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Abstract

Cancer stem cells (CSCs) are a small subset of cells that may be responsible for initiation, 

progression and recurrence of tumors. Recent studies have demonstrated that CSCs are highly 

tumorigenic and resistant to conventional chemotherapies, making them a promising target for the 

development of preventive/therapeutic agents. A single or combination of various markers, such 

as CD44, EpCAM, CD49f, CD133, CXCR4, ALDH-1 and CD24, were utilized to isolate CSCs 

fromvarious types of human cancers. Notch, Hedgehog, Wnt, and TGF-β signalingregulate self-

renewal and differentiation of normal stem cells andare aberrantly activated in CSCs. In addition, 

many studies have demonstrated that these stem cell-associated signaling pathways are required 

for the maintenance of CSCs in differentmalignancies, including breast, colorectal, prostate and 

pancreatic cancers. Accumulating evidence hasshowninhibitory effects of vitamin D and its 

analogs on the cancer stem cell signaling pathways, suggesting vitamin D as a potential 

preventive/therapeutic agent against CSCs.In this review, we summarize recent findings about the 

roles of Notch, Hedgehog, Wnt, and TGF-β signaling in CSCs as well as the effects of vitamin D 

on these stem cell signaling pathways.
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1 Introduction

The observation of intratumoral heterogeneity has led to a hypothesis that a small subset of 

cells might be responsible for the initiation, progression and recurrence of tumors [1]. These 

cells have been called cancer stem cells (CSCs, also known as tumor-initiating cells) since 

they exhibit stem cell-like characteristics [1]. The first evidence of CSCs was demonstrated 
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in acute myeloid leukemia [2]. Only a small fraction of primary leukemia cells was capable 

of initiating and sustaining leukemia when transplanted into mice [2,3]. Since then, CSCs 

have been isolated from many solid cancers, such as those of the breast, brain, prostate, 

colon and rectum, pancreas, and liver (reviewed in [4]). These cells also show strong 

capability to initiate tumors in vivo [5]. More importantly, CSCs exhibit resistance to 

conventional chemo- and radiotherapy, and are enriched in residual tumors after 

chemotherapy [5]. Many studies have demonstrated that CSCs are present in recurring 

tumors and distant metastases of various cancers, including those of the breast, pancreas, 

and colon [6,7]. Therefore, CSCs may be used as a potential target for therapeutic drug 

development to reduce cancer recurrence or metastasis and achieve prolonged survival of 

cancer patients [7]. Many new experimental agents, such as Notch and Hedgehog inhibitors, 

are being developed to inhibit CSCs [6,8]. Several lines of evidence have demonstrated that 

vitamin D plays an important role in the regulation of stem cells of the prostate and the skin 

[9-11]. Moreover, vitamin D is a well known inducer of the terminal differentiation of 

human myeloid leukemia cells into monocytes and macrophages [12], possibly via 

mechanisms of regulating leukemic cancer stem cells/progenitors. Recently, vitamin D and 

its analogs were shown to reduce the number of CSCs in breast cancer [13], further 

supporting their potential as therapeutic agents. In this review, we summarize recent 

findings on the CSC markers, CSC signaling pathways and the effects of vitamin D on the 

CSC signaling.

1.1 Identification of cancer stem cells

Isolation of CSCs from total cancer cell population is the first and most critical step to 

characterize CSCs [4,5]. Multiple markers that have been utilized to identify CSCs in 

various types of solid tumors [4] are summarized in Table 1. CD44 is a receptor for 

extracellular matrix components, including hyaluronan and osteopontin [14]. High CD44 

protein levels have been used as a key characteristic of CSCs in solid tumors with epithelial 

origin, such as breast, colon, prostate and pancreas [14]. Expression of an epithelial cell 

adhesion molecule (EpCAM, also known as an epithelial specific antigen) was utilized as a 

cell surface marker in a combination with CD44 to further identify specific CSCs [4,15]. 

