role of STAT3 in glial differentiation (34,35). Furthermore, 
glycoprotein 130 (gp130)‑mediated signaling has been demon-
strated to induce the astrocytic differentiation of NSCs and NPCs 
through the JAK‑STAT pathway (33,36). Sriram et al (37) also 
revealed that the gp130‑mediated activation of STAT3 is vital 
in the induction of astrogliosis. Gp130 is a type of multichain 
receptor complex on the cell membrane. This complex includes 
the ligand binding receptor and non‑ligand binding membrane 
glycoprotein, gp130, which have been shown to be significant 

in signal transduction of cytokines, such as the interleukin 
(IL)‑6 family (38). These cytokines bind to multichain receptor 
complexes and induce the dimerization of gp130, followed 
by activation of JAK in cell membranes. This subsequently 
phosphorylates STAT3 at Tyr705, resulting in translocation to 
the nucleus. A number of articles have reported that prolactin 
(PRL) also allows proliferation and differentiation of astro-
cytes, partially via the phosphorylation of JAK2, STAT1 and 
STAT3 (39‑45). DeVito et al (46‑50) demonstrated that PRL can 
stimulate astrocyte growth and the expression of several cyto-
kines in their early studies. Furthermore, the authors found that 
PRL stimulates the growth of astrocytes through increasing the 
phosphorylation of tyrosines in the inactivation loop of JAK2 
and the subsequent phosphorylation of STAT1a, STAT5a and 
STAT5b (51). Another study showed that in conditional knockout 
mice, STAT3 knock‑down inhibited astrogliogenesis (52).

Modulation of the JAK‑STAT pathway can induce neuronal 
and oligodendrocytic differentiation. Cytokines such as inter-
leukin (IL)‑15 that are expressed by the adult NSC of CNS, 
activate STAT1, STAT3 and STAT5 via phosphorylation of JAK, 
and this activation can be blocked by JAK inhibitors (53,54). 
A number of studies have demonstrated that inhibitory 
proteins of the JAK‑STAT pathway are strongly associated 
with neuronal differentiation and neurite outgrowth. These 
inhibitory proteins, including suppressor of cytokine signaling 
(SOCS)2, SOCS3 and SOCS6 can negatively regulate the 
JAK‑STAT pathway induced by factors including insulin‑like 
growth factor‑1 and growth hormone (GH)  (55,56). The 
overexpression of SOCS2 in NSC suppresses GH‑signaling 
and promotes neuronal differentiation, while neurogenesis 
is inhibited (56). Following SCI, in adult mice, the absence 
of SOCS3 promotes gp130‑mediated CNTF signaling via 
the JAK‑STAT pathway, which subsequently promotes axon 
regeneration (57). This finding is consistent with the report by 
Sun et al (58). With regard to the different isoforms of JAK, it 
appears that JAK1 is predominantly associated with astrocytic 
differentiation (33) while JAK2 is considered to be essential 
for NSC proliferation (59,60). Other studies have indicated that 
the deletion of JAK2 inhibits the activation of c‑myc and c‑fos 
promoters and cell proliferation (61); additionally, the absence 
of STAT5 suppresses the induction of c‑fos and blocks cell 
cycle progression (62), confirming that JAK2 and STAT5 may 
be indispensable in cell proliferation. The silencing of JAK3 
induces to the differentiation of NPC into neurons and oligo-
dendrocytes  (60). Furthermore, the suppression of STAT3 
in vitro (63) or its conditional ablation in vivo (52) has been 
validated to promote neurogenesis.

