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Abstract

Mass spectrometry information has long offered the potential of discovering biomarkers that 

would enable clinicians to diagnose disease, and treat it with targeted therapies. Hundreds of 

human samples alone have been used to generate thousands of spectra for identification. This data, 

and the generation of targeted peptide information, represents the first step in the process of 

locating disease biomarkers. Reaching the goal of clinical proteomics requires that this data be 

integrated with additional information from disease literature and genomic studies. Here we 

describe PeptideAtlas and associated methods for mining the data, as well as the software tools 

necessary to support large-scale integration and mining.
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1 Introduction

The PeptideAtlas [1] provides a repository of information from thousands of mass 

spectrometry experiments across numerous, species, tissues and disease conditions. This 

wealth of data is an important source of information in the study of human diseases. Disease 

biomarkers help to both diagnose diseases such as cancer, as well as provide the potential 

for treatments (e.g. targeting virulence factors in infectious diseases). Mass spectrometry 

information has been used in identifying candidate biomarkers for diverse diseases including 

ovarian cancer [2] and erosive rheumatoid arthritis [3], as well as virulence factors for 

Streptococcus pyogenes bacteria [4].

The Atlas contains thousands of spectra, as well as associated data about identified peptides 

and putative proteins across multiple species. While the initial goal for the Atlas was to 

annotate genome information with peptides observable via mass spectrometry, advances in 

both instrumentation and informatics mean that it now provides an integrated view on the 

human proteome which can be mined to identify putative biomarkers that are detectable on 

the current generation of instrumentation.
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As the purpose of the Atlas is to provide a comprehensive catalogue of experiments which 

can be used to both design new experiments and catalogue previous ones, the process of 

creating this Atlas has been standardized to ensure a high level of confidence in the data it 

provides. Starting in the laboratory a protein sample is prepared (possibly digested, labeled, 

purified or separated) and run on a mass spectrometer to generate MS/MS spectra. The 

spectra are then analyzed using one of several spectra matching tools (SEQUEST [5], X!

Tandem [6], SpectraST [7]) to identify possible peptides. The identified peptides are then 

scored and filtered using PeptideProphet [8], matched to proteins in the appropriate 

organism database and annotated using ProteinProphet [9]. This process ensures that 

identified peptides and proteins meet a high standard for inclusion in an Atlas. Currently 

PeptideAtlas provides builds for nine different organisms ranging from mouse and human, 

to halobacterium and honeybee. New Atlases are being built regularly as well. This process 

is now being used to provide high-quality repositories of the detectable proteome across 

various species including human, which can be used to design targeted experiments.

This wealth of data that is represented in the PeptideAtlas currently, and which is being 

continually generated is clearly an important source of information in the study of human 

disease. Mining it through the use of appropriate tools and additional sources of information 

can enable researchers to target specific biomarkers of disease.

In the section 2 on “Mining for Biomarker Discovery” two approaches to mining 

PeptideAtlas data using literature associations and genomic annotations are described. Tools 

and services used to both integrate and mine this data are discussed in this section under 

“Service and Application Integration”. In section 3, “Architecture to Manage High-

Throughput Spectral Data”, an overview is provided of the software architecture that is 

necessary to support high-throughput generation of Atlases as well as mining for targeted 

discovery.

2 Mining for Biomarker Discovery

The spectra and peptide information provided by the PeptideAtlas can be used to inform 

further studies into specific metabolic pathways or diseases ranging from bacterial infection 

to cancer. Mining the repository enables identification of specific transition patterns that 

uniquely identify proteins used as biomarkers. Ultimately this data needs to be integrated 

with other experiment technologies (e.g. gene expression, genomic sequencing, cellular 

imaging) which is becoming increasingly important in biomarker discovery.

Integrative approaches to the identification of biomarkers require the ability to explore and 

visualize inferences drawn from spectral libraries, scientific literature and genomic 

information. Integrating these multiple sources of information allows researchers to identify 

the peptide transitions that are most relevant to a particular disease or biological phenomena.

2.1 Disease Focused Mining

The Atlas provides information about the proteins and transitions of their constituent 

peptides. Due to the scale of the repository the discovery of the most suitable transitions that 

can uniquely identify proteins requires dedicated software and mining tools. When wishing 
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to discover the most suitable transitions for proteins that are most likely to be associated 

with particular disease states, the complexity of this task is dramatically increased. The sheer 

number of factors and uncertainties with choosing the correct transitions for a particular set 

of diseases requires purpose built integration and inference tools.

