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Abstract

Gaucher disease, a recessive inherited metabolic disorder caused by defects in the gene
encoding glucosylceramidase (GlcCerase), can be divided into three subtypes according to
the appearance of symptoms associated with central nervous system involvement. We now
identify a protein, glycoprotein non-metastatic B (GPNMB), that acts as an authentic marker
of brain pathology in neurological forms of Gaucher disease. Using three independent tech-
niques, including quantitative global proteomic analysis of cerebrospinal fluid (CSF) in sam-
ples from Gaucher disease patients that display neurological symptoms, we demonstrate a
correlation between the severity of symptoms and GPNMB levels. Moreover, GPNMB lev-
els in the CSF correlate with disease severity in a mouse model of Gaucher disease.
GPNMB was also elevated in brain samples from patients with type 2 and 3 Gaucher dis-
ease. Our data suggest that GPNMB can be used as a marker to quantify neuropathology in
Gaucher disease patients and as a marker of treatment efficacy once suitable treatments to-
wards the neurological symptoms of Gaucher disease become available.

Introduction

Gaucher disease (GD), the most common lysosomal storage disease (LSD), is caused by muta-
tions in the GBA1 gene, which encodes for glucosylceramidase (GlcCerase), the lysosomal hy-
drolase responsible for glucosylceramide (GlcCer) degradation [1]. GD is classically divided
into three clinical sub-types based on age of onset and on signs of nervous system involvement
[2]. Type 1 is the chronic, non-neuronopathic form and types 2 and 3 are the acute and chronic
neuronopathic forms, respectively, which display central nervous system (CNS) involvement
in addition to systemic disease [3], and are collectively known as neuronopathic GD (nGD).
However, the disease encompasses a wide spectrum of phenotypes and a great diversity in se-
verity and symptoms is observed in patients classified as the same sub-type. Thus, the
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manifestation of disease can be described as a phenotypic continuum. An effective treatment,
enzyme replacement therapy, is available for type 1 GD but no therapies are available for nGD,
although attempts are being made to identify possible therapeutic targets [4,5]. However, be-
cause of the wide heterogeneity of symptoms displayed by nGD patients, the efficacy of candi-
date drugs would be immensely facilitated by the availability of genuine biochemical
biomarkers. Moreover, interest in GD and nGD has recently been boosted by the realization
that heterozygous mutations in GBA1 are a major risk factor for Parkinson’s disease [6], lead-
ing to the suggestion that GD therapies might be of use for treating Parkinson’s disease [7].

In the current study, we performed liquid chromatography/tandem mass spectrometry
(LC-MS/MS) quantitative proteomics to identify biochemical markers in the cerebrospinal
fluid (CSF) of four type 3 GD patients and five controls, and identified a protein, glycoprotein
non-metastatic B (GPNMB), whose levels in the CSF reflect diseases severity. This was con-
firmed in a series of studies in which GD was induced in mice and GPNMB levels monitored
in the CSF. We suggest that GPNMB can be used as an authentic biochemical marker to follow
the progression of nGD pathology and the efficacy of potential treatments.

Materials and Methods
Human brain and CSF samples

The spinal fluid samples were collected for biomarker discovery from a clinical trial “a phase I/
II randomized, controlled study of OGT 918 in patients with neuronopathic GD” (Clinical-
trials.gov identifier NCT00041535) [8]. The samples were collected under a study that was
overseen by the Institutional Review Board (IRB) of the National Institute of Neurological Dis-
orders and Stroke (NINDS), National Institute of Health (NIH). All patients or their legal
guardians gave their written informed consent for their participation. Following a waiver of
consent received from NINDS IRB, these samples became part of the Repository Protocol Insti-
tute of Metabolic Disease that is overseen by the IRB of Baylor Research Institute, Dallas,
Texas. The stated purpose of this study was to “To support the neurometabolic research using
in human samples and data in the Institute for Metabolic Diseases, Baylor Research Institute,
Baylor University Medical Center”. Samples were anonymised prior to shipment. All patients
were on long-term enzyme replacement therapy (ERT) as well as on Miglustat; note that nei-
ther have any therapeutic effect on the brain [8] All patients eye movement abnormalities [9]
and had not undergone splenectomy. Human brains were provided by the University of Miami
Brain and Tissue Bank for Developmental Disorders through NICHD contract NO1-HD-8-
3284 [10]. All control brains were frozen within 6-26 h of death. GD patients were classified
before death as types 1, 2 or 3 based on the clinical course of the disease, and in most cases,
mutational analysis was also performed. Brains from GD patients were obtained post-mortem
with informed consent between 7 and 22 h after death. After removal, brains were frozen

on dry ice.