3. Time‑dependent effects of the JAK‑STAT pathway in 
reactive astrocytes

Kernie et al  (64) reported that a significant amount of the 
formation of astrogliotic scars after CNS trauma may be 
attributed to newly generated astrocytes, but not to the 
activation or migration of resident astrocytes. The traditional 
view is that reactive astrocytes can inhibit axonal regrowth 
due to the microenvironmental factors that significantly 
alter immediately following SCI. The major causes include 
production of chondroitin sulfate proteoglycans (65), a type 
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of inhibitory extracellular matrix molecule, and the release of 
pro‑inflammatory cytokines, including IL‑1β, IL‑6 and tumor 
necrosis factor‑α (TNF‑α) (66‑69). These pro‑inflammatory 
cytokines are immunoreactive for phosphorylated STAT3 
following SCI; this indicates a role for the phosphorylation of 
STAT3 in the activation of astrocytes (70‑72), particularly in 
chronic phases, within injury of the spinal cords. Okada et al (73) 
confirmed that suppression of the IL‑6 receptor not only inhibited 
the astrocytic differentiation promoted by IL‑6 signaling via 
the JAK‑STAT pathway, but also prevented the development of 
astrogliosis, which reduces the axonal regeneration in the chronic 
phases after SCI (73,74). In a relative sense, a time‑dependent 
analysis of the reactive astrocytes is critical for the identification 
of its effects in the injured spinal cord. At the acute and subacute 
phases after SCI, the reactive astrocytes serve to separate the 
healthy tissue from the lesion area by restoring the blood‑spinal 
cord barrier (75). This prevents the potential overwhelming 
inflammatory response (76), massive cellular degeneration and 
death (77), and tissue damage during the secondary injury (78). 
Therefore, a number scholars believe that astrogliosis after CNS 
injury is dependent on STAT3 activation, an indispensable step 
for the formation of glia scar and limitation of the spread of 
inflammation (70). Additional studies reported that the deletion 
of STAT3 following SCI leads to the limited migration of 
reactive astrocytes, which was associated with widespread 
infiltration of inflammatory cells, demyelination and severe 
loss of motor function (79,80). Furthermore, this finding was 
also validated by a study by Leung et al (81), where conditional 
ablation of SOCS3 was observed to prolong expression of 
STAT3 in reactive astrocytes and significantly improve wound 
healing and motor function.

4. Astrocyte‑secretory polypeptides promote neuroprotec-
tion via activating the JAK‑STAT pathway

The neuroprotective effect of reactive astrocytes is multi-
faceted and includes astrocyte‑secretory polypeptides, 
which contribute to endogenous neuroprotection and repair. 
Reactive astrocytes can secrete and respond to a number 
of vital cytokines, which affects the cellular state of the 
surrounding cells (microglia and neurons) and of astrocytes 
themselves  (82). Reactive astrocytes can preserve neurons 
and oligodendrocytes, and protect motor functions after 
SCI  (72,76,78), potentially due to the astrocyte‑secretory 
polypeptides (astrocyte‑derived cytokines and trophic factors), 
which alter the microenvironment (83‑85). These cytokines 
include IL‑1β, TNF‑α, IL‑6, IL‑11 and transforming growth 
factor‑β1 (86‑92) and the trophic factors include brain‑derived 
neurotrophic factor, glial cell line‑derived neurotrophic factor, 
nerve growth factor (NGF), CNTF, basic fibroblast growth 
factor and leukemia inhibiting factor (LIF) (93‑97). Recently, 
increasing evidence has indicated that cytokines and trophic 
factors secreted by reactive astrocytes may protect the injured 
tissues and cells through the JAK‑STAT pathway (82,98).

Specifically, IL‑6 and its family members, such as IL‑11, 
LIF and CNTF may be activators of JAK‑STAT signalling in 
neurons following SCI (99‑103). Yamauchi et al (104) demon-
strated the peak expression of IL‑6 to be consistent with the 
maximum activation of JAK1 and STAT3 in neurons, with 
translocation of phosphorylated STAT3 to the nucleus. It has 

