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Abstract

Vocal expression reflects an integral component of communication that varies considerably within 

individuals across contexts and is disrupted in a range of neurological and psychiatric disorders. 

There is reason to suspect that variability in vocal expression reflects, in part, the availability of 

“on-line” resources (e.g., working memory, attention). Thus, understanding vocal expression is a 

potentially important biometric index of information processing, not only across but within 

individuals over time. A first step in this line of research involves establishing a link between 

vocal expression and information processing systems in healthy adults. The present study 

employed a dual attention experimental task where participants provided natural speech while 

simultaneously engaged in a baseline, medium or high nonverbal processing-load task. Objective, 

automated, computerized analysis was employed to measure vocal expression in 226 adults. 

Increased processing load resulted in longer pauses, fewer utterances, greater silence overall and 

less variability in frequency and intensity levels. These results provide compelling evidence of a 

link between information processing resources and vocal expression, and provide important 

information for the development of an automated, inexpensive and uninvasive biometric measure 

of information processing.
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1. INTRODUCTION

Deficits in cognition reflect a critical facet of a wide range of central nervous system (CNS) 

disorders, such as strokes, neurodegenerative disorders and developmental disorders and are 

one of the most critical features for understanding functioning in severe mental illness 

(Green et al., 2000). While most clinical studies of basic cognition focus on discrete abilities 

such as language, memory and psychomotor speed (Lezak, 2012), there is growing interest 

in processing capacity related to the conscious control of attention, concentration, working 

memory and other “on-line” resources. According to cognitive load (Plass et al., 2010) and 

information processing theories (Baddeley, 1986; Tombu et al., 2011), resources within the 

CNS available for engaging in motivated activities/behaviors are finite and are of fixed 

capacity. Thus, they reflect a “bottleneck” for CNS operations more generally (Tombu et al., 

2011). When this capacity is exceeded, either because of task complexity or demands from 

competing tasks, performance for these operations is impaired. There is substantial support 

for this general notion, as increased processing load is associated with reduced performance 

on a range of learning, motor, and other activities (e.g., (Kemper et al., 2005; Plass et al., 

2010) within healthy adults. Emerging data suggests that abnormal processing capacity is 

also important for understanding neurological and psychiatric conditions, such as 

Alzheimer’s disease (Huntley and Howard, 2010), various dementias (Calderon et al., 2001), 

stroke (Puh et al., 2007), substance use (James et al., 2013) and schizophrenia (Granholm et 

al., 2007). Traditionally, processing capacity is measured using dual task methodologies that 

impose a substantial processing burden by requiring individuals to perform two effortful 

tasks simultaneously. Recent technological advancements in biometric analysis have 

complimented this effort and provided highly sensitive measures of information processing, 

for example, through the use of pupillometry (Granholm et al., 2007; Laeng et al., 2007) and 

functional Magnetic Resonance Imaging (Jansma et al., 2007). At issue is the translation of 

these methods and measures to patient care and assessment, as they tend to be time-

consuming and complicated to administer, as well as expensive. This article evaluates the 

potential use of a different biometric measure of information processing, involving the use 

of automated computerized acoustic analysis of natural vocal expression. This reflects a 

technology that is objective, inexpensive, automated, unobtrusive to procure and analyze, 

and reliant on data that is almost ubiquitously available (i.e., human speech).

By way of introduction for readers with limited experience in acoustic analysis, the most 

commonly analyzed vocal indices involve two distinct signals (Alpert et al., 1986; Cohen et 

al., 2010; Cohen et al., 2009): the fundamental frequency (i.e., F0) – the lowest frequency 

originating from the vocal folds that defines the subjectively-defined vocal “pitch”, and 

intensity (i.e., volume). Acoustic analysis often involves “speech production” – typically 

defined as the presence or absence of F0, and can be quantified in a number of ways – such 

as average pause length, total percentage of time in silence, number of utterances and 

average utterance length. Beyond vocal production, looking at variability of F0 and Intensity 

signals can be important. Variability is often quantified in terms of variability within vocal 

utterances (defined as blocks of speech with F0 signal), but can also be examined on very 

small time scales (e.g., change on the order of assessment “frames”; 10–50 milliseconds), 

the latter of which is often referred to as signal “perturbation” or jitter/shimmer.
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Acoustic properties of speech reflect key variables for understanding human behavior 

