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Abstract

Background: The fungus Pochonia chlamydosporia parasitizes nematode eggs and has become one of the most
promising biological control agents (BCAs) for plant-parasitic nematodes, which are major agricultural pests that
cause tremendous economic losses worldwide. The complete mitochondrial (mt) genome is expected to open new
avenues for understanding the phylogenetic relationships and evolution of the invertebrate-pathogenic fungi in
Hypocreales.

Results: The complete mitogenome sequence of P. chlamydosporia is 25,615 bp in size, containing the 14 typical
protein-coding genes, two ribosomal RNA genes, an intronic ORF coding for a putative ribosomal protein (rps3) and
a set of 23 transfer RNA genes (trn) which recognize codons for all amino acids. Sequence similarity studies and
syntenic gene analyses show that 87.02% and 58.72% of P. chlamydosporia mitogenome sequences match 90.50%
of Metarhizium anisopliae sequences and 61.33% of Lecanicillium muscarium sequences with 92.38% and 86.04%
identities, respectively. A phylogenetic tree inferred from 14 mt proteins in Pezizomycotina fungi supports that

P. chlamydosporia is most closely related to the entomopathogenic fungus M. anisopliae. The invertebrate-pathogenic
fungi in Hypocreales cluster together and clearly separate from a cluster comprising plant-pathogenic fungi (Fusarium
spp.) and Hypocrea jecorina. A comparison of mitogenome sizes shows that the length of the intergenic regions or the
intronic regions is the major size contributor in most of mitogenomes in Sordariomycetes. Evolutionary analysis shows
that rps3 is under positive selection, leading to the display of unique evolutionary characteristics in Hypocreales.
Moreover, the variability of trm distribution has a clear impact on gene order in mitogenomes. Gene rearrangement
analysis shows that operation of transposition drives the rearrangement events in Pezizomycotina, and most events
involve in trn position changes, but no rearrangement was found in Clavicipitaceae.

Conclusions: We present the complete annotated mitogenome sequence of P. chlamydosporia. Based on evolutionary
and phylogenetic analyses, we have determined the relationships between the invertebrate-pathogenic fungi in
Hypocreales. The invertebrate-pathogenic fungi in Hypocreales referred to in this paper form a monophyletic
group sharing a most recent common ancestor. Our rps3 and trn gene order results also establish a foundation for
further exploration of the evolutionary trajectory of the fungi in Hypocreales.
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Background

The nematophagous fungus Pochonia chlamydosporia
(Goddard) Zare & Gams (previously named Verticillium
chlamydosporium, teleomorph Metacordyceps chlamydos-
poria) is a widespread soil fungus distributed worldwide in
nematode suppressive soils. Pochonia chlamydosporia can
infect the females and eggs of plant endoparasitic nema-
todes as a facultative parasite [1,2]. It has already demon-
strated its efficacy as a BCA against both root-knot
nematodes (RKNs; Meloidogyne spp.) and cyst nematodes
(Heterodera spp. and Globodera spp.) [2-5], major agricul-
tural pests that cause tremendous economic losses world-
wide estimated at 100 billion dollars annually [6].

The fungus P. chlamydosporia belongs to the family
Clavicipitaceae (Ascomycota: Pezizomycotina: Sordario-
mycetes: Hypocreales). Based on spore morphology and
polymorphisms of the nuclear ribosomal internal tran-
scribed spacer (ITS) region, this species has been recognized
as having at least two distinct varieties, P. chlamydosporia
var. chlamydosporia and P. chlamydosporia var. catenulate
[7,8]. Many members of Clavicipitaceae are invertebrate-
pathogenic fungi. It was previously suggested that the host
relatedness and host habitat hypotheses could explain the
evolution of parasite-host relationships [9]. Therefore, ex-
ploring the phylogenetic relationships and evolutionary
trajectories of the invertebrate-pathogenic fungi in Clavici-
pitaceae is a topic of interest. Multi-gene phylogenetic
analyses showed that Clavicipitaceae is paraphyletic and
consists of three well-defined clades, at least one of which
is shared with the members of another fungal family
(Hypocreaceae) [10]. The phylogenetic placement of the
genus Pochonia in the family Clavicipitaceae was inferred
from six nuclear genes (nrSSU, nrLSU, beta-tubulin,
EF-lalpha, RPBI, RPB2) and one mt gene (atp6) using
phylogenetic analysis, and the phylogenetic trees inferred
from different genes produced different topological struc-
tures [10]. Therefore, a comparison of larger scale genome
sequences is necessary because it can provide deep in-
sights into the phylogenetic relationships and evolution of
the fungi in Clavicipitaceae. Recently, the complete nu-
clear genome sequence of P. chlamydosporia was pub-
lished. Based on a phylogenetic analysis inferred from
nuclear genome sequences, P. chlamydosporia appeared to
be most closely related to the Metarhizium species [11].

Mitochondrial markers can be successfully applied in
evolutionary biology and systematics because mt ge-
nomes often evolve faster than nuclear genomes and
allow for robust phylogenetic analyses based on the con-
served proteins of the oxidative phosphorylation system
[12]. The continuously increasing number of recent fungal
mt genome studies — more than 165 complete fungal mt
genomes are available today at NCBI - provide powerful
tools for comparative studies to reveal the patterns and
mechanisms of mitogenome evolution [13,14]. Thus far,
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fungal mitogenomes vary considerably in size, the largest
being 147,264 bp long in Rhizoctonia solani AG1 IA
(Basidiomycota) [15] and the smallest being 18,844 bp
long in Hanseniaspora uvarum (Ascomycota) [16]. Re-
searchers have demonstrated that different lengths of in-
tronic sequences and intergenic regions result in different
sizes of mitogenomes [17-19], particularly for the mito-
genome of Moniliophthora perniciosa in Basidiomycota,
which has a length of 109,103 bp and encodes several
hypothetical ORFs in the larger sized intergenic regions
and introns [19]. However, a depiction of the size variation
and related mechanisms in Ascomycota has not yet been
reported. Moreover, the nearly ubiquitous presence of
rps3 genes, which are encoded in the group I introns
within rz/ genes, has been attributed to a vertical mode of
inheritance rather than horizontal inheritance during evo-
lution [20]. In one study, the molecular evolution of the
rps3 gene in filamentous Ascomycetes fungi (especially
Ophiostomatoid fungi) was analysed, and the group I
intron-encoded version of rps3 appeared to have a rather
complex evolutionary history in ascomycetes fungi [21].
However, only a few fungi in Hypocreales were included
in that study. To better understand the evolution of the
fungal mitogenome in Hypocreales, a phylogenetic ana-
lysis of the rps3 genes is required. Furthermore, it was re-
ported that ¢rn genes are able to change their location in
genomes and participate in horizontal gene transfer
(HGT) events, as they have editing, excision and integra-
tion capabilities [22,23]. Because changes in ¢rn location
are relatively rare events, the locations of trn genes in fun-
gal mt genomes have been used to study fungal evolution
and phylogenetic signals [22]. To date, 20 different types
of aminoacyl-tRNAs (aa-tRNAs) have been identified in
fungal mitogenomes, and conserved trn clusters are found
in Pezizomycotina by employing comparative genomic ap-
proaches [12,24-26]. The distribution of trn genes may
contribute to gene order variation in fungal mitogenomes
[22]. Six operations have been used to explain rearrange-
ments in mt gene order: inversion, transposition, reverse
transposition, tandem-duplication-random-loss [27], dele-
tion and replication slippage [28]. However, the evolution
of gene orders in Pezizomycotina mitogenomes is sug-
gested to be mainly driven by transpositions [12]. As in
animal mt genomes, trn in fungal mitogenomes might
have played a role in gene shuffling as they intervene be-
tween genes and can act like mobile elements [29,30].
Taking advantage of published fungal mitogenomes and
the novel P. chlamydosporia mitogenome, we investigated
the trm rearrangements in Pezizomycotina, and addressed
the role of rearrangements in evolution.