CD49f, also known as integrin α6, is a receptor for laminin, and its high expression has been 

a good indicator for CSCs in breast, colon and brain cancers [16]. A glycoprotein CD133, 

also known as Prominin 1 (PROM1), is expressed in stem cells from neural, epithelial, 

endothelial and hematopoietic tissues. A high expression of CD133 is a surface marker for 

CSCs of breast, brain, lung, colon, pancreas and liver cancers [4]. C-X-C chemokine 

receptor type 4 (CXCR4), a specific receptor for chemokine stromal cell-derived factor 1 

(SDF-1), has been used as an additional marker in isolation of CD133-positive cancer cells 

to further enrich highly metastatic CSCs from breast, prostate and pancreatic cancers [4]. 

Aldehyde dehydrogenease-1 (ALDH-1) is an enzyme oxidizing cellular aldehydes, and its 

high activity has been a useful CSC marker for breast and pancreatic cancers [4,17]. CD24 is 

a heavily glycosylated adhesion molecule and the only known ligand for P-selectin. A low 

or no expression of CD24 in combination with a high expression of CD44 has been utilized 

as a CSC marker in breast and prostate cancers [4]. However, in pancreatic cancer, CD44-

positive cells also expressing CD24 have been isolated as CSCs [4] indicating that CSCs 

differ depending on the types of cancer. Many studies looking for additional stem cell 

Jae Young and Nanjoo Page 2

J Steroid Biochem Mol Biol. Author manuscript; available in PMC 2016 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



markers are in progress with the goal to isolate defined CSCs from different types of cancers 

[6].

1.2 Stem cell-associated pathways in cancer stem cells

The two critical features of normal stem cells–self-renewal and differentiation into 

phenotypically diverse cells–are also required for the maintenance of CSCs in human tumors 

[18]. The stem cell-associated signaling pathways, such as Notch, Hedgehog, Wnt and TGF-

β, regulate self-renewal and differentiation of normal stem cells as well as CSCs [8,19]. The 

process of epithelial-mesenchymal transition (EMT), characterized by a loss of cellular 

polarity and cell-cell interaction and a gain of mesenchymal properties, has been closely 

associated with CSCs in solid tumors [20]. Aberrant activation of the stem cell-associated 

signaling pathways in cancer cells induces EMT and causes cancer cells to acquire 

phenotypes of CSCs [21]. Therefore, the stem cell-associated signaling pathways–Notch, 

Hedgehog, Wnt and TGF-β–have been considered as novel targets against CSCs in human 

tumors [8,21].

1.3 Notch signaling pathway

The evolutionally conserved Notch signaling pathway plays a key role in deciding cellular 

fate during embryogenesis and in maintenance of stem cells in adult tissues [22]. Four Notch 

receptors (Notch1, Notch2, Notch3 and Notch4) and five ligands (JAG1, JAG2, DLL1, 

DLL3 and DLL4) have been discovered in mammals [22]. Upon the interaction with ligands 

from adjacent cells, Notch receptors undergo a series of enzymatic cleavages by a 

disintegrin and metalloproteinase (ADAM) and γ-secretase to produce an active intracellular 

domain of Notch (NICD, also known as cleaved Notch) [22]. NICD translocates to the 

nucleus and regulates specific target genes such as c-Myc HES and HEY [22]. Aberrant 

activation of Notch signaling by elevated expression of Notch receptors and ligands has 

been shown in various human cancers [22]. Moreover, recent studies demonstrated that 

Notch signaling plays an important role in self-renewal and maintenance of CSCs in breast, 

lung, brain, pancreatic, and ovarian cancers [23-27]. Inhibition of Notch signaling by 

antibodies against the Notch receptors or by γ-secretase inhibitors decreased the number of 

CSCs and their tumorigenic potential in preclinical models of breast and brain cancers 

[28-31].

1.4 Hedgehog signaling pathway

The Hedgehog signaling pathway controls stem cell maintenance during embryonic 

development [32]. Upon the activation by ligands–Sonic (SHH), Desert (DHH) and Indian 

Hedgehog (IHH)–Hedgehog receptor (Patched 1, PTCH1) releases repression on 

Smoothened (SMO). Then, the activated SMO initiates a signaling cascade leading to the 

target gene regulation by the GLI family of transcription factors [32]. The high activity of 