(Decety and Lamm, 2006). Vocal expression is highly variable across individuals and across 

contexts, and is influenced by a number of individual difference, for example, sex (Scherer, 

2003), affective (Sobin and Alpert, 1999; Tolkmitt and Scherer, 1986), arousal (Cohen et al., 

2010; Johnstone et al., 2007), social (Nadig et al., 2010) and speaking task (Scherer, 2003) 

factors, to name a few. Emerging evidence suggests that vocal expression is also linked to 

cognitive variables as well. Of note, a number of correlational studies have documented 

links between acoustic properties of natural speech and state measures of cognitive stress, 

for example, in how vocal expression in air pilots changes as a function of demanding flight 

conditions. The findings of this literature are not entirely consistent, though many studies 

report that vocal characteristics increase as a function of increased task demands (e.g., 

Huttunen et al., 2011). Interpretation of these studies is confounded in that cognitive and 

emotional/arousal demands are conflated, thus making it is difficult to determine specific 

factors that may be modulating vocal expression. Experimental studies, which provide the 

ability to control for extraneous factors such as arousal, of processing load and vocal 

expression (i.e., reading text) have been conducted, though the vast majority of these employ 

“reading” as opposed to natural speaking tasks (e.g., Tuček et al., 2012; Yin et al., 2007). 

Not surprisingly, the results of these studies are also variable, though the relevance of these 

studies to the question at hand is unclear given that the functional and neurobiological 

processes involved in verbalizing text is very different than those involved in freely 

generated natural speech (Smith, 2004).

To our knowledge, only a few published studies have examined how acoustic vocal features 

change as a function of experimentally manipulated processing load in healthy adults. Barch 

and Berenbaum (1994) analyzed the natural speech of 50 young adults engaged in two 

counterbalanced standardized interviews; one with a simultaneous cognitive task and one 

without, and found that word counts decreased as a function of processing demands. Note 

that these results were replicated in a psychiatric patient sample (Barch and Berenbaum, 

1996). Cohen et al. (2012) conducted computerized acoustic analysis of natural speech in 

healthy individuals with psychometric schizotypy (e.g., a personality organization putatively 

underlying schizophrenia) and controls while engaged in various dual tasks, and found that 

broad indices of vocal production and variability decreased while participants were under 

heavy cognitive load. At issue with these studies is the use of word count and global 

measures of speech; measures that lack sophistication and thus, yield a limited 

understanding of, for example, in how words are produced (e.g., longer pauses, longer 

utterances, fewer utterances) or conveyed (e.g., how F0 or intensity changes at the utterance 

or perturbation levels). This is a critical limitation in that development of indices of impaired 

information processing based on vocal analysis (particularly, those that can be extracted 

through automated analysis) hinges on identifying facets of vocal expression most affected 

by information processing demands.

The purpose of this project was to evaluate whether aspects of natural vocal production and 

variability modulate as a function of experimentally-induced cognitive load in a large 

sample of healthy adults using much more sophisticated measures of voice than prior 

studies. For the present study, healthy adults were asked to provide speech on emotionally-
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neutral topics while engaging in separate baseline, medium and high load cognitive tasks. 

We hypothesized that increased processing load would be associated with decreased vocal 

expression – defined in terms of reduced speech production (i.e., more silence, longer 

pauses, fewer utterances and shorter utterances) and reduced speech variability (i.e., less F0 

variability and perturbation and less Intensity variability and perturbation). In order to 

evaluate whether the effects of processing load were specific to vocal expression, we also 

measured syntactic and semantic complexity – the level of sophistication regarding the 

sentence structure. After all, changes in vocal production and variability could simply reflect 

participants producing less complicated speech under conditions of cognitive load. The 

resulting vocal expression was compared across conditions and analyzed using a variety of 

automated computerized programs assessing acoustic, syntactic and semantic-related 

variables.