In this paper, the P. chlamydosporia strain 170 isolated
from a RKN in China was sequenced using Illumina se-
quencing, and a complete mt genome of 25,615 bp was
obtained. We aim to (i) present a complete and annotated
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mt genome sequence of P. chlamydosporia, (ii) compare
the mt genome of P. chlamydosporia with the genomes of
other fungi in Pezizomycotina to identify the common and
specific characteristics of the mt genomes of invertebrate-
pathogenic fungi, and (iii) provide powerful insights
into the evolution and phylogenetic relationships of the
invertebrate-pathogenic fungi in Hypocreales.

Results

General characteristics of the mt genome in

P. chlamydosporia

The complete mt genome of P. chlamydosporia is a circu-
lar DNA molecule with a length of 25,615 bp. The low
G + C content (28.3%) is similar to other fungal mitogen-
omes in Clavicipitaceae (Table 1). The mitogenome en-
codes an essential set of conserved genes including three
cytochrome c oxidase subunits (cox1, cox2, cox3), apocyto-
chrome b (cob), three ATP synthase subunits (atp6, atp8,
atp9), seven subunits of NADH dehydrogenase (nadl,
nad2, nad3, nad4, nad4L, nads, nadé6), the small and
large ribosomal RNA subunits (rus, rnl), an intronic
ORF coding for a putative rps3, and 23 trn. All of the 40
genes are encoded on the same DNA strand (Figure 1).
The set of trn genes found (including two trnA genes and
three trnM genes) is the smallest set currently known for

Table 1 General features of the mitogenomes

Page 3 of 15

Pezizomycotina fungi (Table 1), but the trn genes can
recognize the codons for all 20 amino acids. In total, the
coding regions (CRs), of which the 14 typical protein-
coding genes related to oxidative phosphorylation account
for 13,068 bp, and together with the rps3 (1,317 bp) within
the rnl group I intron (1,652 bp, in total), cover 56.16% of
the total mt genome, and the rest are 71, rRNA genes and
intergenic regions.

Using the abundant sequenced resources available (the
average coverage per base is 1,058 x, see the Methods
section), the sequence variance of the P. chlamydosporia
mitogenome was investigated, but no single nucleotide
polymorphism (SNP) was found. This indicates that a high
quality mitogenome was assembled. Moreover, we com-
pared the published mt gene sequences of P. chlamydos-
poria with our genome sequence. In total, 12 mt gene
sequences from NCBI are available, including six coding
segments in the IMI 113169 strain (nad3-atp9, atp6, rns,
nadl, nad3, cox3), four genes in the IMI 156157 strain (rzs,
nadl, nad3, cox3), one gene in the CBS 101244 strain (atp6)
and one gene in the CBS 504.66 strain (atp6). Our analysis
showed that 11 sequences were matched to our genome
sequence with identities greater than or equal to 95%
(Additional file 1: Table S1), suggesting that these gene se-
quences are highly conserved in P. chlamydosporia strains.

Species Length (bp) GC (%) Coding genes trn rRNAs Accession
Pochonia chlamydosporia 25,615 283 15 23 2 KF479445
Metarhizium anisopliae 24,673 284 15 24 2 AY884128
Beauveria bassiana 29,961 272 15 25 2 EU371503
Beauveria pseudobassiana 28,006 275 15 25 2 NC_022708
Cordyceps brongniartii 33,926 273 15 25 2 NC_011194
Lecanicillium muscarium 24,499 27.1 15 25 2 AF487277
Cordyceps militaris 33,277 26.8 15 26 2 NC_022834
Hypocrea jecorina 42,130 27.2 19 26 2 AF447590
Fusarium solani 62,978 289 30 25 2 NC_016680
Fusarium graminearum 95,676 31.8 50 28 2 NC_009493
Fusarium verticillioides 53,735 326 21 27 2 NC_016687
Fusarium oxysporum 34477 31.0 16 25 2 AY945289
Verticillium dahliae 27,184 27.3 15 25 2 DQ351941
Neurospora crassa 64,840 36.1 28 28 2 Broad Institute
Aspergillus fumigatus 31,762 254 20 31 2 JQ346809
Aspergillus niger 31,103 269 16 25 2 NC_007445
Aspergillus tubingensis 33,656 268 16 25 2 NC_007597
Trichophyton rubrum 26,985 235 17 25 2 NC_012824
Epidermophyton floccosum 30,910 234 24 25 2 NC_007394
Paracoccidioides brasiliensis 71,335 211 17 25 2 NC_007935
Candida parapsilosis 32,745 238 20 24 2 NC_005253
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Figure 1 Functional map of the complete mitogenome of P. chlamydosporia. All genes are transcribed on the same strand. There are 15
encoding genes, 23 transfer RNA genes and 2 ribosomal RNA genes (s and ). The circular map was generated using OrganellarGenomeDRAW [31].

Phylogenetic relationships of P. chlamydosporia to other
fungi in Pezizomycotina

Utilizing published fungal mitogenomes in addition to
the novel P. chlamydosporia mitogenome, the phylogen-
etic relationships in 20 species in Pezizomycotina were
inferred, using Candida parapsilosis as an outgroup
(Figure 2A). Phylogenetic trees were constructed based
on the 14 conserved protein-coding genes associated
with the oxidative phosphorylation system (coxI-3, cob,
atp6, atp8-9, nadl-6 and nad4L) using a Maximum
Likelihood (ML) approach. The topological structures
based on both nucleotide and amino acid sequences were
identical, and a clear genealogical relationship was shown
(Figure 2A). P. chlamydosporia is most closely related to
the entomopathogenic fungus M. anisopliae, with a boot-
strap value of 100%, which is similar to the result of phylo-
genetic analysis based on genome-encoded orthologous
proteins [11]. The two fungi form a cluster with five
additional entomopathogenic fungi, namely, Cordyceps
brongniartii, Beauveria pseudobassiana, B. bassiana,
Lecanicillium muscarium and C. militaris. Interestingly,
although both P. chlamydosporia and L. muscarium were
once put into the same genus (Verticillium), the two spe-
cies are assigned to different sub-clades in the phylogen-
etic tree. However, all of the invertebrate-pathogenic fungi
cluster into a clade (clade A) clearly separated from the

plant-parasitic fungi, including four Fusarium plant path-
ogens (F. solani, F. graminearum, F. oxysporum and F. ver-
ticillioides), which form clade B with the fungus Hypocrea
jecorina that specializes in colonizing pre-degraded wood.
Both invertebrate-pathogenic and plant-pathogenic fungi
shared a common ancestor in clade C represented by a soil
born plant pathogen, Verticillium dahliae, suggesting that
Hypocreales is a monophyletic group (Figure 2A). The
phylogeny shows that plant pathogenic and invertebrate-
pathogenic fungi in Hypocreales form independent clusters
and have evolved separately. A third group comprises fungi
that infect animals or humans, including several members
of Eurotiomycetes, i.e., Aspergillus fumigates, Paracoc-
cidioides brasiliensis, Epidermophyton floccosum and
Trichophyton rubrum; this group is distant from P. chla-
mydosporia and the entomopathogenic fungi. The phylogen-
etic relationships inferred from mt proteins are principally
consistent with the current Pezizomycotina taxonomic
system (Figure 2A).