The main use of these tools is in the automatic design of transition lists for targeted 

proteomics experiments, although other usages are possible (e.g. filtering of tandem MS 

results). The identification of transition lists, that represent the detectable peptides of 

proteins most likely to be associated with a disease, requires inference of disease-protein 

associations (see Figure 1). Once these associations have been identified they can be 

integrated directly with the Atlas using one of the integration services provided. These 

integration services are described in section 2.3 (Service and Application Integration), and 

provide access to the Atlas using common protocols (see Figures 5–8).

The protein-disease associations can be inferred using a variety of means, and a dedicated 

tool has been developed to allow for such disease-centric mining. The tool infers 

relationships using the semantic distance between proteins and diseases, which are derived 

from co-occurrence of terms in MEDLINE. The association table between diseases and 

proteins is calculated and stored, and then used by the main application. The semantic 

relatedness of a protein and a disease is high (and the distance is therefore low) if the terms 

that represent them in MESH occur in the same documents with a high frequency; the score 

is normalized based upon the general frequency of the terms in MEDLINE. Conversely 

terms that do not co-occur frequency have a high distance. The underlying inference 

mechanism is based upon Normalized Google Distance (NGD). These distance measures are 

based upon well grounded theories of information complexity [11, 12]. For more 

information about the tool, and the inference mechanism see mspecLINE [13].

The derived underlying associations can then be used to infer sets of disease-protein 

networks. The Atlas disease based mining tool uses a threshold value, then expands the 

network to integrate information about detectable peptides and their suitability using the 

Atlas Empirical Observability Score (EOS) (see Figure 2).

A graphical front end for the tool is provided (see Figure 3). This tool simplifies the process 

of using the inference and integration system, and allows the identification of disease 

specific peptide transitions to be undertaken with the minimal of knowledge about the 

underlying algorithms. Within the tool the user selects the disease they are interested in (as 

defined in MESH), and then the proteins most associated with that disease are shown. The 

peptides that can be used to identify those proteins can then be browsed, and can be filtered 

based upon EOS score to identify those that are proteotypic. All evidence for the 

associations can be directed mined through links to MEDLINE. Once the peptides are 

chosen these can be used to design targeted proteomics experiments through integration with 

ATAQS [14]. The transitions can also be viewed in Excel, and the derived disease-protein-

peptide network can be visualized in Cytoscape (see Figures 9–10).
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2.2 Gene Centric Mining

With the ever expanding genome centric information being generated it is important that 

gene based associations are supported in the Atlas. Projects such as The Cancer Genome 

Atlas (TCGA) are investigating the genomic causes of disease, and are generating huge 

repositories of genetic and epigenetic data. TCGA alone is generating data from over 10,000 

patient genomic sequences across 20 different cancers with the goal of proving a map of the 

genomic mutations between both different cancers (e.g. Ovarian and Glioblastoma) and 

across patients within a single cancer. Such data will enable the creation of maps of normal 

genomic variation, disease-related disruption and disease progression. However, these 

projects do not provide links to proteomic resources, meaning that the data is lacking this 

important component which is needed for both validation of many of the findings, as well as 

the design of associated diagnostics tools and intervention strategies.

Researchers studying a particular disease with known genomic causes or involvement (e.g. 

Type I diabetes, Huntington’s disease, breast cancer) often target specific genes or loci to 

investigate such as BRCA1/2 in breast cancer or loci 2q31–q33, 6q21, 10p14-q11 in Type I 

diabetes. One of the primary initial motivations in the development of PeptideAtlas was to 

annotate genomes with identified peptide sequences. The generation of multiple human 

atlases has provided the opportunity to connect large-scale genomic disease data with all 

known human peptides that can be detected in a mass spectrometer. This allows for the 

integration of searches that are derived from other experiment types (e.g. high-throughput 

sequencing of genomes and transcriptomes).

Multiple methods for gene centric mining of the Atlas data are currently available, and 

appropriate high-throughput visual tools are being developed to provide essential 

exploration tools (see Figure 4). These tools use specific knowledge (e.g. a gene, loci, or 

protein of interest) to filter down the search space, so that the spectral searching is 

manageable. Using visual analytics and information retrieval techniques on particular genes 

it is possible to discover the associated observed spectra information from PeptideAtlas. 

This enables the creation of a transition list that is refined to the hundreds of possible 

transitions that are actually detectable and associated with a specific genomic region.

2.3 Service and Application Integration

When providing a large scale repository it is important to provide flexibility, as each 

experiment and researcher will have different needs. Even when mining the spectral data to 

create transition lists for targeted proteomics, the actual a priori knowledge will be different 

and the criteria for selection will depend upon the experiment. The researcher will typically 

wish to integrate the Atlas with genome, pathway or literature data to enable identification 

of appropriate biomarkers for a disease.