2.0 METHODS

2.1 Participants

Participants were 134 males and 147 females recruited from one of two large public 

universities. We selected two different regions of the United States for data collection in 

order to improve the generalizability of our results, as speaking characteristics can vary as a 

function of cultural and geographical location. Data collection sites were based in Louisiana 

in the southeastern United States (n = 149) and in New Jersey (n = 132) in the northeastern 

United States. Participants’ average age was 19.92 years (standard deviation [SD] = 3.73) 

with a range of 18 to 64. The sample was predominantly Caucasian (72.5%), with some 

African-American (13.5%), Hispanic (5.2%) and Asian-American (4.8%) representation. 

This study was approved by the appropriate Institutional Review Boards and all participants 

provided written informed consent prior to beginning the study.

2.2 Cognitive-Load Narrative Task

Participants were seated in front of a computer monitor and performed three separate 60-

second narrative tasks – a “baseline”, medium and high cognitive-load condition. Speech 

samples involved “free” speech on one of three topics: hobbies, goals and living conditions, 

All instructions were printed on the computer screen and read to participants, for example 

“What kinds of hobbies do you have? You can discuss any hobby that you can think of, such 

as sports, walking, watching TV or anything else you can think of.”). These topics were 

selected because they were valence-neutral and open-ended. Participants were encouraged to 

speak for the duration of the 90-second task. The order of the topics was randomized across 

participants. Participants were encouraged to speak for the duration of the task and to 

provide as much speech as possible per both written and oral instructions. The medium and 

high load conditions employed a “dual attention” design where participants provided free-

speech while simultaneously engaging in a cognitive task. During the baseline condition, 

participants provided their narratives without any competing task. The medium and high-

load tasks were modeled after zero and one-back tasks commonly used in studies of 

cognition; with the one-back requiring increased attentional and working memory abilities 

compared to the zero-back task. During the medium-load task, participants were asked to 

provide their narratives while engaging in a continuous performance test. This task involved 
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providing responses to target visual stimuli (i.e., pressing the space bar) appearing on the 

computer screen while inhibiting responses to distracter stimuli. Six different stimuli (e.g., 

@, #, $, %, & and*) were presented randomly at 500, 1000, 1500 and 2000 millisecond 

Inter-Stimulus Intervals (ISI). The target to distracter ratio was set at 50% (16 of 32). During 

the high-load task, participants provided their narratives while performing a very similar 

continuous performance task, with the modification that the target would change throughout 

the task. This task involved responding to stimuli when consecutively appearing visual 

symbols on a computer screen were identical. In addition to attentional vigilance, 

participants must update the target each trial “on-line” using working memory resources. A 

total of six different visual symbols (identical to those in the medium-load task) were used, 

approximately one-third of which reflected targets (10 of 32). Stimuli were presented at 

2000 millisecond ISIs. Otherwise, the high-load task was identical to the medium-load task. 

Visual symbols, as opposed to verbal or alpha-numeric characters, were employed. Based on 

Baddeley’s model of attention (Baddeley, 1992), visual and verbal short-term memory 

abilities have some separate resources but are commonly limited by a central “executor”. 

For each task, participants underwent training practice blocks without the narrative 

component to become familiar with the task. Block order was randomized across 

participants, and blocks were separated by a 30-second interval during which participants 

were asked to “relax and breathe deeply”. Because participants lacked feedback regarding 

their performance during the high and medium load tasks in terms of accuracy on the 

cognitive tasks or verbal output, it was conceivably possible for participants to focus their 

efforts on one, but not both aspects of the dual task. To guard against this possible confound, 

participants producing speech less than 10% for the duration of the task (n = 29; 10.32% of 

the sample) or poor performance (< 25% accuracy) on either the cognitive task (n = 27; 

9.51% of the sample) were excluded from the analyses.