Comparison of mitogenome organization in

P. chlamydosporia and related species

We first compared the mitogenomes of P. chlamydos-
poria, M. anisopliae and L. muscarium (previously widely
known as Verticillium lecanii), and found that they are
highly similar in both size (25,615 bp, 24,673 bp and
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Figure 2 The mitogenome phylogenetic analysis and comparative analysis. A). Phylogenetic placement of P. chlamydosporia using 21
fungal mitogenomes. The phylogeny was generated based on 14 conserved encoded proteins (cox1-3, cob, nadi-6, nad4l, atpé, atp8-9) using a
ML approach. C. parapsilosis was used as an outgroup. P. chlamydosporia is closely related to M. anisopliae with a bootstrap support value of
100%. B). Synteny comparisons between P. chlamydosporia and M. anisopliae, P. chlamydosporia and L. muscarium. Syntenic regions were
identified by performing BLASTN with a threshold of 1e-5, and alignment blocks of less than 100 bp are not shown.

24,499 bp, respectively) and G + C content (28.3%, 28.4%
and 27.1%, respectively) (Table 1). The total length of the
gene regions (including protein-coding genes, trn and
rRNA genes) in P. chlamydosporia mt genome (20,997
bp) is 142 bp less than that of L. muscarium and 208 bp
less than that of M. anisopliae. However, the entire length
of the P. chlamydosporia mitogenome is 1,116 bp and 942
bp larger than L. muscarium and M. anisopliae respect-
ively, mainly due to longer intergenic regions in P. chla-
mydosporia. We also compared the contents of the simple
repeat motifs in each of the genomes, including low

complexity sequences (such as AT-rich sequences), simple
repeats (such as (TAA) n), inverted repeats and palin-
dromes, which have been previously suggested to be puta-
tive elements for recombination or regulation [24]. It was
found that ~4.14% (1,061 bp, including 948 bp tandem re-
peats, 64 bp inverted repeats and 172 bp palindromes with
123 bp overlaps between tandem repeats and palin-
dromes) of the P. chlamydosporia mitogenome consists of
repeat sequences compared with only ~2.71% (664 bp) of
the L. muscarium mitogenome and ~3.99% (985 bp) of
the M. anisopliae mitogenome. The distributions of repeat
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elements are also different (Additional file 1: Figure S1).
In L. muscarium, there are no repeat sequences located in
the regions between nad6 and rnl, nad5 and cob, rns and
cox3. However, in M. anisopliae and P. chlamydosporia,
there are no repeat sequences in the regions between rn/
and nad?2, cox3 and nad6. There are repeat sequences res-
iding in the regions between rns and cox3 in P. chlamydos-
poria, but only one AT rich motif is found in this region
in M. anisopliae (Additional file 1: Figure S1). Repeat se-
quences in this region display the unique mitogenomic
features of P. chlamydosporia.

In addition, sequence similarity studies and syntenic
gene analyses were performed comparing P. chlamydos-
poria with five other mitogenomes, including M. aniso-
pliae, L. muscarium, B. bassiana, V. dahliae and A.
fumigatus. The analyses show identical gene order in M.
anisopliae, L. muscarium, B. bassiana and P. chlamydos-
poria mt genomes. V. dahliae, as shown in previous
work [32], displayed differences at the regions nad6-rnl,
nad3-atp9 and coxl-nadl with a gene order of nadé6-
atp9, nad3-nadl and coxI-rnl instead (Additional file 1:
Figure S2). A larger difference of gene order is observed
between the mitogenomes of P. chlamydosporia and A.
fumigatus (Additional file 1: Figure S2). Comparing the
two mitogenomes of P. chlamydosporia and M. aniso-
pliae, 22,331 bp (90.50%) of M. anisopliae mitogenome
sequences match to 22,290 bp (87.02%) of P. chlamydos-
poria mitogenome sequences with 92.38% identity deter-
mined by BLASTN (Figure 2B). A long-range synteny
between the P. chlamydosporia and M. anisopliae mt ge-
nomes is observed. The majority of the unmatched se-
quences reside within the intergenic regions between
nad6 and rnl. However, comparing the P. chlamydosporia
and L. muscarium mitogenomes, 15,026 bp (61.33%) of
the L. muscarium mitogenome sequences match to
58.72% of the P. chlamydosporia mitogenome sequences
with 86.04% identity (Figure 2B). Comparisons of P. chila-
mydosporia mt genomes with the other three species
(B. bassiana and V. dahliae in Sordariomycetes, and A.
fumigatus in Eurotiomycetes) showed that only 15,624 bp
(52.15%) of B. bassiana, 13,412 bp (49.34%) of V. dahliae
and 8,147 bp (25.65%) of A. fumigatus mitogenomes
matched to P. chlamydosporia mt sequences with 87.52%,
84.62% and 82.82% identities, respectively (Additional file 1:
Figure S2). Although the sequences of most of the mt
genes in V. dahliae matched to homologous genes in P.
chlamydosporia mitogenome, the alignments of some
genes (such as rus, nad5 and nad6) between the two spe-
cies present multiple blocks, and no alignments are found
in the intergenic regions in the P. chlamydosporia and V.
dahliae mitogenomes. Based on the above syntenic ana-
lysis results, an evolutionary relationship between P. chla-
mydosporia and the other fungi is also indicated, that is,
that P. chlamydosporia is most closely related to M.
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anisopliae. The result is similar to that obtained from the
genomic DNA analysis [11].

Analysis of mitogenome size variation among the fungi in
Sordariomycetes

The sizes of the mitogenome in the fungi in Sordariomy-
cetes vary significantly, from 24,673 bp in M. anisopliae to
95,676 bp in F. graminearum (Table 1). To identify the
causes of this mitogenome size variation in Sordariomy-
cetes, five mitogenomes (P. chlamydosporia, M. anisopliae,
E. oxysporum, H. jecorina and Neurospora crassa) of differ-
ent sizes were used for a comparative analysis (Figure 3).
Despite the size variance ranging from 24,673 bp in M. ani-
sopliae to 64,840 bp in N. crassa, 15 common mt protein-
coding gene sets, including coxi-3, cob, nadl-6, nad4l,
atp6, atp8-9 and rsp3, are encoded in all of the five ge-
nomes. We calculated the size of the CRs, trn regions,
rRNA regions, introns and intergenic regions in each mito-
genome separately (Additional file 1: Table S2). In P. chla-
mydosporia mitogenome, the lengths of the CRs, trn
regions, rRNA regions, introns and intergenic regions are
14,385 bp (56.16%), 1,697 bp (6.63%), 6,232 bp (24.33%),
335 bp (1.31%) and 4,618 bp (18.03%) of the genome se-
quences, respectively. A comparison of the five mitogen-
omes showed that, in general, the length of each region
(CRs, trn regions, rRNA regions, introns and intergenic
regions) increases with genome size, as well as the propor-
tions of introns and intergenic regions, with the exception
of H. jecorina, which has the smallest length of rRNA
genes but the largest length of introns of the five mitogen-
omes. In addition, the length of its intergenic regions is
less than that of F. oxysporum, although the genome
size of H. jecorina is larger than that of F. oxysporum
(Additional file 1: Table S2). The results indicate that, in
Sordariomycetes, CRs, intergenic regions and introns are
the three main contributors to mitogenome size variation,
with the length of intergenic regions or introns being the
primary contributor in most of the mitogenomes. The
length of the CRs in N. crassa and H. jecorina is the sec-
ond highest contributor because several intron-encoded
ORFs and unidentified reading frames exist in their inter-
genic regions (Additional file 1: Table S3).