Hedgehog signaling has been found in various human cancers [33]. Hedgehog inhibitors 

showed anti-tumor activity in clinical studies of advanced solid tumors, such as breast 

cancer, medulloblastoma and basal cell carcinoma [34-36]. Activated Hedgehog signaling 

has been reported in CSCs of many human tumors, including brain, breast and pancreatic 

cancers [37-39]. Hedgehog inhibitors, such as cyclopamine, suppressed CSCs in 

glioblastoma and pancreatic cancer [40,41].
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1.5 Wnt signaling pathway

The Wnt signaling pathway determines the cell fate during embryogenesis and regulates 

tissue self-renewal in adults [42]. The binding of Wnt proteins to a receptor complex 

containing Frizzled (FZD)/low-density lipoprotein receptor related protein (LRP) initiates 

the canonical and non-canonical signaling cascades [42]. The activation of canonical Wnt 

signaling pathway leads to accumulation of β-catenin in the nucleus and subsequent 

transcriptional regulation of target genes [42,43]. The non-canonical Wnt signaling pathway 

is β-catenin independent and regulates movement and polarity of embryonic cells; however, 

little is known about its role in human cancer [43]. The critical role of canonical Wnt 

signaling in human tumorigenesis has been well-recognized in colorectal cancer with a 

majority of tumors harboring activating mutations in the Wnt signaling pathway [42]. In 

addition, canonical Wnt signaling seems to maintain CSCs by regulating their proliferation 

and self-renewal during intestinal and prostate tumor development [44-46]. A recent study 

demonstrated that an antibody targeting FZD receptors reduced tumor growth and the 

number of CSCs in breast and pancreatic cancer cells [47]. A phase 1 clinical study using 

this antibody in patients with solid tumors is ongoing [48].

1.6 TGF-β signaling pathway

The TGF-β signaling pathway is a complex pathway with 42 known TGF-β superfamily 

ligands, such as TGF-βs, activins, Nodal and bone morphogenetic proteins (BMPs) [49]. 

Depending on the ligand and its downstream signaling mediators, TGF-β signaling can be 

divided into two signaling cascades, TGF-β/Activin/Nodal and BMP, which activate 

downstream mediators SMAD2/3 and SMAD1/5/8, respectively [50]. TGF-β signaling 

regulates a variety of cellular processes including differentiation, proliferation, migration 

and cell death both in adult organisms and developing embryos [50]. In human tumors, 

TGF-β signaling has been shown to have either a tumor-suppressing or tumor-promoting 

function depending upon the cellular context and the type of ligand [50]. Recent studies 

have also demonstrated diverse effects of TGF-β signaling on CSCs [50]. TGF-β signaling 

via activated TGF-β/Activin strongly induces EMT in many cancer cells, promoting 

maintenance of CSCs and tumor metastasis [51]. TGF-β signaling via activated Activin/

Nodal is required for self-renewal and tumorigenicity of CSCs in pancreatic cancer [52]. In 

contrast, BMP signaling antagonizes TGF-β-induced EMT in prostate cancer cells and 

represses their bone metastasis [53]. A BMP treatment strongly reduced the number of CSCs 

in breast cancer and inhibited bone metastasis in an animal model [54].

2 Regulation of stem cell signaling by vitamin D in solid tumors

Crosstalk between vitamin D and Notch signaling was first demonstrated in osteoblastic 

cells, where 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3) cooperated with HES1, a 

downstream effector of Notch signaling, to induce osteopontin expression [55]. In contrast, 

1α,25(OH)2D3 treatment significantly reduced NOTCH1, JAG1, JAG2 and DLL1 mRNA 

levels in prostate epithelial cells, indicating an inhibitory effect of vitamin D on Notch 

signaling [56]. We have also found that treatment of breast cancer cells with 1α,25(OH)2D3 

or its analogs markedly decreased mRNA levels of the Notch ligands and resulted in the 

inhibition of Notch1 signaling. Moreover, the inhibition of Notch signaling by vitamin D 
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analogs also resulted in the reduction of CSCs (unpublished data). However, 1α,25(OH)2D3 

did not inhibit the Notch signaling in brain cancer cell lines and did not exhibit anti-

proliferative effects in these cells [57]. These data suggest that effects of vitamin D on 

Notch signaling may differ based on tissue and cellular context.

Vitamin D3 or 3β-hydroxysteroid (pro-) vitamin D3 inhibits activation of the Hedgehog 

signaling by directly binding to SMO in zebrafish, yeast, and mouse fibroblast cells [58]. 