2.3 Computerized Assessment of Prosody

The Computerized assessment of Affect from Natural Speech protocol (CANS), developed 

by our lab to assess vocal expression from natural speech, was employed here. Speech was 

digitally recorded at 16 bits per second at a sampling frequency of 44,100 Hertz using 

headset microphones. The CANS procedure was performed in two distinct step; each of 

which were automated and “batched”. The first step involved analyzing the recordings using 

Praat (Boersma and Weenink, 2006), a shareware program that has been used extensively in 

speech pathology and linguistic studies. The Praat system organizes sound files into 

“frames” for analysis, which for the present study was set at a rate of 100 per second. During 

each of these frames, frequency and volume was quantified. The second step of analysis 

involved Macro programs developed by our lab to extract variables of interest. For this 

study, we focused on eight variables, based on our prior work (Cohen et al., 2008; Cohen et 

al., 2010; Cohen et al., 2009; Cohen et al., 2012) and the larger extant speech prosody 

literature (Boersma and Weenink, 2006; Scherer, 2003). Four of these variables pertained to 

vocal expression and four to vocal variability (see Table 1 for information on the variables 

employed here, and how they were computed). Based on prior research examining 

optimization filters for measuring fundamental frequency in automated research (Vogel et 

al., 2009), we applied a low (i.e., 75 Hertz) and high (i.e., 300 Hertz)-pass filter. Because the 

use of fixed versus non-fixed microphones was not consistent across recruitment sites, there 
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is potential variability in mean intensity within subjects across conditions. Thus, this 

measure was not examined in this study. There is no reason to think other measures were 

affected by this; as F0 signal quality and intensity variability are independent of mean 

intensity.

2.4 Syntactic and Semantic Complexity

Research assistants trained in syntactic and semantic coding conventions coded the speech 

samples from the 149 Louisiana participants. Because of the time-intensive nature of this 

analysis, we limited syntactic and semantic coding to the baseline and high-load 

experimental conditions; those theorized to show the most dramatic differences under 

conditions of cognitive load. Inter-rater reliability between coders based on analysis of a 

random selection of 10% of the transcripts was excellent (ICC = 0.94). Syntactic complexity 

was measured by coding instances of conjoined and embedded structures. Conjoined 

structures included verb phrases united by a coordinating conjunction. For example from 

this study’s transcripts, “we had a random roommate but she has become good friends with 

all of us” is a single conjoined structure using the coordinating conjunction “but.” 

Embedded structures included verb phrases joined by a subordinating conjunction, those that 

were a part of a relative clause, or an infinitival phrase. The instances were then divided by 

the number of complete and intelligible utterances to create a Complex Structure Ratio. 

Similar measures have been used previously to study deteriorating syntactic complexity in 

aging adults particularly in dual task activities (Kemper et al., 2011)

To measure semantic complexity, we calculated Type Token Ratio (TTR), the number of 

different words compared to total number of words in a sample (Kuder, 2008) analyzed 

using Systematic Analysis of Language Transcripts (Miller and Iglesias, 2010) computer 

software. Generally, the higher the TTR, the more complex the language sample (e.g. less 

repetition of words or more diverse language forms). Furthermore, TTR has been used to 

measure semantic complexity in children (Peets, 2009); normal adults (Silverman, 1977) and 

adults with mental disorder and neurological injury (Manschreck et al., 1985).

2.5 Analyses

We conducted the data analysis in four phases. First, we examined whether vocal expression 

was related to sex, age and ethnicity to identify variables that may influence our main 

analyses of interest. Additionally, we examined whether there were differences in vocal 

variables or participant characteristics across study site. Second, we examined cognitive test 

performance in the medium and high-load conditions. Third, we employed repeated 

measures ANOVAs and ANCOVAs to examine whether vocal expression changed across 

the baseline, medium and high load conditions. Finally, we employed repeated measures 

ANOVAs and ANCOVAs to determine whether syntactic and semantic complexity changed 

across the baseline and high load conditions. If we found that syntactic and semantic 

complexity reduced as a function of cognitive demands (as we expected), we planned to 

repeat the third set of analyses controlling for these variables. As noted below, these 

analyses were unnecessary. All significance tests reported here are two-tailed and all 

variables are normally distributed unless otherwise noted.
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3.0 RESULTS

3.1 The relationship between prosodic and descriptive/procedural variables

There were no significant differences in any of the variables as a function of speech topic 

order. Age was significantly related to frequency perturbation for the baseline, medium and 

high load conditions (r’s[223] > 0.14, p’s < 0.03), such that older participants showed 

greater perturbation. There were no significant differences of note between ethnic groups 

(i.e., Caucasian versus non-Caucasian) in any of the dependent variables examined here. 