Codon usage in the fungal mitogenomes of
Pezizomycotina

We analysed codon usage bias in the mitogenome of P.
chlamydosporia, and compared it with other fungal
mitogenomes in Pezizomycotina. Genetic code four [33]
was used to transcribe the coding gene sequences in the
P. chlamydosporia mt genome. A total of 58 codons
were found, including the high-frequency codons TTA
(Leu), ATA (Ile), GTA (Val) and TTC (Phe) (Additional
file 1: Table S4), which are amino acids with hydropho-
bic side chains. Six codons (CTC, CTG, AGG, CGC,
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Figure 3 A comparison of the mitogenomes of five Pezizomycotina fungi with considerable size differences. There are 15, 15, 16, 19, and
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Lin et al. BMC Microbiology (2015) 15:5

CGG and TGQG) were absent in P. chlamydosporia but
present in the closely related species M. anisopliae. How-
ever, two codons (CGA, TAG) were absent in M. aniso-
pliae but present in P. chlamydosporia. Clearly, nearly in
all of the fungal mitogenomes, codon usage is biased
strongly towards codons ending in A or T, and more than
84% of the codons in P. chlamydosporia mitogenomes end
in A or T (Additional file 1: Table S5), possibly due to the
high AT content found in fungal mitogenomes. Similar re-
sults were obtained from M. anisopliae and L. muscarium
mitogenomes [24,30].

Molecular evolution of rps3 in Pezizomycotina

We identified and annotated the rps3 genes in the 20
fungal mitogenomes. The length of the 7ps3 sequences
ranged from 1,140 bp in the T. rubrum and E. floccosum
mitogenomes to 1,545 bp in the F. verticillioides mito-
genome (Additional file 1: Table S6). When the 20 Rps
proteins were aligned by BLASTP the similarity levels
were greater than or equal to 30%. However, the C-
terminal domains of these proteins obtained from the
Pfam database indicated a common function (Additional
file 1: Figure S3A). The addition of 19 more fungal rps3
gene sequences showed matches with E-value cutoffs of
less than 2e-29, hence they were omitted from compari-
sons. E-value cutoffs of 0 were obtained for the rps3
genes of F. oxysporum, M. anisopliae, H. jecorina, F.
solani, F. graminearum and F. verticillioides (Additional
file 1: Figure S3B). The unique evolutionary relationships
among these species can be elucidated from phylogen-
etic analysis based on the sequences of the rps3 genes
(Additional file 1: Figure S3C). A phylogenetic tree
shows that P. chlamydosporia rps3 is more closely related
to F. oxysporum and M. anisopliae rps3. They then group
together with H. jecorina and other three Fusarium spe-
cies to form clade A. Clade A separates distinctly from
clade B, which contains the other five entomopathogenic
fungi (L. muscarium, C. militaris, B. pseudobassiana, C.
brongniartii and B. bassiana) (Additional file 1: Figure S3C).
Evidently, the phylogenetic relationships among the spe-
cies of Hypocreales inferred from the rps3 genes are differ-
ent from those inferred from the other 14 protein-coding
genes (Figure 2A).

To measure the rate and selective pressure of the rps3
genes, we calculated nonsynonymous/synonymous sub-
stitution rate ratios (o = dy/ds) by adopting different
models (see the Methods section). The dN/dS value for
the 20 rps3 genes is 0.090 using the CODEML program
with a JTT model in PAML [34]. Because every func-
tional protein contains amino acid sites under selective
constraints, averaging the evolutionary rates across sites
leads to a lower capacity to detect positive selection.
Thus, we adopted the site models M1 (neutral), M2 (se-
lection), M7 (beta) and M8 (beta & w) for the w ratio
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analysis [35]. Because the M7-M8 comparison is a very
stringent test of positive selection [36], we calculated the
value of the likelihood ratio test (LRT) statistic (2A =
25.854, P-value = 2.432e-06, the Chi-square test with de-
grees of freedom, i.e. df. = 2), and the significant results
of this comparison clearly indicates signals of positive
selection in the rps3 genes. To further confirm whether
the Hypocreales rps3 genes are evolving under positive
selection or not, we took the rps3 sequence of T. rubrum
as a reference to calculate the dN and dS of each rps3
sequence with the reference sequence using DnaSP [37]
and CODEML [34]. Similar results were obtained, that
is, dN/dS > 1 in Hypocreales (Additional file 1: Figure S3C
and Table S7). The above results indicate that the fungal
rps3 protein is not only under functional constraints but
also under positive selection in Hypocreales.

trn gene distribution and putative gene rearrangements
in Pezizomycotina

The distribution of trn genes on mt genomes is consid-
ered as a factor that potentially contributes to the gene
order variation in Pezizomycotina [22]. Firstly, we ana-
lyzed the distribution of 23 trn genes in the P. chlamy-
dosporia mitogenome and found that they cluster into
three groups (YDN, VISWP and TEMMLAFKQHM),
with the exception of four trn genes (trnG, truR, trnC,
trnR) that scatter as a single gene throughout the mt
genome (Figure 1). Then, we compared the 13 ¢rn genes
(trnD, trnE, truF, truH, trul, truK, truL, truM, truN, truR,
truS, trnW, and trnY) in the 20 fungal mitogenomes of
Pezizomycotina and found that they are presented in all
mitogenomes whereas some of the other seven trn genes
(trnA, trnC, trnG, trub, trnQ, truT and trnV) are often
missing from a fungal mitogenome (Figure 4A) as re-
ported in previous studies [24,25,30,32,38,39]. Some trn
genes have multiple copies, such as trnM, which has at
least two copies in each mitogenome. A sequence align-
ment showed that the trn gene sequences display high
similarities among these fungal species, such as for trnN,
where 43 out of the 71/72 bp (61%) are in consensus in
the 20 mitogenomes, and completely identical (100%)
in B. bassiana, B. pseudobassiana and C. brongniartii
(Figure 4B). A comparative analysis showed that the dis-
tribution of frm genes is variable in Pezizomycotina, but
identical in the Order Hypocreales (Figure 4A). The trn
clusters are conspicuously observed in these mitogen-
omes, as reports in previous studies [24-26]. Excepting the
largest trn cluster (TEMMLAFKLQHM) conserved in all
of the Pezizomycotina mitogenomes, the others are gen-
erally conserved at the Order level, such as (YDSN)
and (VISWP) in Hypocreales, (KGDSW) in Sordariales,
(KGDSWISP) in Eurotiales and (KGDSIWSP) in Onygenales,
although minor differences exist owing to the lack of a trn
or a transposition event (Figure 4A). The clustering of trn



Lin et al. BMIC Microbiology (2015) 15:5

Page 9 of 15

B B. bassiana
B. pseudobassiana

GTTCTTATAGCTCAACGGTAGAGCATAATACTGTTAATATTA-TGATARATGTTCGATTCATTTTAAGGACT
GTTCTTATAGCTCAACGGTAGAGCATAATACTGTTAATATTA-TGATAAATGTTCGATTCATTTTAAGGACT
GTTCTTATAGCTCAACGGTAGAGCATAATACTGTTAATATTA-TGATAAATGTTCGATTCATTTTAAGGACT

