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Abstract: We analyze broadband near-infrared spectroscopic measurements 
obtained from newborn piglets subjected to hypoxia-ischemia and we aim 
to identify optimal wavelength combinations for monitoring cerebral tissue 
chromophores. We implement an optimization routine based on the genetic 
algorithm to perform a heuristic search for discrete wavelength 
combinations that can provide accurate concentration information when 
benchmarked against the gold standard of 121 wavelengths. The results 
indicate that it is possible to significantly reduce the number of 
measurement wavelengths used in conjunction with spectroscopic 
algorithms and still achieve a high performance in estimating changes in 
concentrations of oxyhemoglobin, deoxyhemoglobin, and oxidized 
cytochrome c oxidase. While the use of a 3-wavelength combination leads 
to mean recovery errors of up to 10%, these errors drop to less than 4% with 
4 or 5 wavelengths and to even less than 2% with 8 wavelengths. 
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1. Introduction 

Near-infrared spectroscopy (NIRS) has long been recognized as a promising tool for 
noninvasive and real-time assessment of tissue oxygenation and metabolism. Wavelength-
dependent optical attenuation signals can be resolved to extract information on biological 
chromophores that directly reflect the oxygenation, hemodynamic, and metabolic state of 
tissue site under investigation. Large penetration depth of infrared light allows for analysis of 
breast, muscle, and brain tissues, opening up the possibility of a wide range of clinical 
applications [1–4]. 

The potential use of NIRS as a neuromonitoring modality is particularly appealing. 
Numerous experimental and clinical studies have been carried out to delineate the biological 
basis of optical signals obtained from healthy and injured brain. These studies present sound 
evidence that NIRS-derived changes in chromophore concentrations can act as markers of 
cerebral physiology and pathology; the results offer significant insights into the feasibility of 
NIRS for observation of functional activation [5,6], detection of autoregulation or metabolic 
failure during routine surgery or after brain injury [7,8], and assessment of impending 
neurological damage due to hypoxia-ischemia (HI) in adults or neonates [9–11]. 

The main chromophores of interest in neuro-optical research are oxyhemoglobin, 
deoxyhemoglobin, and cytochrome c oxidase. While oxyhemoglobin and deoxyhemoglobin 
provide information on cerebral circulation and intravascular oxygenation, the redox state of 
cytochrome c oxidase is considered to be a key indicator of cellular oxygen metabolism [12–
16]. Hence, a complete analysis of cerebral health is critically dependent on the ability to 
concurrently monitor the time course of any changes associated with all these three 
chromophores. As an important example, our group has recently demonstrated the 
significance of combined hemoglobin and cytochrome c oxidase measurements for 
assessment of neonatal brain injury [8]. 

The modified Beer-Lambert law forms the mathematical basis of spectroscopic algorithms 
that relate wavelength-dependent optical attenuation signals to changes in chromophore 
concentrations [12,17]. In theory, extraction of information on three chromophores requires 
measurements at only three wavelengths. Yet, such a minimalistic approach is prone to 
physical noise and cross-talk artifacts that may lead to inaccurate quantification of changes in 
chromophore concentrations and misinterpretation of experimental or clinical data. This is 
especially pertinent to analysis of brain signals; the cerebral concentration of cytochrome c 
oxidase is about an order of magnitude less compared to those of oxyhemoglobin and 
deoxyhemoglobin and can therefore be easily masked by the latter two chromophores [12–
15]. As a general strategy, NIRS instruments are designed to collect optical attenuation 
signals at a multitude of wavelengths. When measurements at a large number of wavelengths 
are fed into spectroscopic algorithms, any detrimental effects of physical noise and cross-talk 
are expected to diminish. The use of many more wavelengths than necessary, however, 
implicates complex instrumentation that inevitably translates into bulky and costly systems. It 
is thus important to minimize redundancy but still ensure a robust analysis scheme through a 
detailed investigation into optimal wavelength combinations for cerebral monitoring. 