Mouse tissues

Mice were maintained under specific pathogen-free conditions and handled according to pro-
tocols approved by the Weizmann Institute Animal Care Committee according to international
guidelines. Gba1°%; nestin-Cre mice were used as a model of nGD, in which GlcCerase defi-
ciency is restricted to neurons and macroglia [11,12]. nGD was also induced in C57BL/
60laHsd mice by intra-peritoneal injection with 100 mg/kg/day conduritol B-epoxide (CBE)

(Calbiochem), an irreversible GlCerase inhibitor [13].
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LC-MS/MS

Proteins were reduced by incubation with 5 mM dithiothreitol (Sigma-Aldrich) for 30 min at
60°C followed by alkylation with 10 mM iodoacetamide (Sigma-Aldrich) in the dark for 30
min at 21°C. Proteins were subsequently digested with trypsin (Promega) overnight for 6 h fol-
lowed by trypsin for 16 h at 37°C. Digestions were stopped by addition of trifluroacetic acid
(1%, v/v). Samples were stored at -80°C.

ULC/MS grade solvents were used for all chromatographic steps. Samples were loaded
using split-less nano-Ultra Performance Liquid Chromatography (10 kpsi NanoAcquity, Wa-
ters). The mobile phase was (A) H,O + 0.1% (v/v) formic acid and (B) acetonitrile + 0.1% (v/v)
formic acid. Desalting of the samples was performed online using a reverse-phase C18 trapping
column (180 um internal diameter, 20 mm length, 5 um particle size; Waters). Peptides were
separated using a C18 T3 HSS nano-column (75 pm internal diameter, 250 mm length, 1.8 um
particle size; Waters) at 0.25 pl/min. Peptides were eluted from the column using the following
gradient of phase B: 4% to 8% for 10 min, 8% to 20% for 80 min, 20% to 35% for 10 min, 35%
to 90% for 5 min, maintained at 95% for 5 min and then back to 4%. The nanoUPLC was cou-
pled online through a nanoESI emitter (10 um tip; New Objective, Woburn) to a quadrupole
Orbitrap mass spectrometer (Q Exactive, Thermo Scientific) using a FlexIon nanospray appa-
ratus (Proxeon). Data was acquired in the DDA mode using the Top12 method [14]. Raw data
was imported into TransOmics software (Waters) (also known as Progenesis LC-MS). The
software was used for retention time alignment and peak detection of precursor peptides. A
master peak list was generated from all MS/MS events and analyzed using Mascot v2.4 (Matrix
Sciences). Data was searched against forward and reversed human sequences of UniprotKB
version 05_2012 including 125 common laboratory contaminants. Fixed modification was set
to carbamidomethylation of cysteines and variable modification was set to oxidation of methi-
onines. Search results were then imported back to TransOmics to annotate identified peaks.
Identifications were filtered such that the global false discovery rate was no more than 1%. Dif-
ferential analysis was conducted by direct comparison of aligned peptide intensities across all
samples. Technical replicates were averaged and a Student’s t-Test, after logarithmic transfor-
mation, was used to identify significant differences in the biological replicas. The mass spec-
trometry proteomic data set was deposited in the ProteomeXchange Consortium [15] via the
PRIDE partner repository with the dataset identifier PXD001654.