previously been validated that the co‑administration of IL‑6 
and soluble IL‑6 receptor can improve neurological mani-
festations and protect motor neurons of the spinal cord from 
degeneration (105). Additional research also indicated that, 
compared with wild‑type mice after injury, IL‑6 gene knockout 
mice exhibited more severe damage and death of the spinal 
cord neurons (106). Further studies have provided evidence 
that IL‑6 is significant in the regulation of sensory functions 
in vivo (107). The study by Yamauchi et al (104) revealed that 
pretreatment with the JAK2 inhibitor, AG‑490 (108) reduced 
the functional recovery of hindlimbs after SCI, which indicated 
that activation of the JAK‑STAT pathway induced by IL‑6 in 
neurons may contribute to neuroprotection after SCI. As an 
effective trophic factor and pro‑inflammatory factor, the LIF 
concentration increased within 24 h following SCI, indicating 
its vital role in regulating inflammatory reactions and preser-
vation of oligodendrocyte following SCI (80,109). Although 
NGF and CNTF have diverse effects on the CNS, including 
differentiation and proliferation, they are able to enhance the 
survival of oligodendrocyte progenitors in CNS (110‑117). 
Oyesiku et al (118) have previously indicated an upregulation 
of CNTF‑receptors in the motoneurons of ventral horn and 
increase of CNTF in white matter, within 24 h after SCI. The 
expression of CNTF in reactive astrocytes was triggered by the 
SCI (119). Dell'Albani et al (120) reported that CNTF, induces 
a rapid tyrosine phosphorylation of JAK1, JAK2, STAT1a/b 
and STAT3. The authors also considered JAK‑STATs to be 
crucial in enhancing cell survival in CNS.

The activation of STAT not only rapidly activates 
caspase-9, -7, -6 and -3 (121) but also induces the transcription 
of non‑apoptotic proteins. It appears that the ratio of STAT1 
and STAT3 or STAT5 activation is significant in cell survival 
and apoptosis, with STAT1 being more apoptotic and STAT3 
and STAT5 exhibiting anti‑apoptotic properties (122). Several 
studies have demonstrated that STAT3 phosphorylation is 
involved in neuroprotection. Cheng et al (22) reported that the 
activation of STAT3 may be associated with the reduction of 
neuronal apoptosis following cerebral injury. Suzuki et al (123) 
revealed that the rapid enhancement of phosphorylated STAT3 
was detected after the application of high‑dose recombinant 
LIF. The phosphorylation of STAT3 correlated with a down-
regulation of damage to the CNS, including a decrease in the 
number of TUNEL‑positive cells in the damage area (123,124). 
Another study was also consistent with this finding; inhibition 
of STAT3 phosphorylation following damage to the CNS was 
associated with an increased seriousness of the secondary injury, 
and potential enlargement of the lesion, and exacerbation of 
neurological deficits (125). Neuroprotection requires the active 
suppression of apoptosis, which is accomplished either through 
suppressing caspases or by inhibiting their activation. The 
function of STAT3 in neuroprotection appears to be associated 
with the transcriptional modulation of antiapoptotic regula-
tory proteins, including the Bcl‑2 family (126). Ahn et al (127) 
reported that survival factors cause the activation of STAT3, 
which was upregulated at 6 h following SCI; this prevents the 
release of cytochrome c and subsequent activation of caspase 
through the induction of Bcl‑2 and Bcl‑xL. All of these factors 
indicate that the increased expression of the transcription factors 
of the JAK and STAT family have antiapoptotic effects, which 
promote neuronal protection.
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5. Conclusions

The JAK‑STAT pathway is a critical pathway in proliferation 
and differentiation of NSCs and NPCs after SCI; it has been 
validated that the JAK‑STAT pathway is significant in astro-
cytic differentiation, which is closely associated with glial scar 
formation and neuroprotection following SCI. Contrary to the 
conventional view that reactive astrocytes may inhibit axonal 
regrowth, the present view is that time‑dependent effects of 
the JAK‑STAT pathway in reactive astrocytes must be consid-
ered. In particular, that these effects are positive and protective 
in acute and subacute phases, while negative and inhibitory 
effects are observed in chronic phases. Reactive astrocytes 
may promote neuronal and oligodendrocytic protection and 
also protect motor functions following SCI. This is due to 
cytokines and trophic factors, including IL‑6, IL‑11, LIF and 
CNTF, secreted by reactive astrocytes. This indicates the 
neuronal protection and prevention of demyelination, partially 
through the JAT‑STAT pathway. However, the mechanisms and 
the association between the JAK‑STAT pathway, NSCs and 
NPCs, reactive astrocytes and astrocyte‑secretory polypep-
tides remain unclear. Further studies are required to elucidate 
these mechanisms and associations to improve understanding 
of SCI and its treatment further detail. Elucidation of the 
mechanisms of JAK-STAT pathway may improve treatment 
with stem cell transplantation and aid in the identification of a 
new therapeutic tool that induces neuroprotection by control-
ling the function of reactive astrocytes.
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