The mRNA levels of Hedgehog signaling molecules, Shh, Gli1 and Gli2, were increased in 

chemically induced epidermal tumors of mice with knocked-out vitamin D receptor (VDR) 

when compared to those in tumors of wild-type mice [59]. The expression of the Hedgehog 

molecules was inhibited by 1α,25(OH)2D3 in mouse skin cells in a VDR-dependent manner 

[60]. In basal cell carcinoma, vitamin D3 or 1α,25(OH)2D3 inhibited Hedgehog signaling by 

repressing GLI1 mRNA and exerted anti-proliferative effects in vitro and in vivo [61,62]. 

Vitamin D3 (cholecalciferol) also inhibited Hedgehog signaling by repressing GLI2 

expression and tumor growth of renal carcinoma xenografts [63].

Vitamin D and its analogs inhibit Wnt signaling by several mechanisms in cancer cells [64]. 

In the presence of 1α,25(OH)2D3, VDR can directly bind to β-catenin, competing with a T 

cell transcription factor (TCF)-4 and repressing the β-catenin/TCF-4 transcriptional activity 

[65-67]. 1α,25(OH)2D3 suppresses Wnt signaling by inducing the expression of DKK-1, 

which antagonizes Wnt signaling by binding to LRP5/6 [68]. In colon cancer cells, 1α,

25(OH)2D3 inhibited Wnt signaling by the induction of E-cadherin [65]. Treatment with 1α,

25(OH)2D3 or its analogs reduced tumor load in Apcmin/+ mice, an animal model of 

intestinal cancer with dysregulated Wnt signaling, by inducing E-cadherin expression and 

reducing nuclear β-catenin level [69,70]. In contrast to its effects in cancer cells, VDR was 

required for the activation of Wnt signaling in normal keratinocytes to form the hair follicle 

[9]. However, treatment with a vitamin D analog inhibited β-catenin induced-hair follicle 

tumors in mice [71], suggesting that the effects of vitamin D on Wnt signaling may differ in 

cancer cells where aberrant activation of β-catenin is sustained.

Vitamin D and the TGF-β superfamily signaling interact in a cellular context-dependent 

manner both in normal and malignant cells [72]. A recent genome-wide study demonstrated 

that a large number of genomic sites can be co-occupied by VDR and SMAD3. 1α,

25(OH)2D3 or its analog reduced the occupancy of SMAD3 on the target genes, blocking 

TGF-β1-mediated activation of hepatic stellate cells and the development of liver fibrosis 

[73]. 1α,25(OH)2D3 also inhibited TGF-β1-stimulated EMT and a pro-fibrotic phenotype of 

lung fibroblasts and epithelial cells [74]. In contrast, 1α,25(OH)2D3 or its analogs increased 

mRNA levels of BMP2 and BMP6, and activated the BMP signaling in normal and 

premalignant breast epithelial cells [75,76]. The expression of BMP6 mRNA was also 

significantly induced by 1α,25(OH)2D3 in prostatic epithelial and breast cancer cells [77].

Vitamin D seems to have opposite effects on stem cell signaling between normal and 

malignant cells. In many cases, vitamin D and its analogs exert inhibitory effects on the 

cancer stem cell signaling pathways, which may be due to aberrant and highly activated 

status of these signaling pathways in cancer cells. The diverse effects of vitamin D on the 

stem cell-associated signaling pathways suggest that vitamin D may regulate and target 
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CSCs. Some of the key vitamin D actions on stem cell signaling in cancer cells are 

summarized in Fig. 1.

3 Conclusion

Because of the importance of Notch, Hedgehog, Wnt and TGF-β in the maintenance of 

CSCs in human tumors, these signaling pathways are attractive as potential targets for the 

development of new anti-cancer agents. Vitamin D and its analogs have inhibitory effects on 

cancer stem cell signaling in various types of human cancer cells and may be promising 

therapeutic/preventive agents against CSCs. However, the effects of vitamin D on the stem 

cell signaling pathways vary depending on cell types and cellular contexts. Considering that 

vitamin D can differentially regulate a wide range of genes in normal and malignant cells, 

further investigations are required to better understand its cellular context-dependent effects 

on stem cell signaling.
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Glossary