Western blot analysis

Brain homogenates and CSF samples were electrophoresed on a 10% SDS-polyacrylamide gel
and transferred to a nitrocellulose membrane. Blots were incubated with the following primary
antibodies: anti-GPNMB (R&D systems, catalog number AF2550), anti-albumin (Dako Cyto-
mation, catalog number A0001), anti-Tau (Cell signaling, catalog number 4019S), anti-mouse
P-Tau (Cell signaling, catalog number 9632S), anti-human P-tau (Santa Cruz, catalog number
101815) and anti-AT8 (Innogenetics, catalog number 90206), followed by a horseradish perox-
idase-conjugated secondary antibody. Bound antibodies were detected using the SuperSignal
West Pico Chemiluminescent substrate (Thermo Scientific).

Enzyme-Linked Immunosorbent Assay

GPNMB levels were measured in CSF aspirated from type 3 GD patients and in brain tissue
from type 2 and 3 GD patients. Brain tissues were lysed in ~ 6 volumes of Ripa buffer (150
mM sodium chloride, 1.0% Triton X-100, 0.5% sodium deoxycholate, 0.1% SDS, 50 mM Tris,
pH 8.0) supplemented with a protease inhibitor mixture (Sigma-Aldrich). Following homoge-
nization, samples were centrifuged at 4,500¢,, for 5 min at 4°C and the supernatant collected.
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Table 1. Up-regulated proteins in the CSF of type 3 GD patients.

Gene symbol Protein Fold change and p value
CHITA Chitotriosidase-1 57.7 (<0.01)
GPNMB Transmembrane glycoprotein NMB 42.3 (<0.01)
SCTSS Isoform 2 of Cathepsin 6.7 (<0.05)
IGKC Ig kappa chain V-lIl region GOL 6.6 (<0.01)
LYz Lysozyme C 6.3 (<0.01)
CFD Complement factor D 3.1 (<0.01)
PLD3 Phospholipase D3 2.4 (<0.01)

CSF from type 3 GD patients and age matched controls (n = 4) was digested with trypsin and subjected to
label-free quantitative global proteomic analysis using liquid chromatography and tandem mass
spectrometry (LC-MS/MS).

doi:10.1371/journal.pone.0120194.1001

Protein was quantified using the BCA protein assay reagent (Thermo Scientific). GPNMB lev-
els were quantified using the human GPNMB ELISA kit (R&D systems) according to
manufacturer’s instructions.

GPNMB quantification in mouse CSF and brain

Mice were anesthetized using 100 mg/kg ketamine and 10 mg/kg xylazine, and CSF aspirated
from the cisterna magna using a glass needle. Brains were removed and lysed in ~ 6 volumes
of 150 mM sodium chloride, 1.0% Triton X-100, 0.5% sodium deoxycholate, 0.1% SDS and 50
mM Tris, pH 8.0 supplemented with a protease inhibitor mixture (Sigma-Aldrich). Following
homogenization, samples were centrifuged at 4,500xg,, for 5 min at 4°C, and the supernatant
collected. Protein was quantified using the BCA protein assay reagent (Thermo Scientific).
GPNMB was measured using a mouse GPNMB ELISA kit (R&D systems) according to
manufacturer’s instructions.

Results and Discussion

Quantitative global proteomic analysis of CSF samples from four type 3 GD patients and 5 age-
matched controls was performed. 489 proteins were identified in CSF but only 7 proteins were
elevated more than 2-fold (Table 1), and levels of 10 proteins were reduced. Most of the former
are involved in the immune response and in lipid metabolism. Of the proteins whose levels
were reduced, the most significant reduction was for amyloid A4 (2.3-fold reduction, p<0.05),
a key protein in the pathology of Alzheimer's disease [16]. No amyloid formation could be de-
tected in the brain at the end-stage of Gba™™°%; nestin-Cre mice (not shown), although hyper-
phosphorylated tau, a key player that is linked to amyloid formation in Alzheimer's disease
[17], was detected in Gba**1°%; nestin-Cre mice (Fig. 1A). Hyper-phosphorylated tau was also
detected in a type 2 GD patient (Fig. 1B). Elevated tau was also recently detected in the brain of
type 3 GD patient [18].