In this study, we analyze time-dependent cerebral NIRS signals obtained from a total of 18 
newborn piglets subjected to transient HI. Our system can provide measurements at 1-nm 
intervals between 780 and 900 nm, and we first quantify changes in chromophore 
concentrations using all 121 wavelengths; these results are hereafter referred to as the gold 
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standard. We aim to significantly reduce the number of wavelengths by identifying optimal 
combinations that are most likely to provide accurate concentration information. Since an 
exhaustive search among 121 wavelengths can be computationally prohibitive due to large 
time complexity, we employ the genetic algorithm (GA), a popular method for solving 
optimization problems, to perform a heuristic search for 3-, 4-, 5-, and 8-wavelength 
combinations that give rise to the least possible estimation errors when compared to the gold 
standard. More specifically, the primary aims of this work are to (i) quantify the significance 
of the number of wavelengths used in conjunction with spectroscopic algorithms and (ii) 
suggest various combinations of discrete wavelengths for resolving changes in hemoglobin 
and cytochrome c oxidase concentrations. The end results of our study lay the groundwork for 
a guided transition to simpler NIRS systems that are more practical and cost-effective. 

2. Methods 

2.1 Cerebral NIRS measurements 

The study described here was based on a well-established animal model of human neonatal HI 
and involved newborn piglets aged less than 24 h. The piglet NIRS data used have been 
presented in a recent publication by Bainbridge et al. [11]. As outlined therein, all 
experiments were carried out in accordance with UK Home Office Guidelines. Each piglet 
was anesthetized and surgically prepared for transient HI. Both common carotid arteries were 
isolated at the level of the fourth cervical vertebra and encircled by remotely controlled 
vascular occluders. HI was induced by remotely inflating these occluders and simultaneously 
lowering the fractional inspired oxygen to subnormal levels. Deflating the occluders and 
restoring the fractional inspired oxygen to normal levels ended the HI insult. 

Transmission mode NIRS measurements were obtained with an in-house broadband 
system that has been detailed elsewhere [11]. An optode positioned stereotactically against the 
left side of the piglet head delivered light from a stabilized tungsten halogen source. The 
detector optode was placed against the right side of the head and directly across the source 
optode such that a line joining the two optodes passed through the center of the brain. 
Intensity spectra between 650 and 980 nm were continuously recorded before, during, and 
after HI using a charge-coupled device with an approximate dispersion of 1 nm per pixel and 
an effective resolution of less than 5 nm. These spectra were then converted into a time series 
of wavelength-dependent attenuation changes via a reference spectrum. Measurements from 
18 different piglets produced a total of 18 datasets for further analysis. 

2.2 Quantification of changes in cerebral chromophore concentrations 

The modified Beer-Lambert law can be used to relate attenuation measurements to changes in 
cerebral chromophore concentrations. Since the total concentration of cytochrome c oxidase 
remains constant over the time course of our experiments [5,10,15], this law can be 
formulated as 
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where ΔA(λ1) through ΔA(λn) are the attenuation changes measured at n different wavelengths 
λ1 through λn, β(λ1) through β(λn) are the respective differential pathlengths, and ∆[HbO2], 
∆[HHb], and ∆[oxCCO] denote changes in concentrations of oxyhemoglobin, 

deoxyhemoglobin, and oxidized cytochrome c oxidase. Note that HbO2
 and εHHb represent the 
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specific extinction coefficients of oxyhemoglobin and deoxyhemoglobin, whereas 

εoxCCOredCCO represents the difference between the specific extinction coefficients of oxidized 
and reduced forms of cytochrome c oxidase. 

Our analysis initially employed a total of n = 121 wavelengths spaced at 1-nm intervals 

between 780 and 900 nm. The values of HbO2
, εHHb, and εoxCCOredCCO were obtained from [12]. 

A baseline optical pathlength was first estimated using the second differential of the 840-nm 
water feature and assuming a fixed cerebral water content of 85% [11]; wavelength-dependent 
correction factors were then applied to calculate β(λ1) through β(λn) [9,11,17–19]. The 
differential pathlengths calculated for all 18 datasets averaged to 24.3 cm at 780 nm and to 
19.8 cm at 900 nm, implying a ~19% decrease over the wavelength range considered. Solving 
Eq. (1) in a least-squares sense for each time point of a dataset generated the corresponding 
concentration changes in the piglet brain over the experimental period. It is important to point 
out that ∆[HbO2], ∆[HHb], and ∆[oxCCO] are defined to be zero at the first measurement 
point such that the subsequent time-dependent changes are all relative to this first 
measurement. As indicated before, these results obtained with n = 121 wavelengths represent 
the gold standard values that can be used for benchmarking purposes [12]. 

