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Abstract

Q-ball imaging (QBI) is a high angular resolution diffusion imaging (HARDI) technique which 

has been proven very successful in resolving multiple intravoxel fiber orientations in MR images. 

The standard computation of the orientation distribution function (ODF, the probability of 

diffusion in a given direction) from q-ball uses linear radial projection, neglecting the change in 

the volume element along the ray, thereby resulting in distributions different from the true ODFs. 

For instance, they are not normalized or as sharp as expected, and generally require post-

processing, such as sharpening or spherical deconvolution. In this paper, we consider the 

mathematically correct definition of the ODF and derive a closed-form expression for it in QBI. 

The derived ODF is dimensionless and normalized, and can be efficiently computed from q-ball 

acquisition protocols. We describe our proposed method and demonstrate its significantly 

improved performance on artificial data and real HARDI volumes.
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1. INTRODUCTION

Diffusion-weighted magnetic resonance imaging (DWMRI) provides valuable information 

about the fiber architecture of neural tissue by measuring the diffusion of water molecules in 

three-dimensional (3D) space. The microscopic diffusion function may be measured by 

using the model-free diffusion spectrum imaging (DSI) [1], which is the direct Fourier 

inversion of the diffusion signal. This technique is time intensive, as it measures the 

diffusion signal on a 3D Cartesian lattice. Thus, an alternative approach based on sampling 

only on a spherical shell (or multiple ones) has been proposed, referred to as high angular 

resolution diffusion imaging (HARDI) [2]. The spherical shell, being a 2D manifold, 

includes a number of measurement points which grows quadratically with the desired 

angular resolution, as opposed to cubically with the spatial resolution in the entire 3D lattice 

of DSI.
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While the 3D probability density function (PDF) of the diffusion is helpful in studying the 

tissue microstructure, the orientation distribution function (ODF) – the marginal probability 

of diffusion in a given direction – is the quantity of interest for mapping the orientation 

architecture of the tissue. Q-ball imaging (QBI), [3], is a widely used ODF reconstruction 

scheme for HARDI, based on a spherical tomographic inversion called the Funk-Radon 

transform. This technique's simplicity and its ability to resolve intravoxel fiber orientations 

have made it popular for fiber tracking and characterizing white matter architecture. A 

number of recently proposed methods have turned QBI into a very efficient and robust 

technique [4]–[6].

However, the definition of the ODF currently used in QBI is different from the actual 

marginal PDF of diffusion in a constant solid angle. The former is a linear radial projection 

of the PDF, which does not take into account the quadratic growth of the volume element 

with respect to its distance from the origin (see Sec. 2.1 and Fig. 1 for more details). This 

inaccurate formulation generally distorts the ODF, and has created the need for 

postprocessing such as manual normalization and sharpening.

In this paper, we re-derive the ODF expression for QBI via Fourier analysis, this time 

starting from the proper definition of the ODF in constant solid angle. We show that this 

results in an inherently normalized and dimensionless expression. In addition, we illustrate 

through our experiments that the ODFs are sufficiently sharp and that multiple fiber 

orientations are better resolved. Furthermore, by making use of the spherical harmonic basis, 

we demonstrate that the implementation of the new expression is as straightforward as that 

of the currently used (inaccurate) formula, or maybe even simpler, considering that further 

sharpening is not really necessary.

In Sec. 2 we describe the foundation of our mathematical derivation, along with a brief 

version of the proof, and also provide an implementation scheme. Experimental results are 

presented in Sec. 3, and Sec. 4 concludes with a review of the contributions.

2. METHODS

2.1. General ODF Definition

The PDF of the diffusion of water molecules, , gives the displacement probability 

 of a molecule, initially the origin, to be in the infinitesimal volume dv located at 

after a certain amount of time. We assume this function to be symmetric (i.e. 

), which is the quite common assumption in DWMRI. The PDF cnab be 

presented in Cartesian coordinates with  and dv = dxdydz. However, for 

mapping the orientation architecture of the tissue, the representation which mostly interests 

us is in the standard spherical coordinates, parameterized by with (r, θ, ϕ), where , 

with û(θ, ϕ) = (sin θ cos ϕ, sin θ sin ϕ, cos θ)T being the unit direction vector. The volume 

element in this case is dv = r2drdΩ with dΩ = sin θ dθdϕ being the infinitesimal solid angle 

element.
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We note by ODF(û)dΩ the probability of diffusion in the direction û through the solid angle 

dΩ, which can be computed by integrating the displacement probabilities, i.e., 

, for all magnitude r, while keeping û constant:

or simply:

(1)