Two proteins were noticeably elevated in CSF obtained from type 3 human GD patients,
namely chitotriosidase-1 (CHIT1), a known biomarker for GD [19], which was elevated
58-fold, and glycoprotein non-metastatic B (GPNMB) protein, which was elevated 42-fold
(Table 1). Two peptides were identified from GPNMB, both located in the non-cytosolic do-
main [20] (Fig. 2), suggesting that GPNMB is cleaved and secreted into the CSF from the brain.
LC-MS/MS results (Fig. 3A) were validated by ELISA (Fig. 3B) and by western blot analysis
(Fig. 3C) in CSF and in human brain (Fig. 3D). Thus, three independent techniques
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Fig 1. Hyperphosphorylation of Tau in nGD samples. (A) Western blot of Tau and P-Tau (using two different anti-P-Tau antibodies) in brains of 21 day-old
Gba"*°X; nestin-Cre mice and (B) P-Tau in the brain of one type 2 GD patient. Results are from a typical experiment repeated 3 times which gave similar
results. GAPDH was used as a loading control. A molecular weight marker is shown (Mr = 55 kDa)

doi:10.1371/journal.pone.0120194.g001

corroborated the elevation of GPNMB, suggesting that GPNMB might be a biomarker for fol-
lowing the progression of CNS pathology in nGD patients. Moreover, there was a correlation
between GPNMB levels and disease severity, such that higher CSF levels of GPNMB correlated
with more severe disease symptoms (assessed by full scale IQ and eye-hand coordination as-
sessed by the Purdue Pegboard Test, Table 2). The elevated levels of GPNMB in the brain of
Gba"1°%; pestin-Cre mice, in which GlcCerase deficiency is restricted to neurons and macro-
glia [11,12], confirms that GPNMB in the CSF does not originate from the periphery but rather
directly from the brain (Fig. 4A); however, a small (1.3-fold elevation) of GPNMB was detected
in the serum of the Gba™1°%; nestin-Cre mice (Fig. 4B) perhaps suggesting some leakage of
the CSF into the serum at the late stage in disease progression at which these analysis were per-
formed. Together, these results suggest that GPNMB levels in the CSF could be used as a bio-
marker to quantify nGD severity.

To further assess the relationship between CSF levels of GPNMB and disease severity, mice
were injected daily, starting on day 15, with relatively high levels (100 mg/kg) of CBE, followed
by cessation of CBE injection (Fig. 5A). Mouse weight (which can be used as a simple indicator
of disease progression) [12], began to decrease ~10-12 days after beginning CBE injections and
continued to decrease until day 41 (Fig. 5B). However, mice in which CBE injections ceased on
day 31 began to gain weight (Fig. 5B). GPNMB levels in the CSF correlated with changes in
mouse weight and with neurological signs of nGD. Thus, GPNMB levels increased upon
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VWKRGDMRWKNSWKGGRVQAVLTSDSPALVGSNITFAVNLIFPRCQKEDANGNIVYEKNC

RNEAGLSADPYVYNWTAWSEDSDGENGTGQSHHNVFPDGKPFPHHPGWRRWNFIYVFHTL
GQYFQKLGRCSVRVSVNTANVTLGPQLMEVTVYRRHGRAYVPIAQVKDVYVVTDQIPVFV

TMFQKNDRNSSDETFLKDLPIMFDVLIHDPSHFLNYSTINYKWSFGDNTGLFVSTNHTVN
HTYVLNGTFSLNLTVKAAAPGPCPPPPPPPRPSKPTPSLATTLKSYDSNTPGPAGDNPLE

LSRIPDENCQINRYGHFQATITIVEGILEVNIIQMTDVLMPVPWPESSLIDFVVTCQGSI

PTEVCTIISDPTCEITQNTVCSPVDVDEMCLLTVRRTFNGSGTYCVNLTLGDDTSLALTS

TLISVPDRDPASPLRMANSALISVGCLAIFVTVISLLVYKKHKEYNPIENSPGNVVRSKG
LSVFLNRAKAVFFPGNQEKDPLLKNQEFKGVS

Fig 2. GPNMB peptides identified by LC-MS/MS. The GPNMB sequence is shown (UniProtKB/Swiss-Prot Q14956), with the site of cleavage [20]
indicated in red and the two peptides identified by LC-MS/MS indicated in green and brown.

doi:10.1371/journal.pone.0120194.9002

injection of CBE from day 15-30 and to a higher extent with injection till day 41 (Fig. 5C).
Upon cessation of CBE injection on day 30, a significantly lower level of CSF GPNMB was de-
tected on day 41 than in mice that were continuously treated with CBE until day 41 (Fig. 5C).