With respect to sex, women tended to show briefer pauses, and showed greater F0 

variability (p’s < 0.05) than men. Women also showed less Intensity variability for the high 

and baseline conditions (p’s < 0.05). Finally, there were a number of differences across data 

collection sites; such that participants from New Jersey tended to show less Silence, longer 

Pauses, and greater levels of Intensity Perturbation. The New Jersey sample also had greater 

male representation than the Louisiana sample (64% & 32% respectively; x2 = 23.04, p < 

0.001), which may account for these differences. To address the potential confounding 

effects of these variables, all relevant analyses were recomputed controlling for age, sex and 

study site. No notable changes were observed.

3.2 Zero-Order Correlations

Zero-order correlations are included in Table 2. None of the variables were considered 

redundant, and few were inter-correlated at even a medium effect size level (i.e., r value 

exceeding 0.30). All eight variables were retained for subsequent analysis.

3.3 Cognitive performance

Means and standard deviations for performance on the medium and high-load conditions 

were computed. Performance for the medium-load condition was largely at ceiling (M ± SD 

= 98% ± 3 % correct) with little variability in scores across participants. In contrast, 

performance for the high-load condition was significantly lower (77% ± 8% correct; t[22] = 

29.72, p < 0.001).

3.4 Change across conditions

Data for these analyses are presented in Figures 1 and 2. Results suggest that, as cognitive 

demands increased, total silence time increased, mean pauses became longer, and the total 

number of utterances decreased. Interestingly, utterances did not change significantly in 

length of in variability of length. With respect to vocal variability measures, cognitive 

demands were associated with decreases in perturbation for both frequency and intensity, 

and were associated with decreased F0 variability.

3.4 Measures of Syntactic and Semantic Complexity

Data for these analyses are omitted from table or figure format for space concerns. For type-

token ratio, the repeated measures ANOVA main effect was not significant (Wilk’s Lambda 

F[1, 147] = 2.04, p = 0.16, η2 = 0.01). For structural complexity, the repeated measures 

ANCOVA main effect was significant (Wilk’s Lambda F[1, 147] = 58.51, p < 0.001, η2 = 

0.30). Evaluation of the descriptive statistics for the baseline (0.79 ± 0.50) and high (0.96 ± 
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0.54) conditions suggested that syntactic complexity increased as a function of increasing 

processing load. Thus, in contrast to our expectations, increased processing demands were 

associated with increased syntactic complexity.

4.0 DISCUSSION

When under conditions of relatively pronounced cognitive load, healthy adults in this study 

produced less speech overall that was characterized by increased silence, longer means, 

fewer utterances, less perturbation of F0 and Intensity signals and less F0 variability more 

generally. In total, there were significant reductions in six of eight variables examined here. 

These results did not appear to be due to differences in age, ethnicity or recruitment site. 

Moreover, these findings were not simply an artifact of decreased syntactic or semantic 

complexity, as these features either remained similar or increased as a function of increasing 

cognitive loads. To our knowledge, these data provide the most compelling evidence to date 

that vocal aspects of natural speech are related to information processing.

It may seem intuitive to the reader that measures of vocal productivity were reduced under 

states of relatively high cognitive load. After all, the cognitive substrata underlying speech 

production are many, including but not limited to verbal fluency, long-term autobiographical 

recall, attention and language abilities (Valle-Lisboa et al., 2014). It is less intuitive that 

signal variability declined as a function of restricted cognitive resources. It is well 

established that vocal expressivity, vis a vis prosody, is heavily dependent on right parietal 

cortical structures {Borod, 1993 #4901;Ross, 2008 #4902}, though its relationship to other 

structures, notably those involved in attention and working memory, is less known. The 

present findings suggest that prosodic expression is also dependent on working memory and 

attention systems, and that evaluation of signal variability can be offer important insight into 

information processing resources.