The above definition, which is normalized and dimensionless, is the integral of the 

probability values in a cone of “very small” constant solid angle (Fig. 1(a)). This correct 

definition was used for instance by the authors of [1] in DSI, where  was first 

computed from the diffusion data via Fourier inversion and then integrated to calculate the 

ODF, and also in [7]–[8] for diffusion tensor imaging (DTI), where the ODF was 

analytically computed. However to the best of our knowledge, the expression for ODF 

reconstruction so far used in HARDI, and specifically QBI [3], is different from Eq. (1), in 

the sense that the integral is not weighted by the important (and mathematically correct) 

factor r2 (Fig. 1(b)).1 Without including this factor, the radial projection gives an artificial 

weight to  which is, respectively, too large and too small for points close to and far 

from the origin.2 Moreover, the ODF will not be necessarily normalized or dimensionless,3 

and an additional normalization factor will be required.

As an example intended for comparison, we compute the ODFs with and without r2 in the 

case of DTI, with the following standard Gaussian PDF:

where D is the covariance matrix. The computed ODFs are:

1After this paper was accepted, an independent and parallel work by Tristán-Vega et al was published where the factor r2 is 
considered in the ODF computation. However, the integral is taken on a circle and not on the entire plane. That results in a different 
formula which is not necessarily normalized and is likely to be less accurate due to Bessel approximation.

2Note that , which means that not taking the factor r2 into account would be equivalent to 

assuming the PDF to be  in the ODF computation. Another observation is that the computed quantity would be different just as 

the zero'th moment of a one-dimensional function  is different from its second moment.

3Given that  has the dimension of L−3, the dimensions of  and  are 1 and L−2, respectively.
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where Z is the normalization constant that subsequently needs to be computed and added to 

ODFwithout r2 (û) (see[3]). An example of this pair of ODFs is illustrated in Fig. 2. No min-

max normalization is used in any of the figures.

Next, we derive a closed-form expression for the ODF in QBI using the correct r2-weighted 

integral.

2.2. Q-ball Imaging ODF Reconstruction

We present here a brief version of the proof for the ODF expression in QBI. The complete 

proof is provided in [9].

Let  be the 3D Fourier transform of . Theoretically, we know that E(0)=1, since 

the zero frequency of a PDF is its integral over the entire space, which is equal to 1. In 

addition, we have the values of  measured on a q-ball, i.e., the frequencies with 

constant norm , as , where S(û) is the HARDI signal and S0 is 

the base-line image.

Our mathematical derivation is based on the following two relatively simple yet 

fundamental facts from Fourier analysis:

•
The Fourier transform of  is , where ∇2 is the Laplacian 

operator.

•
For a symmetric function  with the 3D Fourier transform , and for 

the arbitrary unit vector û, we have , where 

is the plane perpendicular to û.

Combining the two above statements with Eq. (1) leads to

Now, without loss of generality, we choose our coordinates such that ẑ = û, thus  is the 

qx-qy plane. We then use the following expansion for the Laplacian in spherical coordinates 

(q,θ,ϕ):
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where  is the Laplace-Beltrami operator which is independent of the radial component q, 

and is defined as . The surface integral on the qx-qy plane 

is computed by fixing  and choosing the surface element , as follows:

One can verify that the integral of the first term is independent of  and its derivatives:

Therefore:

while while  is kept constant in the integration.

To compute the integral of the second term, the values of  are required for the entire 

q-space, which except for the time-consuming DSI modality, are not available. Thus, we 

need to approximate  from the values measured on the q-ball. In this work, we 

consider the following radial mono-exponential model:

where q0 is the radius of the q-ball. This type of interpolation has been previously used and 

discussed in [10]–[11].4 After applying the mono-exponential assumption and a few more 

steps of calculations, the following ODF expression can be derived:

4An advantage of the model used here over the original QBI model, i.e. , is the compatibility with 
E(0)=1.
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Finally, rewriting the expression independently of the choice of the axes, the following 

analytical formula can be shown to hold for the ODF:

(2)

where FRT is the Funk-Radon transform [12], defined as:

with δ(·) being the Dirac delta function.

We can see that the above ODF expression is dimensionless and intrinsically normalized, as 

the integrals of the first and second terms over the sphere are 1 and 0, respectively. This is in 

contrast to the ODF formula originally used in QBI, i.e., , where a 

normalization factor Z was needed.

2.3. Implementation

Our implementation of the ODF reconstruction makes use of the spherical harmonic (SH) 

basis, , which is common for the analysis of HARDI data. The steps taken here to 

numerically compute Eq. (2) are similar to those described in [5], except that no 

regularization or sharpening is performed (regularizations will further improve the results). 