C. brongniartii
h ~

P. chlamydosporia

. GCCTT AACGGTAGAGCATAATACTGTTAATATTA-TGATAAATGTTCGATTCATTTTAAGGGCT
C. militaris GCTTCTATAGCTCAATGGTAGAGCATAATACTGTTAATATTA-TGATAAATGTTCGATTCATTTTAGGGGCT
M. anisopliae GCCTCTATAGCTCAACGGTAGAGCATATAACTGTTAATTATA-TGATAGACGTTCGATTCGTCTTAGGGGCT

GCCTTTATAGCTCAACGGTAGAGCATATAACTGTTAATTATA-TGATAGACGTTCGATTCGTCTTAGAGGCT

H. jecorina GCCTCTATAGCTTAATGGTAAAGCGCGCTACTGTTAATAGCGTTAATAGATGTTCGATTCATCTTAGGGGCT
F. solani GCTTCTATAGCTCAACGGTAGAGCATAATACTGTTAATATTA-TGATAGATGTTCGATTCATCTTAGGGGCT
F. graminearum GCCTCTATAGCTCAACGGTAGAGCATAATACTGTTAATATTA-TGATAGATGTTCGATTCATCTTAGGGGCT
F. oxysporum GCCTCTATAGCTCAACGGTAGAGCATAATAC TATTA-TGATAGATGTTCGATTCATCTTAGGGGCT
F. verticillioides GCCTCTATAGCTCAACGGTAGAGCATAATACTGTTAATATTA-TGATAGATGTTCGATTCATCTTAGGGGCT
V. dahliae GCCTTTATAGCTCAACGGTAGAGCATAATACTGTTAATATTA-TGATAGATGTTCGATTCATCTTAAGGGCT
N. crassa GCTTCTATAGCTCAACGGTAGAGCATAATACTGTTAATATTA-GGATAGATGTTCGATTCATCTTAGAGGCT
A. niger GCCCTTATAGCTCAACGGTAGAGCGGAATACTGTTAATATTT-TGATAGATGTTCGATTCATCTTAAGGGCT

GCCCTTATAGCTCAACGGTAGAGCGGAATACTGTTAATATTT-TGATAGATGTTCGATTCATCTTAAGGGCT

A. A
A. fumigatus

GCCCTTATAGCTCAACGGTAGAGCGGAATACTGTTAATATTT-TGATAGATGTTCGATTCATCTTAAGGGCT

A tRNA cluster
B.bassiana  zn1T E MM L AF KLQ HM nad2 nad3 atp9 [cox2 R nad4L nad5 R cob C 6%l R nadl
B. pseudobassianaznl T E MM L AF KLQ HM nad2 nad3 atp9 cox2 R nad4L nad5 R cob C coxl R nadl
C. brongniartii rznl T E MM L AF KLQ HM nad2 nad3 atp9 cox2 R nad4L nad5 R cob C coxl R nadl
L. muscarium rnlT E MM LE F KLQ HM nad2? nad3 atp9 cox2 R naddL nad5 R cob coxl R nadl
C. militaris. mlT E MM L AF KL HM nad2 nad3 atp9 cox2 R nad4L nad5 R cob C coxl R nadl
M. anisopliae  zni T E MM L AF KLQ HM nad2 nad3 atp9 cox2 R nad4L nad5 R cob C coxl R nadl
P.chlamydosporia zn1 T E MM L AF K Q HM nad2 nad3 atp9 cox2 R nad4L nad5 cob C coxl R nadl
H. jecorina mlT E MM L AF KLQ HM nad2? nad3 atp9 cox2 R naddL nad5 R cob C coxl R nadl
F. solani znl T E MM LGAFMKLQ H nad2 nad3 atp9 cox2 R  nad4l nad5 R cob C coxl R nadl
F.graminearum  ynlT E MM GLGAF KLQ HM nad? nad3 atp9 cox2 R R Y nad4L nad5 R cob C coxl R nadl
F. oxysporum mlT E MM L AF KLQ HM nad2 nad3 atp9 cox2 R naddL nad5 R cob C coxl R nadl
F. C rnl T E MM GL AF KLQ HM nad? nad3 atp9 cox2 R R nad4L nad5 R cob C coxl R nadl
V. dahliae znl T E MM L AF LQ HM nad2 nad3 Is 1 R nadl
N. crassa rnlT E MM L AFM LQ HM nad2? nad3 nad4L nad5 cob C coxl R nadl
A. niger . znl T EVMM L AF LQ M H cox1 atp9 nad3 ‘cox2 nad4l nad5 nad2 cob nadl
A. tubingensis rnl YEVMM L AF QL M H cox1 atp9 nad3 cox2 R  nad4L nad5 nad2 cob nadl
A. fumigatus znl T EVMM L AF LQ MIH cox1 atp9 A nad3 cox2 nad4L nad5 nad2  cob c N nadl I
T. rubrum nlT EVMM L AF Lo M H lcoxl R R N atp9 ‘cox2 naddl nad5 nadZ eob nad3 C nadl
E. floccosum mlT EVMM L AF LQ M H coxl R R N atp9 cox2 nad4L nad5 nad2 eob nad3 C nadl
P. brasiliensis znlT EVMM L AF LQ M HRRN coxl atp9 cox2 nad4L nad5 nad2 eob nad3 C nad1
tRNA cluster tRNA cluster

B. bassiana nad4 atp8  atp6 rns YD SN cox3 G nadé VISW P
B. pseudobassiananad4 atp8  atp6 rns YD S N cox3 G nadé VISW P
C. brongniartii nad4 atp8  atp6 rns YD SN cox3 G nadé VISW P
L. muscarium nad4 atp8  atp6 rns YD SN I cox3 G nadé VISW P
C. militaris nad4 atp8  atpé6 rns YDSNR cox3 GG nadé  VISW P
M. anisopliae nad4 atp8  atp6 rns YD SN cox3 G nadé L ISW

P. chl ia nad4 atp8  atpé6 rns YD N cox3 G nadé  VISW P
H. jecorina nad4 atp8  atp6 rns YD SN cox3 G nadé VISW P
F. solani nad4 atp8  atp6 rns YD SN cox3 nadé VISW P
F. graminearum  nad4 atp8  atp6 rns YD SN cox3 nadé VISW P
F. oxysporum nad4 atp8  atp6 rns YD SN cox3 nadé VISW P
F. verticillioi nad4 atp8  atpé rns YD SN cox3 nadé  VISW _ P
V. dahliae nad4 atp8  atp6 Ins Y N cox3 KG DS nadé6 V W Btp9 Gox2 R nad4l nad5 lcob P Goxl P
N. crassa nad4 atp8 atpé atp9d €ox2 R M nad2 C rns Y N cox3 KG DSWnadée V Is P
A. niger nadd R N atp8 atpé G rns Y nadé cox3 KG DS WIS P
A. tubingensis nad4 R N atp8 atpé G rns Y nadé cox3 KG DS WIS P
A. fumi nad4 R N atp8 I atpé rns Y nadé cox3 KGGD S WIS P
T. rubrum nadd atpé rns Y nadé cox3 atp8 K G D S I W S P
E. floccosum nad4 atpé rns Y nadé cox3 atp8 KG D S I W S P
P. brasiliensis nad4 atp8  atp6 rns Y nadé cox3 IKG Ds L P

tRNA cluster

are marked in boldface.