Due to the diversity of applications of large spectral repositories, both in terms of usage and 

users, a number of interfaces have been developed for the Atlas. Three main types of 

interface are available:
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Direct Mining—These are interactive applications for the researchers to explore, query and 

retrieve transitions of interest (as discussed in sections 2.1 and 2.2). Two interfaces are 

currently available: the main PeptideAtlas web application (http://www.peptideatlas.org), 

and the mspecLINE [13] interface. The main application offers a gene or protein centric 

access mechanisms to the public datasets where a user can locate the spectra of peptides 

based on searches for specific identifiers (e.g. Gene Symbol, RefSeq, Ensembl Protein ID). 

The mspecLINE application offers a disease centric access system which integrations with 

MEDLINE and allows for searching based upon disease of interest with retrieval of selected 

peptide spectra.

Access mechanisms—The access mechanisms represent generic technologies which 

have broad applicability across the biomedical community. These interfaces offer a standard 

means for performing structured querying on remote data sources, and so are not specific to 

PeptideAtlas and may be implemented over any structured data. The interfaces offer a 

framework that the disparate data source providers integrate with. PeptideAtlas primarily 

provides information through a web application (see Figure 5) but it has also been integrated 

into three different interfaces (see Figures 6–8) to enable various usage: BioMart [15], 

caBIG [16] and GDS [17].

Specialized Interfaces—PeptideAtlas also offers a number of custom interfaces which 

are designed for specific applications. A number of bioinformatics tools are available that 

may be used to assist both in the identification of biomarkers (through integration with other 

sources of data) and the creation of transition lists. The Atlas has been used to: integrate 

with Cytoscape [18] to allow for the browsing of disease-protein-peptide associations (see 

Figure 9); provide additional data sources, so that the data can be overlaid on existing 

networks or used to infer new networks (see Figure 10); develop visual analytic tools which 

can be used to interactively browse the repository; and to integrate the lists with instruments 

for the actual experiment runs using ATAQS (ref). The Atlas is also integrated with Tranche 

[19] for interoperability with other repositories and bulk downloads of raw data.

As the Atlas continues to grow it is expected that the diversity of applications that use it will 

continue to expand. For this reason the interfaces that are provided on top of the Atlas are, 

where possible, standardized so that they are easy to access and use.

3 Architecture to Manage High-Throughput Spectral Data

Proteomics has experienced the same explosion of high-throughput technologies seen in 

genomic sequencing and cellular imaging in the past decade. New instruments have enabled 

automated runs of multiple samples rapidly and with greater resolution, resulting in massive 

data sets (see Figure 11). A new technique for targeting specific proteins in complex 

mixtures, called Selected Reaction Monitoring (SRM) promises to greatly increase the 

usefulness of mass-spectra based proteomics in both experimental and diagnostic areas. The 

use of high-throughput technologies and targeting techniques to generate proteomic data 

from biological samples has made it necessary to develop management strategies for raw 

and analyzed data.
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The Atlases that have been built prior to large-scale use of SRM techniques have typically 

required manual data checking and processing. While standardized toolsets are available for 

the analysis of data (e.g. Trans Proteomic Pipeline (ref)), use of the tools requires both an 

expert user and manual location (through directory listings) of data in need of processing. 

Such manual processes are highly prone to both introducing and missing errors, especially 

as data throughput increases.

The need for a standard process has become more apparent with the development of a 

project to characterize the entire human proteome (approximately 1 million peptides) using 

SRM techniques (see Figure 12). A system providing this high level of QA and 

standardization has been developed to manage the data flow from the laboratory to final 

inclusion in a PeptideAtlas repository. It does this through supporting:

• Information integration. Experimental data must be preserved from a sample’s 

entry in the laboratory to final analysis results. Multiple sources and types of data 

can be involved from tracking physical sample location and, preserving biological 

sample information to raw spectral data and results of the Trans Proteomic 

Pipeline.

• Workflow management. Data that will be included in the PeptideAtlas is run 

through a standard processing pipeline that includes QA, spectral scoring and 

searching before peptide/protein identifications are added to the atlas. As high-

throughput data cannot be run through such a process manually a workflow system 

is in place to ensure standard sample processing, as well as reporting any 

anomalous data for manual checks by the researcher.

While this system enables researchers to locate and track proteomic samples and spectral 

data, supporting the workflow in a high-throughput environment requires a robust 

computational framework as well.

Using high performance computational (HPC) technologies, tools have been built for high-

throughput processing of the data for PeptideAtlas. These tools take advantage of main HPC 

technologies. Grid and cluster based computing is the main processing framework used [20, 

21], however both GPU (SpectraST [7]) and distributed systems (X!Tandem [22]) based 

computing have also been utilized.

4 Conclusion

The PeptideAtlas is a community resource which is growing in both size and functionality. 

As advances in mass spectrometry, and their relevance to clinical applications, increase so 

too will the importance of such repositories of information.