Particularly, we use the real and symmetric modified SH basis introduced in [5], where SH 

functions are indexed by a single parameter j corresponding to kj and mj. We first employ a 

minimum least square scheme to compute the modified SH coefficients cj of the double 

logarithm of the signal, such that

where R=(l+1)(l+2)/2, with l being the order of the SH basis (we chose l=4 throughout our 

experiments). Next, since the SH elements are eigenfunctions of the Laplace-Beltrami 

operator, we compute  by multiplying the coefficients cj by their 

corresponding eigenvalues, −kj(kj+1). Then, as suggested in [5], the Funk-Radon transform 

is computed by multiplying the coefficients by 2πPkj(0), where Pk(·) is the Legendre 

polynomial of degree k, with  for even k. Finally, since 

, the SH coefficients of the ODF are derived as

Aganj et al. Page 6

Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2015 March 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



As can be seen, by taking advantage of the SH framework, this implementation is as 

straightforward as the one introduced in [5] for the original QBI ODF formula, or even 

simpler if no further sharpening is to be performed.

3. RESULTS AND DISCUSSION

To validate our approach, we first show results using artificial data. We simulated fiber 

crossing by generating diffusion images from the sum of two exponentials, 

, where D1 is a diagonal matrix with diagonal entries (17, 

3, 3), and D2 is D1 rotated about the y-axis by a varying angle. The ODFs were 

reconstructed in the fourth order SH basis from 76 diffusion directions, uniformly sampled 

on the sphere. The results are shown in Fig. 3, for three different methods: our proposed 

framework, the original (standard) QBI, and the original QBI followed by Laplace-Beltrami 

sharpening, , with parameter λ=0.2.5 As can be seen, our method resolves the 

crossings starting at about 45°, compared to about 60° by the other two methods.

We also tested our method on two real HARDI datasets; first on the physical phantom in 

[13], which was constructed from excised rat spinal cords and designed to have crossing 

tracts (90 diffusion images at b=1300 s/mm2), and then on human brain data [14] (200 

diffusion images at b=3000 s/mm2). The ODFs were reconstructed with the fourth order SH 

basis using three approaches: our proposed method, the original (standard) QBI, and the 

original QBI followed by Laplace-Beltrami sharpening with parameters 0.5 for the rat data 

and 0.8 for the brain data. Results are superimposed on the generalized fractional anisotropy 

(GFA) map and demonstrated in Fig. 4. (Note that the ODFs are shown as they are; no min-

max normalization is used in any of the figures.) Our method (left) produces sharper and 

more accurate ODFs than the original QBI (middle). Although sharpening (right) enhances 

the original QBI ODFs considerably in anisotropic tissue, it causes significant instability in 

isotropic regions (e.g. the background of the rat phantom and the CSF in the human brain 

data), in contrast to our technique which preserves isotropy fairly well. For human brain 

dataset, we show the intersection of three fiber bundles: internal capsule (IC)/corona radiata 

(CR), radiations of the corpus callosum (CC), and superior longitudinal fasciculus (SLF).

4. CONCLUSIONS

We derived a new ODF formula for q-ball imaging, which is based on the proper definition 

of the ODF in constant solid angle. A closed-form expression for the ODF, dimensionless 

and normalized, was derived from a single q-shell by means of Fourier analysis. We 

presented a brief version of the proof, and an efficient implementation based on spherical 

harmonics parameterization was proposed. We have validated the technique with artificial 

data and tested it on real HARDI volumes. We have recently extended this work to multiple 

q-shells, further improving the results [9].

5All parameters were chosen to produce the optimal results.
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Fig. 1. 
Radial integration of the PDF, (a) in a cone of constant solid angle (i.e., the factor r2 is 

considered), and (b) by linear projection (i.e., inaccurately without the factor r2).
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Fig. 2. 
DTI example of ODF reconstruction (with {10, 5, 1} as the diagonal entries of the tensor), 

shown from two view angles, (left) with the factor r2, (right) without the factor r2 and after 

normalization. Note how less sharp the latter is and how incompletely it represents the true 

structure of the ODF.
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Fig. 3. 
Experimental results on synthetic data with fiber crossing, using: (top) our proposed 

technique, (middle) original QBI after normalization, and (bottom) original QBI with 

Laplace - Beltrami sharpening.
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Fig 4. 
Reconstructed ODFs from rat spinal cord phantom (top) and human brain (bottom), shown 

on the GFA map, using: (left) our proposed technique, (middle) original QBI after 

normalization, and (right) original QBI with Laplace-Beltrami sharpening.
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