T. rubrum GCTCTTATAGCTCAACGGTAGAGCAAAATACTGTTAATATTT -GTATAGATGTTCGATTCATCTTGAGGGCT
E. floccosum GCTCTTATAGCTCAACGGTAGAGCAAAATACTGTTAATATTT -GTATAGATGTTCGATTCATCTTAAGGGCT
P. brasiliensis GCTTCTATAGCTTAAAGGTAAAGCAAGATACTGTTAATATTT-AGATAAATGTTCAATTCATTTTAGAAGCT

Figure 4 The schematic representation of trn clusters. A). Analysis of the trn genes residing in the complete mitogenomes of 20 fungi that
belong to nine families. The nine families are Clavicipitaceae, Hypocreaceae, Nectriaceae, Plectosphaerellaceae, Sordariaceae, Lasiosphaeriaceae,
Trichocomaceae, Ajellomycetaceae and Arthrodermataceae. B). An example of high sequence similarities in trn genes (trn/N). The consensus bases

J

is suggested to be a unique characteristic of all Pezizomy-
cotina [24].

Based on a display of the orthologous protein-coding
genes, trn genes and rRNAs in the 20 mitogenomes
(Figure 4A), a similar gene order can be observed in
the Hypocreales mitogenomes, with the exception of
trnG, which changed position in Fusarium species. The
gene order is essentially identical in the seven invertebrate-
parasitic fungi (B. bassiana, B. pseudobassiana, C. brong-
niartii, L. muscarium, C. militaris, M. anisopliae and P.
chlamydosporia) and H. jecorina, as well as the four Fusar-
ium fungi, as found in previous studies [24-26]. The same
is also observed in Eurotiales and Onygenales. However,
marked differences in gene order are observed between
Sordariomycetes and Eurotiomycetes (Figure 4A). This in-
dicates that in Pezizomycotina, which has closer phylogen-
etic relationships among its fungi, a greater number of
identical gene orders are displayed, supporting the conclu-
sion that the greater the identical gene orders the closer re-
lationship they share [25].

Using CREx analysis [40], possible gene rearrange-
ments in the 20 mitogenomes were predicted. A total of

21 transposition events were identified, 15 of which in-
volve changes in trn position (Additional file 1: Figure S4).
Among these, there are some rearrangement events that
only occur in certain fungi (such as trnL in A. tubingensis
from ‘LQ’ to ‘QL’ ), but no transposition event was found
in Clavicipitaceae. Several events occur at the Order level,
for example, the trnG location in Hypocreales involves at
least three events (G nad6 VIS W Pl TEMMUL vs
‘nad6 VISWPrmITEMMLG;‘Gnad6 VIS W P rnl
TEMMvsnad6e VISWPmITEMMG; LG vs'GL).
Most of the rearrangements occur in Pezizomycotina,
such as trnH (‘H M’ vs ‘M H), trul and trnS (‘1S W vs ‘W
I[S,'S W’ vs ‘W S), between Sordariomycetes and Eurotio-
mycetes (Figure 4A). Notably, many transposition events
(13/21) occur in the region near nad6 (Additional file 1:
Figure S4), perhaps due to historical changes in gene order
in this region. Although four types of rearrangement oper-
ations (i.e. transpositions, reverse transpositions, reversals
and tandem-duplication-random-loss) were considered
in the program CREx [40], only transposition events were
predicted in our study, supporting the suggestion that
the evolution of gene orders within Pezizomycotina is



Lin et al. BMC Microbiology (2015) 15:5

mostly driven by transpositions [12]. Even though the
mechanisms of rearrangements are not fully understood,
these rearrangement events may provide clues about
the phylogeny and evolution of the fungal species in
Pezizomycotina.

Discussion

The mt genome represents a major model system in
studies on evolutionary genomics, such as in animals
[29] and fungi [12]. Here, the organization of the
complete mt genome of P. chlamydosporia that is a
promising BCA parasitizing nematode eggs is provided
and its phylogenetic relationships to other invertebrate-
pathogenic fungi are investigated. Synteny and phylogen-
etic analyses show that P. chlamydosporia is more closely
related to M. anisopliae than to L. muscarium and other
entomopathogenic fungi (Figure 2), even though both
P. chlamydosporia and L. muscarium were once assigned
to the same genus, Verticillium. Our results are consistent
with previous results on the nuclear genome, in which the
genome of P. chlamydosporia was found to be most
closely related to entomopathogenic fungi Metarhizium
spp. [11], as well as on the phylogenetic analyses of the P.
chlamydosporia serine proteases [41,42]. Our phylogenetic
results also show that fungi attributed to the same genus
group together at first, such as the three species of Beau-
veria (B. bassiana, B. pseudobassiana and C. brongniartii,
the latter is the teleomorph of B. brongniartii [43]), and
the two species of Lecanicillium (L. muscarium and C.
militaris, the teleomorph of L. militaris [44]). These five
species then cluster into a clade because all of their teleo-
morphic forms are attributed to the same genus, Cordy-
ceps [44,45]. Similarly, the four Fusarium species and the
three Aspergillus species form two separate clades. Ac-
cording to our results, P. chlamydosporia and M. aniso-
pliae also group together with a bootstrap value of 100%.
The teleomorph of P. chlamydosporia is Metacordyceps
chlamydosporia, but the teleomorph of M. anisopliae is
unknown, therefore, we hypothesize that the teleomorphic
form of M. anisopliae may also belong to the genus
Metacordyceps.

Our phylogenetic tree showed that, in Hypocreales, all
of the invertebrate-pathogenic fungi cluster together to
form a monophyletic group, which is noticeably distin-
guished from a cluster comprising plant pathogens. This
suggests that these invertebrate-pathogenic fungi have a
most recent common ancestor (MRCA). Notably, in our
phylogenetic tree, the fungus H. jecorina (the anamorphic
name Trichoderma reesei [46]) groups together with the
four Fusarium species, and is obviously outside the group
entomopathogens. This is in agreement with some previ-
ous studies [47,48], but distinctly different from that in
others [11,12,24,30,32], in which H. jecorina was within
entomophagous group and more closely related to M.
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anisopliae. Because the results were obtained from both
the total genomic data [11,48] and the mitogenomic data
[12,24,30,32,47], we believe this may reflect to the differ-
ent evolutionary rates of the nuclear and mt genomes or
the much bigger data (number of genes) provided by the
nuclear genome in comparison with mt genes. Consider-
ing H. jecorina that is attributed to the Family Hypocrea-
ceae in fungal taxonomy, we think it is more reasonable
that H. jecorina is outside the group entomopathogens,
which belong to the Family Clavicipitaceae. Based on the
phylogenetic relationship in our study, the evolution of
fungi in Hypocreales may be speculated to have evolved
from being parasitic on plants towards being parasitic on
invertebrates. We think that a host habitat hypothesis can
be used to explain the host shift in Hypocreales fungi,
which suggests that host shifts tend to follow the host’s
microhabitat or feeding habitat, resulting in a group of re-
lated endoparasites that exploit distantly related organisms
at higher taxonomic levels [9]. Nikoh and Fukatsu reported
that the entomoparasitic fungi of Cordyceps (Hypocreales)
have an interkingdom host jumping from Animalia to
Fungi by overlapping the ecological niches of the unrelated
hosts [9]. Because most Hypocreales fungi grow naturally
in soil, interkingdom host jumping events in Hypocreales
might occur in an underground environment. It is thus
worthwhile to study the evolution of Hypocreales fungi in
depth in the future.