CSC Cancer stem cell

1α,25(OH)2D3 1α 25-dihydroxyvitamin D3

EpCAM Epithelial cell adhesion molecule

PROM1 Prominin 1

CXCR4 C-X-C chemokine receptor type 4

SDF1 Stromal cell-derived factor 1

ALDH-1 Aldehyde dehydrogenease-1

EMT Epithelial-mesenchymal transition

ADAM A disintegrin and metalloproteinase

NICD Intracellular domain of Notch

SHH Sonic Hedgehog

DHH Desert Hedgehog

IHH Indian Hedgehog

PTCH1 Patched 1

SMO Smoothened

FZD Frizzled receptor

LRP Low-density lipoprotein receptor-related protein
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BMP Bone morphogenetic protein

TCF4 T cell factor 4

VDR Vitamin D receptor
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Highlights

• Provides a list of various markers of cancer stem cells (CSCs) from solid 

tumors.

• Reviews roles of stem cell signaling, Notch, Hedgehog, Wnt and TGF-β, in 

CSCs.

• Summarizes recent findings for the effects of Vitamin D on stem cell signaling.

• Suggests vitamin D and its analogs as potential agents against CSCs.
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Fig. 1. 
A schematic diagram depicting actions of vitamin D on the Notch, Hedgehog, Wnt and 

TGF-β superfamily signaling pathways. Main components of the Notch, Hedgehog, Wnt and 

TGF-β superfamily and their regulation by vitamin D are presented. Detailed explanation 

and related references can be found in the text. Full names of the abbreviations shown in the 

diagram are listed; JAG1, Jagged1; JAG2, Jagged2; DLL1, Delta-like protein 1; NICD, 

Intracellular domain of Notch; HH, Hedgehog; Ptch1, Patched1; SMO, Smoothened; 

LRP5/6, Low-density lipoprotein receptor-related protein 5/6; FZD, Frizzled; β-Cat β-

Catenin; DKK-1, Dickkopf-related protein 1;TCF, T cell factor; E-cad, E-cadherin; BMP2, 

Bone morphogenetic protein 2; BMP6, Bone morphogenetic protein 6; TGFβ-RI, TGF-β 

receptor 1; TGFβ-RII, TGF-β receptor 2; BMP-RI, BMP receptor 1; BMP-RII, BMP 

receptor 2.gr1
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Table 1

Cancer stem cell markers in different cancers.

Cancer Types Cancer Stem Cell Markers Associated Functions Reference

Breast CD44+/CD24−/low Tumor Initiation [78]

CD44+/CD24−/low/EpCAM+ Tumor Initiation, Drug Resistance [79]

CD44+/CD49high/CD133+ Tumor Initiation [80]

CD133+ Tumor Initiation, Drug Resistance [81]

CD133+/CXCR4+ Tumor Initiation, Tumor Metastasis [82]

ALDH-1+ Tumor Initiation, Poor Prognosis [83]

Colorectal CD133+ Tumor Initiation [84,85]

EpCAM+/CD44+/CD166+ Tumor Initiation [86]

EpCAM+/CD44+/ALDH1+ Tumor Initiation, Drug Resistance [87]

CD44+/ALDH-1+ Tumor Initiation [88]

CD44+/CD133+/CD49f+ Tumor Initiation [89]

Prostate CD44+/α2&beta; 1 high/CD133+ Tumor Initiation [90]

CD44+/CD24− Tumor Initiation, Poor Prognosis [91]

Brain CD133+ Tumor Initiation [92,93]

a
Integrin α6+ Tumor Initiation [94]

Pancreatic CD44+/CD24+/EpCAM+ Tumor Initiation [95]

CD133+/CXCR4+ Tumor Initiation,
Tumor Metastasis [96]

ALDH-1+ Tumor Initiation, Drug Resistance [97,98]

Lung CD133+ Tumor Initiation, Drug Resistance [99,100]

ALDH-1+ Tumor Initiation, Poor Prognosis [101]

Liver CD133+ Tumor Initiation [102,103]

CD90+/CD44+ Tumor Initiation,
Tumor Metastasis [104]

Head and
Neck CD44+ Tumor Initiation [105]

ALDH-1+ Tumor Initiation [106,107]

a
Integrin α6 is also known as CD49f.
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