To confirm the purity of the mouse CSF samples used in this study, the percent of polynu-
clear cells in CSF was analyzed by FACS. Polynuclear cells comprised ~0.55% of the cells in the
CSF (n = 5), whereas blood samples contained 10% polynuclear cells, indicating the high purity
of the CSF samples. Together, these results suggest that if an effective treatment was available
for types 2 and 3 GD, analysis of GPNMB levels in the CSF would provide a means to deter-
mine treatment efficacy.

In summary, we demonstrate that GPNMB, a transmembrane protein that is expressed in
various cell types including melanocytes, osteoclasts, macrophages, neurons and astrocytes
[21,22], is significantly elevated in the CSF of nGD patients and that there is a clear correlation
between GPNMB levels and disease severity in both human and mouse tissues. Previous studies
have shown that GPNMB mRNA levels are elevated in the serum of GD mice [23] and in the
spleen of GD patients [24]. Although the purity of the CSF used in the current study excludes
the possibility that the GPNMB in the CSF results from non-neuronal tissue, we cannot
completely exclude the possibility of perivascular cells originating from the brain in the CSF
samples [25]. Elevated levels of GPNMB have also been previously shown in the liver of Nie-
mann Pick type C mice [26] and in some other LSDs, such mucopolysaccharidosis (MPS) VII
but not in MPS I or MPS IIIb mice [27], and in the brains of Tay-Sachs and Sandhoff patients
[7,28]. Interestingly, GPNMB was also detected in the CSF of amyotrophic lateral sclerosis
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Fig 3. Elevation of GPNMB levels in CSF and brain of nGD patients. (A) Levels of GPNMB determined by
LC-MS/MS in CSF of four type 3 GD patients. Results are means + SEM. ** p< 0.01. (B) Levels of GPNMB
in CSF of four type 3 GD patients determined by ELISA. Results are means + SEM (n = 4). ** p<0.01. (C)
Western blot of GPNMB in CSF of control and a type 3 GD patient (sample designation 4). Results are from a
typical experiment repeated 3 times. (D) Levels of GPNMB in nGD brain determined by ELISA(n = 3 for
control, n =6 for nGD (type 2 and type 3 patients). Results are means + SEM, ** p< 0.01

doi:10.1371/journal.pone.0120194.g003

(ALS) patients [22] suggesting that GPNMB might also be useful as a biomarker to detect dete-
rioration in neurodegenerative diseases in addition to its use in nGD. GPNMB levels are
elevated in a number of inflammatory diseases [29-32]. It is secreted from macrophages and
acts as a negative regulator of excessive inflammatory responses [21]. Thus, GPNMB levels
may be elevated in order to moderate the inflammatory response, such as that which occurs

in nGD [4].
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Table 2. Clinical information and correlation with GPNMB levels in the CSF of type 3 GD patients.

Sample Age Gender Genotype FSIQ* Purdue
designation (years) Pegboard
test

1 16 Female L444P/ 124 -1.71
L444P

2 8 Female L444P/ 74 -2.93
L444P

3 13 Male L444P/ 45 -3.72
L444P

4 15 Male P122S/ 40 -8.73
P122S

* Full scale 1Q
# Arbitrary units

doi:10.1371/journal.pone.0120194.1002
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Fig 4. GPNMB levels in brain and serum of Gba"*f°X; nestin-Cre mice. Levels of GPNMB in (A) brain (n = 3) at different days post-natal (p) and (B)
serum (n = 4,n = 5) of 21-day old Gba""*; nestin-Cre mice determined by ELISA. Results are means + SEM *P < 0.05, **P < 0.01.

doi:10.1371/journal.pone.0120194.9004
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