Among the ascomycete fungi, it was reported that the
group I intron encoded version of rps3 appears to have a
rather complex evolutionary history [21]. However, the
evolution of rps3 in Hypocreales fungi has not been re-
ported so far. In this study, our phylogenetic analysis
shows that mitogenome rps3 genes display an evolution-
ary pattern distinctly different from those inferred from
the 14 mt protein-coding genes in Hypocreales fungi
(Figure 2A). A JTT model showed a dN/dS value less
than 1, indicating that the encoded protein is under
functional constraints, i.e., natural selection is operating
to minimize the number of amino acid changes, thereby
maintaining the activity of the protein; a result similar to
that found in a study with Ophiostomatoid fungi [21].
However, a site model analysis showed a clear signal of
positive selection in these rps3 sequences. Moreover, the
dN/dS values obtained for all of the rps3 sequences in
Hypocreales - in relation to the reference sequence of
T. rubrum - are also greater than 1, suggesting that posi-
tive selection acts on rps3 in Hypocreales fungi. Such a
positive selection on rps3 was also observed previously
in gymnosperms [49]. Although the special function of
rps3 in ascomycetes fungi is unclear, it is known that
rps3 plays a critical role in ribosome biogenesis and
DNA repair in other eukaryotes [50]. Therefore, further
investigation is needed to fully understand the evolution
of fungal rps3 genes.
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As shown recently by the comparison of 38 complete
fungal mt genomes from all the major phyla, remarkable
variation is observed in genome size, gene order, com-
position of intergenic regions, repeats and introns [22].
In our study, we compared the sizes of the mt genomes
from fungal genera belonging to Sordariomycetes and
showed that, CRs, intronic and intergenic regions all con-
tributed to genome size variation. However, the major
contributor was the length of the intergenic regions or the
intronic regions in the majority of the fungal mitogenomes
(Additional file 1: Table S3). Our result indicates that, in
Sordariomycetes, the length of intergenic regions is also
an important contributor to fungal mitogenome size vari-
ation, the same as the length of introns.

A remarkable characteristic of fungal mitogenomes is
that, similar to plant mitogenomes, fungal mitogenomes
show signals of recombination. A comparison of 38
complete fungal mitogenomes (including the major fun-
gal group) showed that the patterns of rearrangements
may be explained by the combined influences of recom-
bination, accumulated repeats, especially at intergenic
regions, and to a lesser extent, mobile element dynamics
[22]. In this study, we compared the ¢rn in the 20 mito-
genomes of Pezizomycotina fungi, and found that the
gene order for all the protein- and rRNA-coding genes
were principally conserved in Sordariomycetes, but trn
clusters were conserved at the Order level (Figure 4A).
Obvious differences of gene order and trn clusters were
observed between Sordariomycetes and Eurotiomycetes.
Our results support the previous reports that the Sordar-
iomycetes and the Eurotiomycetes have highly conserved
gene arrangements [22]. Moreover, several gene order
rearrangement events in the 20 Pezizomycotina fungi
mitogenomes were estimated by CREx analysis, and 21
transposition events in the mitogenomes were identified
(Additional file 1: Figure S4). Out of these, 15 events dis-
played changes in trn order. Our results support the
view that the evolution of gene order in Pezizomycotina
is mostly driven by transpositions [12], although four op-
erations of inversion, transposition, reverse-transposition
and tandem-duplication-random-loss were considered in
CREx program [27]. The observed transpositions also
support the previous suggestion that trn genes should be
considered as mobile elements involved in gene rearrange-
ment [29,30]. Our results may provide an illustration of
trn genes location changes in gene rearrangement in
Pezizomycotina fungi mitogenomes.

Conclusions

In this study, the complete and annotated mt genome
sequence of P. chlamydosporia is provided. The relation-
ships among the invertebrate pathogenic fungi in Hypo-
creales are determined. According to different model
predictions, our results indicate that the rps3 gene has
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experienced positive selection leading to a unique evolu-
tionary pattern in Hypocreales. A comparison of the mito-
genome sizes in Sordariomycetes shows that intergenic
regions are as important as introns contributing to
mitogenome size variation in Sordariomycete. Gene re-
arrangement analysis shows that the operation of trans-
position drives the rearrangement events of gene order in
Pezizomycotina, and most of them display changes in trn
order.

Methods

Fungal isolate

The fungal isolate of P. chlamydosporia stain 170 used
in this study was originally isolated from RKN Meloidogyne
incognita eggs and confirmed using ITS sequences. This iso-
late was deposited into the China General Microbiological
Culture Collection Center (CGMCC, number 8860). The
fungus was grown on potato dextrose agar at 28°C.

DNA preparation, sequencing and assembly

Total DNA of P. chlamydosporia strain 170 was isolated
from freeze-dried mycelium from liquid cultures following
Fountaine’s description [51]. Three libraries with average
insert sizes of 165 bp, 760 bp and 4,261 bp were con-
structed and sequenced using an Illumina Hiseq 2000 at
BGI-Shenzhen (China). A total of 57,274,568 paired-end
reads of the three libraries were produced (Additional file 1:
Table S8). For these reads, ALLPATHS-LG revision 42305
[52] was used for assembly. From the assembled se-
quences, one 25,710 bp contig encoding several mt genes
was discovered after an alignment to the NCBI NT data-
base using BLASTN. The contig was then selected to
amplify both ends of the DNA sequence with the primers
(5'-GTACCTATTAACGGTACGGCTA-3" and 5'-TTAG
CCGAGGCAGAATCTGAGT-3") using PCR technology
and sequencing. A single 661 bp PCR product was gen-
erated. Using the obtained DNA sequence, a complete
25,615 bp mt genome of P. chlamydosporia was confirmed,
and the sequence was submitted to NCBI (KF479445). The
sequencing coverage of the contig was estimated by aligning
the reads from a short insert library (165 bp) to the genome
using BWA [53], and an average coverage of 1,058 x per
base was identified. SNPs were investigated using mpileup
and bcftools in the samtools package [54].

Gene prediction and genome annotation

The mt genes were predicted by the method described
in [15]. All the ORFs were obtained by searching for the
mitogenome sequence in the Swiss-Prot [55] and NCBI
NR databases using exonerate [56]. From the displayed
high sequence similarities identified in the Swiss-Prot/ NR
databases, 15 conserved mt genes (coxI-3, cob, nadl-6,
nad4l, atp6, atp8-9, rps3) were discovered and annotated.
The prediction software tRNAscan-SE v1.3.1 [57] was
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used to discover the frm. Additionally, the rfam_scan.pl
program available in the Rfam database was used for trn
and rRNA identification by searching for the mitogenome
sequences in Rfam v11.0 [58]. The annotated frn genes
from published mt genomes, such as those from Hypocrea
jecorina mitogenome, were used as reference genes for
prediction via BLASTN. A total of 23 trn genes were con-
firmed. Moreover, RepeatMasker with default parameters
[59], EMBOSS einverted and palindrome [60] were used
to identify the repeats in the mitogenomes, and repeat
content was discovered. We also used 12 published P.
chlamydosporia mt gene sequences to investigate the vari-
ance in the P. chlamydosporia mitogenome, including six
coding segments in strain IMI 113169 (nad3-atp9, atp6,
rns, nadl, nad3, cox3) [61,62], four genes in strain IMI
156157 (rns, nadl, nad3, cox3) [62], one atp6 gene in
strain CBS 101244 and one atp6 gene in strain CBS
504.66 [10].