2.3 GA-based search for optimal wavelength combinations 

The most straightforward method to determine k optimal wavelengths for cerebral monitoring 
is to test all possible k-element combinations out of n = 121 wavelengths and to identify the 
combination that produces the smallest estimation errors when benchmarked against the gold 
standard. Even though such an exhaustive search is feasible for small k, the number of 
possible combinations to process, 

n
Ck, increases very rapidly with increasing k resulting in a 

prohibitively large time complexity. We hence resort to a GA-based approach in order to 
expedite the search through an optimization scheme. 

Extensive details on the formulation and implementation of the GA can be found in [20]. 
Briefly, this is a heuristic that mimics biological evolution, which is effectively a method for 
searching among a larger number of possible solutions. The algorithm begins by creating a 
random initial population of individual solutions. At each step, three main operators are used 
to create the next generation from the current population. The selection operator selects 
parents that contribute to the next generation; individuals that conform better to a 
predetermined fitness criterion are generally selected as parents. Best-fit or elite individuals 
are also automatically passed to the next generation. The crossover operator combines two 
parents to create potentially superior children. Finally, the mutation operator applies random 
changes to individual parents and thereby adds to diversity. Over successive generations, the 
population evolves toward an optimal solution. A schematic diagram of the overall algorithm 
is provided in Fig. 1. 
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Fig. 1. Schematic diagram of the GA. Evolution over successive generations through the 
selection, crossover, and mutation operators leads to an optimal solution. 

In the context of our study, individual solutions are k-element wavelength combinations, 
where k = 3, 4, 5, or 8. The fitness function to be minimized is the normalized root mean 
square error (NRMSEk) defined as 

 NRMSEk 

[c j ]k (i) [c j ]n(i) 
2

j1
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
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2

j1

3


it1

t2


.  (2) 

Here, cj represents the jth chromophore with j = 1, 2, and 3 corresponding to HbO2, HHb, and 
oxCCO, respectively. Concentration changes estimated with a given k-wavelength 
combination at time point i are denoted by ∆[cj]k(i), whereas the gold standard results 
obtained with all n = 121 wavelengths are denoted by ∆[cj]n(i). Note that NRMSEk is 
computed only over the period of HI. Hence, time indices t1 and t2 roughly indicate the start 
and end of this period. 

The GA routine employed in this work has been implemented in MATLAB
®
 (The 

MathWorks, Inc., Natick, MA) using the Global Optimization Toolbox. The selection 
function was specified to be ‘Stochastic uniform’, whereas the crossover and mutation 
functions were custom written. As detailed in [21], special efforts were made to fine-tune 
user-defined parameters such as the population size and the number of generations and to 
refine stopping conditions for optimized convergence. It is also important to note that the 
resolution of our NIRS system led to an additional search constraint: the interval between 
successive wavelengths in a given combination was set to be at least 5 nm. Since the 
algorithm is random in nature, multiple runs were conducted for each case under 
consideration and the output with the minimum NRMSEk was recorded. For k = 8, the number 

of runs required to ensure convergence to the global minimum with a precision of 10
4

 was 
empirically determined to be 200. The very same number of runs was then used for all k to 
maintain consistency. 

We performed our GA-based search for optimal wavelength combinations on a per-piglet 
basis. Analysis of each dataset separately proved advantageous in revealing the extent of 
inter-subject variability. The results were then partitioned into k = 3, 4, 5, or 8 clusters using 
the k-means clustering algorithm provided in the Statistics Toolbox of MATLAB

®
. For this 

algorithm, the distance measure was specified to be ‘squared Euclidean’, the maximum 
number of iterations allowed was 100, and the number of replicates with random starting 
points was set to 20. 
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3. Results 

3.1 Cerebral monitoring during transient HI 

Figure 2 shows a sample dataset of NIRS attenuation changes over the wavelength range of 
780-900 nm and the corresponding gold standard values of ∆[HbO2], ∆[HHb], and ∆[oxCCO]. 
Spectral measurements have a 1-min time resolution, but only a selected few are displayed for 
clarity [Fig. 2(a)]. The concentration changes, on the other hand, are plotted at 1-min intervals 
with pre-HI, HI, and post-HI periods clearly labeled [Fig. 2(b)]. For this piglet, time point i = 
t1 = 20 marks the beginning of HI, whereas time point i = t2 = 66 marks the end of HI. The 
results are representative of the general trends observed in all our datasets: HI is associated 
with an increase in [HHb] and a decrease in [HbO2] and [oxCCO]. After the insult is removed, 
a recovery back toward pre-HI values ensues. 