The PeptideAtlas provides a home for both public experiment data, as well as specialized 

sets of high quality information. Such standardization ensures that the information is 

applicable for targeted proteomics experiment design. As these data sets are continually 

growing in size and complexity, the sophistication of the mining tools associated with 

PeptideAtlas have had to increase. These tools allow for convenient access to the spectra 

information, and also allow the integration of the peptide data with both disease and gene 
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centric information. Mining and integration mechanisms will continue to be expanded in the 

PeptideAtlas as its utility increases.

The advent of new instrumentation technologies in mass spectrometry, including new high 

mass accuracy and targeted approaches, means that the applicability of proteomics in the 

clinical environment is set to increase. The new approaches allow for a higher 

reproducibility of protein identifications in small concentrations from complex mixtures 

when compared to traditional methods. To be effective these approaches require background 

knowledge to be easily accessible and of a high quality. The PeptideAtlas project provides 

both of these, and so is set to become an essential tool in the study of human disease.
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Figure 1. 
To generate the transition list two measures are taken, the first is a measure of the distance 

between a specific disease and a set of proteins that are known to be associated with a 

disease, the second is a measure between each protein and the “detectablity” of its 

constituent peptides. The first measure is based upon NGD and uses literature mining 

(through annotation associations). The second measure is based upon instrument specific 

observations and is derived directly from the Atlas.
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Figure 2. 
We used BioThesaurus, MEDLINE, and MeSH to construct the NMD and MEDLINE Data 

Stores. A web service on top of the Atlas operates on the caBIG Cancer Biomedical 

Informatics Grid [10], and provides information about observed spectra. A data service is 

made available as a Google Data Source, and can be queried using GQL. This service is a 

read-only SQL-like interface that allows complex queries across the collected data stores for 

the retrieval of disease and protein related information.
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Figure 3. 
Screen capture of the mspecLINE web user interface showing Creutzfeldt-Jakob Syndrome 

as an example disease. Researchers may review possible disease-related proteins and 

peptides observable in mass spectrometry experiments, review relevant literature from 

MEDLINE, and export selected peptides for later use.
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Figure 4. 
Exploring the PeptideAtlas through a gene centered view allows an investigator to mine 

observed spectra based on chromosome location (a), and drill further in by selecting a 

location of interest and viewing available genomic and proteomic annotations (b).
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Figure 5. 
The original PeptideAtlas web application was served through a standard Perl CGI layer that 

both creates the web page and responds to requests by making direct queries on the 

underlying database.
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Figure 6. 
caBIG provides a set of layers in the caGrid that a query is routed through. A CQL query is 

translated into a previously defined object model then to SQL. This layering allows for the 

inclusion of security and other horizontal services.
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Figure 7. 
To provide data as a BioMart service requires that the database schema fits the BioMart 

specification. This enables users to create queries across any database provided through the 

BioMart services.
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Figure 8. 
The Google Data Source API is a single layer that takes RESTful web requests in a 

simplified query format (GQL) and translates it directly to SQL. Any client that can make 

HTTP requests can use the service.
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Figure 9. 
The Atlas programmatic interfaces can be used to support additional tool integration. 

Cytoscape uses a web service to access Atlas information. This is used by mspecLINE to 

show the suitability of the associated proteins to serve as biomarkers. Here the purple 

triangles show disease terms, the green boxes associated MESH-D terms, the cyan circles 

the mapped human proteins and the orange diamonds show the detectable peptides.
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Figure 10. 
Using Cytoscape, the Atlas information can be overlaid on existing data in a network 

context, allowing users to locate potential biomarkers within the context of a given cancer 

network. In this case the network is inferred from the Cancer Genome Atlas project 

(TCGA). The network shows gene duplication co-occurrences, where associations are 

between genes that show similar copy-number variation. Atlas data is overlaid to highlight 

potential biomarkers in this network.
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Figure 11. 
PeptideAtlas began in 2003, and, over the years, data from 230 human LC-MS/MS 

experiments, comprising a total of about 55 million spectra, have been added. About 8% of 

those spectra could be assigned highly confident peptide identifications. Currently, the 

human PeptideAtlas contains about 4.5 million identified spectra corresponding to about 

60,000 distinct identified peptides. These peptides map to 7553 highly non-redundant 

protein identifiers, covering about 1/3 of the protein-coding genes in the human genome.
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Figure 12. 
The use of SRM techniques will dramatically increase the coverage of the human proteome 

(as well as various other species including human infectious diseases). A protein is 

considered covered if the PeptideAtlas contains at least one peptide that maps to that protein. 

Access to these atlases will be critical in transition selection for targeted workflows such as 

biomarker discovery or quantification.
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