Comparative analysis

A total of 21 fungal mitogenomes were used for the
comparative analysis (Table 1). The genome sequences
and annotations of 19 mitogenomes were obtained from
NCBI genbank files, with the exception of the N. crassa
sequence, which was downloaded from the Broad Insti-
tute [63]. The N. crassa trn were predicted using a
method similar to that used for the P. chlamydosporia
trn identification. The ¢rn analyses were performed based
on comparing the trn arrangements in the mitogenomes
of 20 Pezizomycotina fungi, including 12 Hypocreales
fungi (P. chlamydosporia, M. anisopliae [24], B. bassiana
[26], B. pseudobassiana, C. brongniartii [61], L. muscar-
ium [30], C. militaris [38], H. jecorina [64], F. solani [65],
F. graminearum [65), F. verticillioides [65] and F. oxy-
sporum [25] ), one Phyllachorales fungus (V. dahliae [32] ),
one Sordariales fungus (N. crassa), three Eurotiales fungi
(A. fumigatus [66], A. niger [39] and A. tubingensis [67] ),
and three Onygenales fungi (T. rubrum [68], E. floccosum
[69] and P. brasiliensis [70] ). The proteins of seven fungi
were selected for codon usage analysis, including two
Clavicipitaceae species (M. anisopliae, P. chlamydosporia),
and one from each of the families Hypocreaceae (H. jecor-
ina), Nectriaceae (F. oxysporum), Plectosphaerellaceae (V.
dahliae), Sordariaceae (N. crassa) and Trichocomaceae
(A. fumigatus) and using C. parapsilosis of Saccharo-
mycotina as the outgroup for phylogeny comparisons.
Five genomes displaying sizes with different variances
were used for the size comparison. The rearrangement
events in the mitogenomes were identified with CREx [40].
The gene orders of the 20 mitogenomes were uploaded to
the CREx web server [71] which covers inversions, trans-
positions, reverse transpositions, and tandem-duplication-
random-losses. In this study, only transposition operations
were identified.
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Phylogenetic analysis

The 21 fungal mitogenomes were used for inferring a
phylogenetic tree. In total, 14 mt genes (coxI-3, cob,
nadl-6, nad4L, atp6, and atp8-9) were identified in the
21 organisms, however, two nad2 (NCU16001, 235 aa;
NCU16006, 584 aa) were encoded in N. crassa mitochon-
dria, and both nad2 genes had stop codons. Both of these
nad2 proteins showed a high level of sequence similarity
to nad?2 in other fungi using BLASTP with a threshold
of 1e-50. NCU16001 is shorter than NCU16006. A block
(1-195 aa) of the sequence NCU16001 aligned to the
NCU16006 block (1-233 aa) with an E-value of 2e-66.
However, the size of NCU16006 is similar to the nad2 of
other Pezizomycotina species (such as H. jecorina), and
NCU16006 is adjacent to nad3, which is a conserved unit
in Pezizomycotina. To infer the true phylogeny, two
groups of proteins (group I used 14 proteins in 21 species,
including NCU16006 but not NCU16001 in N. crassa,
and group II used 14 proteins in 20 species except N.
crassa) were investigated through phylogenetic analysis,
and the results displayed similar topologies.

The phylogenetic trees were constructed from both
the nucleotide and amino acid sequences of the mt
genes (Additional file 1: Table S9) using a ML method.
A multiple sequence alignment of each gene was ana-
lysed using MUSCLE version 3.8.31 [72]. Certain poor
alignment positions may have been saturated by multiple
substitutions, and these regions may be obstacles to obtain-
ing a reliable molecular phylogeny. The amino acid se-
quences of these core genes were concatenated, and the
regions of poor alignment, including gaps, were removed
using Gblocks version 0.91 with default parameters [73].
The unambiguously aligned portions of the amino acid se-
quences were obtained, and the corresponding nucleotide
sequences were generated by running an in-house perl
script. The best models for phylogenetic analysis of the
nucleotide sequences were evaluated using jModelTest
version 2.1.4 [74], which calculated 20 models. The
evaluations generated by the Akaike Information Criter-
ion (AIC) [75] and the Bayesian Information Criterion
(BIC) [76] suggested that the General Time Reversible
(GTR) [77] model coupled with rate variation among
sites (+G) was the best model. Therefore, the GTR + G
model was used for phylogenetic analysis. The nucleotide
sequences were used to generate an ML tree with boot-
strapping (1000 replicates) using MEGA version 6.06 [78]
and PhyML version 3.1 [79]. Additionally, ProtTest ver-
sion 3.4 [80] indicated that cpREV [81] combined with
rate variation among sites (+G) and empirical frequencies
(+F) was the best-fit model out of 120 models for the
amino acid sequences, according to both AIC [75] and
BIC [76]. The aligned amino acid sequences were used to
construct the ML trees with 1000 bootstrap replicates
using MEGA [78] and PhyML [79]. The topologies
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generated by both the nucleotide sequences and amino
acids were similar to each other.

The rps3 genes were identified and annotated in 20
fungi, and used to infer phylogeny. jModelTest [74] and
ProtTest [80] were performed to select the best-fit models
for the sequences of rps3. For the nucleotide sequences,
the GTR + G model was used. For the amino acid se-
quences, the Jones-Taylor-Thornton (JTT) [82] model
combining rate variation among sites (+G) and empirical
frequencies (+F) was chosen. The two models (GTR + G,
JTT + G + F) were evaluated with AIC [75] and BIC [76].
The ML trees of the sequences were constructed using
MEGA [78] and PhyML [79]. The dN/dS ratio of rps3
was analysed using CODEML with a JTT [82] model
in PAML v4.7a [34], and site models M1 (neutral),
M2 (selection), M7 (beta) and M8 (beta & w) were used
to detect the positive selection pressure on the genes. Al-
though the values of dN/dS are less than or equal to
0.158, the LRT statistic for comparing M7 (InL (log likeli-
hood value) = -10,186.296) and M8 (InL = -10,173.369) is
25.854 (2A = 2* (10,186.296-10,173.369) = 25.854), with a
P-value of 2.432e-06 using the Chi-square test (with d.f. = 2).
Furthermore, the dN/dS values of each rps3 sequence
with the rps3 sequence in T. rubrum were calculated using
DnaSP 5.10.1 [37] and CODEML [34].

Data depositions

The mt genome sequence of P. chlamydosporia has been
submitted to NCBI's GenBank under the accession num-
ber: KF479445. And the phylogenetic data in this study
has been submitted to TreeBASE [83].

Additional file

Additional file 1: Table S1. Comparison of the assembled
mitogenome sequences with the published P. chlamydosporia mt genes.
Table S2. Gene and intergenic regions sizes from the complete
mitogenomes of five Pezizomycotina fungal species. Table S3. The three
primary contributors to mitogenome size variation. Table S4. Distinct
codon usage for fungal mitogenome genes. Table S5. Codon usage bias
statistics. Table S6. Nucleotide sequence lengths (bp) of the rps3 gene
and group | introns. Table S7. The dN/dS values of the rps3 sequences.
Table S8. Summary of the sequenced data of P. chlamydosporia. Table S9.
Proteins used for phylogenetic analyses are shown. Figure S1. Distribution
of the genes and repeats in the mitogenomes of P. chlamydosporia, M.
anisopliae and L. muscarium. Figure S2. Synteny between P. chlamydosporia
and B. bassiana, V. dahliae, A. fumigatus. Figure S3. Evolutionary characteristics
of 1ps3. Figure S4. Putative transposition events in the mitogenomes of 20
fungi detected by the use of CREx algorithm.
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