 

Fig. 2. NIRS-based quantification of changes in cerebral chromophore concentrations.  
(a) Sample ∆A measurements at selected time points i, and (b) gold standard values of Δ[cj], 
where cj represents the jth chromophore with j = 1, 2, and 3 corresponding to HbO2, HHb, and 
oxCCO, respectively. Time points i are in minutes. For this representative dataset, i = t1 = 20 
marks the beginning of HI and i = t2 = 66 marks the end of HI. 

3.2 GA results 

Figure 3 shows the results of our GA-based search for optimal wavelength combinations. The 
wavelengths obtained for all 18 datasets are displayed separately for k = 3, 4, 5, and 8 [Figs. 
3(a)–3(d)]. Note that NRMSEk values achieved for different piglet datasets average to 0.0135 
for k = 3, 0.0068 for k = 4, 0.0048 for k = 5, and 0.0022 for k = 8. 
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Fig. 3. GA-derived optimal wavelength combinations for (a) k = 3, (b) k = 4, (c) k = 5, and  
(d) k = 8. The results are displayed separately for all 18 datasets. 

Our GA results are plotted in Fig. 4 as histograms of binned wavelengths, again separately 
for k = 3, 4, 5, and 8 [Figs. 4(a)–4(d)]. The results of k-means clustering applied to GA-
derived wavelengths are shown in Table 1, where the centroid positions and within-cluster 
standard deviations of point-to-centroid distances have been rounded to the nearest integer. 
These clustering results are also displayed in Fig. 4 as Gaussian curves overlaid on the 
histograms; each curve has been normalized to the mean frequency of its respective cluster. 
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Fig. 4. Histograms of GA-derived optimal wavelength combinations for (a) k = 3, (b) k = 4,  
(c) k = 5, and (d) k = 8. The results of k-means clustering applied to GA-derived wavelengths 
are displayed as Gaussian curves overlaid on the histograms; these curves have been generated 
using the values reported in Table 1 and each has been normalized to the mean frequency of its 
respective cluster. 

Table 1. Results of k-means clustering applied to GA-derived wavelengths. Centroid 
positions are reported along with within-cluster standard deviations of point-to-centroid 

distances, all rounded to the nearest integer. 

k  Centroid wavelengths ± within-cluster standard deviations (nm) 
3  785 ± 8 833 ± 7 885 ± 10      

4  785 ± 1 809 ± 6 849 ± 3 889 ± 3     

5  784 ± 1 810 ± 5 847 ± 5 869 ± 2 891 ± 4    

8  784 ± 0 800 ± 3 818 ± 3 835 ± 4 851 ± 6 868 ± 5 881 ± 1 894 ± 1 

Figure 5 presents an overlay of the centroid wavelengths reported in Table 1 and the 

specific extinction coefficients HbO2
, εHHb, and εoxCCOredCCO over the wavelength range of 

780-900 nm. It appears that the wavelengths for each k evenly span the entire spectral range 
with no particular grouping pattern. There is also no evidence of any correlation between 
these clustering results and the spectral profiles of the extinction coefficients. 
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Fig. 5. Overlay of the centroid wavelengths listed in Table 1 and the specific extinction 

coefficients HbO2
, εHHb, and εoxCCOredCCO over the wavelength range of 780-900 nm. 

3.3 Performance assessment of GA results 

It is important to verify that the centroid wavelengths listed in Table 1 can indeed provide a 
common basis for accurate quantification of concentration information. Figure 6 exemplifies 
how the estimated changes in cerebral chromophore concentrations differ from the gold 
standard values when these k-wavelength combinations are used in conjunction with Eq. (1). 
Note that the dataset considered here is the same as the one shown in Fig. 2 and the estimation 
errors are plotted only over the period of HI. It is obvious that ∆[HbO2], ∆[HHb], and 
∆[oxCCO] differ significantly from their gold standard counterparts for k = 3, but the errors 
tend toward zero as k increases [Figs. 6(a)–6(c)]. Similar trends are observed for other 
datasets as well. 