Moving forward, we believe there are two ways that automated computerized analysis of 

natural vocal expression can be applied to neurology and psychiatry settings. A first 

application is as a screening tool or complimentary diagnostic tool for assessing the presence 

of overt cognitive disorders. While it is the case that vocal expression within individuals is 

highly variable over time and across contexts, it does stand to reason that vocal analysis of 

natural speech could be used as a case identification or cross-sectional diagnostic tool to 

complement existing neuropsychological tests. Applying acoustic analysis for this purpose 

will require considerable work in developing norms of vocal characteristics, and defining 

“signature” abnormalities that characterize distinct disorders. A second, and perhaps more 

promising application for acoustic analysis involves longitudinal tracking of individuals that 

are either experiencing or at risk for experiencing cognitive difficulties, for example, in 

older adults experiencing mild cognitive impairments. The logic behind this endeavor is that 

information processing capacity is a potentially important and functionally relevant index of 

many illness states, and that vocal analysis, insofar as it can be developed into a reliable and 

valid proxy of information processing capacity, is easy to conduct and repeatable in a way 

other assessments aren’t. Assessment of natural speech offers many practical advantages 

over standard neuropsychological tests, for example, employing data capture over telephone, 

video and smartphone technologies. Moreover, given that vocal analysis is highly sensitive 
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(with measurement potentially occurring at the millisecond level), it has the potential to 

detect subtle changes in information processing capacity in a way not possible with standard 

neuropsychological measures. For example, patients could be asked to provide speech 

samples to a phone call center that automatically analyzes speech, compares it to samples on 

file, and provides feedback regarding clinical relevance. Note that standard 

neuropsychological measures (e.g., verbal fluency) tapping language functions suffer from 

profound practice effects even after a few administrations (Lezak, 2012). While admittedly 

in its infancy in terms of psychometric evaluation, vocal analysis offers considerable 

promise over existing measures as a proxy for understanding information processing.

As yet, it remains to be seen whether vocal analysis can provide meaningful data regarding 

the processing load of an individual at a particular moment (i.e., that long pauses, fewer 

utterances and lower signal perturbation reflect state of high cognitive-load); an endeavor 

complicated by the fact that speech is affected by a range of contextual factors. In this 

regard, it seems critical to develop procedures for eliciting natural speech that are controlled 

in some manner, so as to minimize the influence of contextual variables and to help ensure 

that speech is occurring under a state of high processing load. It would seem that there are 

many potential ways of standardizing and controlling the conditions while maintaining the 

ecological validity and repeatability of the assessment (e.g., probes assessing “what did you 

do yesterday”). Similarly, induction of high processing load can be practically accomplished 

many different ways, such as through the use of dual task designs (e.g., finger-tapping while 

talking), asking challenging questions (e.g., “what did you have for lunch last Tuesday”), or 

employing standardized verbal-based clinical assessments (e.g., Serial sevens). Moreover, it 

is as yet unclear whether induction of high load states is even necessary for individuals that 

show high levels of cognitive impairment, as producing fluent speech alone may be 

sufficient to exhaust their processing resources. Finally, it remains to be seen which vocal 

variables are most sensitive to changes in information processing abilities; particularly as 

expressed in neurological and psychiatric disorders. The present study evaluated eight 

distinct variables, though it would be important to more meaningfully understand how these 

specific variables may be related to specific cognitive processes. Practically speaking, it 

would be helpful to reduce the number of variables, or to identify a single proxy variable. 

Exploring ways of procuring speech that can be efficiently applied to a wide array of 

settings, offer a flexible platform that can be applied to a wide array of populations with 

varying functional levels while maintaining ecological validity is a challenge for the next 

step in this line of research.

Some limitations warrant mention. First, the present sample was not particularly diverse in 

terms of age or ethnicity. Although there is no obvious reason for why the link between 

cognitive resources and vocal expression would differ across cultural groups, this remains to 

be empirically evaluated. Relatedly, while the present sample reflected participants from two 

geographically distinct regions, other potentially important geographical groups were not 

examined in this study. Second, there was limited information about individual difference 

variables, and it is unclear whether the relationships between vocal expression and cognitive 

resources systematically varies across individuals. One could imagine, for example, that 

certain key cognitive abilities (e.g., working memory, attention) may mitigate the effects of 

cognitive load. Executive functions, particularly involving the ability to strategize and 
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update behavior, may also play a role. Third, we did not evaluate the effects of exogenous 

(e.g., caffeine, prescription or illicit medications) or endogenous (e.g., fatigue) confounding 

variables that may have attenuated the effects of this study. Finally, this study was an analog 

study, meant to demonstrate “proof of concept”, but did not focus on patients with 

neurodegenerative or psychiatric disorders. This is a matter for future research.

The present study reflects a promising first step in the evaluation of acoustic analysis for 

understanding neurological and psychiatric disorders. The present data provides 

experimental evidence that vocal expression, in particular, pause behavior and subtle 

perturbations in frequency and intensity, is linked to information processing load in healthy 

adults. These findings dovetail those reported in studies linking information processing to a 

range of other behaviors in both clinical and nonclinical populations (Barch and Berenbaum, 

1996; Calderon et al., 2001; Granholm et al., 2007; Huntley and Howard, 2010; James et al., 

2013; Puh et al., 2007). It would be important to replicate the present findings in clinical 

populations and to determine the optimal methods for eliciting speech under conditions of 

high processing load. We believe the clinical and research potential of a biometric tool that 

is inexpensive, automated, uninvasive and ecologically valid is quite large.
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• Our study employed an experimental design with a dual attention task and 

narrative speaking task in a large adult sample to evaluate whether acoustic 

analysis of natural speech can serve as a biometric indicator of cognitive 

functioning.

• Our results provide compelling evidence of a link between information 

processing resources and aspects of vocal expression, including vocal 

production and vocal expression.

• Computerized vocal assessment holds promise for providing important about 

information processing in individuals, and can reflect an automated, inexpensive 

and uninvasive biometric measure directly translatable to the clinic.
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Figure 1. 
Comparison of speech production measures for baseline-, medium- and high-load conditions 

with the results of each mixed-design analysis of variance. *** = p < 0.001.

Cohen et al. Page 14

Psychiatry Res. Author manuscript; available in PMC 2016 March 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Comparison of speech variability measures for baseline-, medium- and high-load conditions 

with the results of each mixed-design analysis of variance. * = p < 0.01,*** = p< 0.001.
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Table 1

Computerized acoustic analysis variables examined in this study.

Variable Description Increasing scores reflect… Changes to Raw data Units of Measure

Speech Production

Silence Percent Percentage of time not 
speaking

Less percentage of time 
speaking

None Percentage

Pause Mean Average pause length in 
milliseconds (ms), 
excluding the first and 
last pauses.

Longer average pauses None Milliseconds

Utterance Number Total number of 
utterances (> 150 ms)

More utterances Computed, per 60,000 
milliseconds

Number of 
Utterances per 
minute of speech

Utterance Mean Average utterance length 
in milliseconds (ms)

Longer average utterances None Milliseconds

Speech Variability

Frequency Perturbation Absolute value of 
average change in 
consecutively voiced 
frames within utterance, 
averaged across 
utterances.

Increasing levels of perturbation 
in F0 signal

None Semitones

Local Intonation SD of F0 values 
computed within each 
utterance and averaged 
across all utterances

Higher F0 variability within 
utterances.

Converted to semitones, Semitones, per 
second of average 
speech

Intensity Perturbation Absolute value of 
average change in 
consecutively voiced 
frames within utterance, 
averaged across 
utterances.

Increasing levels of perturbation 
in intensity signal

None Decibels

Local Emphasis SD of Intensity values 
computed within each 
utterance and averaged 
across all utterances

Higher intensity variability 
within utterances.

Divided by average 
utterance length in seconds

Decibels, per second 
of average speech
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