 

Fig. 6. Estimation errors for ∆[cj], where cj represents the jth chromophore with j = 1, 2, and 3 
corresponding to (a) HbO2, (b) HHb, and (c) oxCCO, respectively. Time points i are in 
minutes. The dataset considered here is the same as the one shown in Fig. 2 and the errors for 
each k-wavelength combination listed in Table 1 are plotted only over the period of HI. 

We use four different error metrics to present an overall performance assessment of the 
wavelength combinations listed in Table 1. The first metric is NRMSEk defined in Eq. (2). The 
other three are percent absolute errors (PAEk) for ∆[HbO2], ∆[HHb], and ∆[oxCCO] averaged 
over HI time points. Table 2 provides the means and standard errors of these metrics 
computed over all 18 datasets. The results point to diminishing errors with increasing k; the 
standard errors reported suggest that this behavior is consistent across all the datasets 
considered. 
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Table 2. Error metrics computed for each k-wavelength combination listed in Table 1. 
The means and standard errors reported for NRMSEk and time-averaged PAEk are over 

all 18 datasets. 

   Time-averaged PAEk for ∆[cj] 

k  NRMSEk j = 1 (HbO2) j = 2 (HHb) j = 3 (oxCCO) 

3  0.0342 ± 0.0034 2.83% ± 0.70% 5.09% ± 0.67% 10.03% ± 1.10% 

4  0.0133 ± 0.0012 1.30% ± 0.26% 2.42% ± 0.40% 3.25% ± 0.40% 

5  0.0102 ± 0.0014 1.09% ± 0.25% 1.77% ± 0.34% 3.06% ± 0.51% 

8  0.0052 ± 0.0007 0.46% ± 0.08% 1.17% ± 0.24% 1.48% ± 0.13% 

In order to determine how sensitive our NIRS algorithm is to any small shifts from the 
centroid wavelengths, we perturb each wavelength one at a time up to ± 4 nm while keeping 
other wavelengths fixed and we compute the error metrics corresponding to these new 
combinations. The results for k = 4 are displayed in Fig. 7, where the means and standard 
errors plotted are over all 18 datasets. It is clear that small shifts can indeed lead to changes in 
estimation errors; time-averaged PAE4 for ∆[oxCCO] appears to be quite prone to shifts in 
individual wavelengths [Figs. 7(a), 7(b), and 7(d)], whereas time-averaged PAE4 for ∆[HbO2] 
is mostly characterized by a relatively flat wavelength profile [Figs. 7(b) and 7(c)]. Figure 8 
shows a similar set of results for k = 8. Although time-averaged PAE8 for ∆[HHb] and 
∆[oxCCO] are especially prone to small shifts from the first and last centroid wavelengths 
[Figs. 8(a) and 8(h)], perturbing intermediate wavelengths does not seem to cause significant 
deterioration in algorithm performance as evidenced by negligible changes in all of the error 
metrics presented [Figs. 8(b)–8(g)]. 

 

Fig. 7. Wavelength dependence of NRMSE4 and time-averaged PAE4 for ∆[cj], where cj 
represents the jth chromophore with j = 1, 2, and 3 corresponding to HbO2, HHb, and oxCCO, 
respectively. Each of the four wavelengths listed in Table 1 is perturbed one at a time up to ± 4 
nm and the resulting error metrics are plotted in (a)–(d). The means and standard errors shown 
are over all 18 datasets. 
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Fig. 8. Wavelength dependence of NRMSE8 and time-averaged PAE8 for ∆[cj], where cj 
represents the jth chromophore with j = 1, 2, and 3 corresponding to HbO2, HHb, and oxCCO, 
respectively. Each of the eight wavelengths listed in Table 1 is perturbed one at a time up to ± 
4 nm and the resulting error metrics are plotted in (a)–(h). The means and standard errors 
shown are over all 18 datasets. 

#230939 - $15.00 USD Received 16 Dec 2014; revised 9 Feb 2015; accepted 11 Feb 2015; published 23 Feb 2015 
(C) 2015 OSA 1 Mar 2015 | Vol. 6, No. 3 | DOI:10.1364/BOE.6.000933 | BIOMEDICAL OPTICS EXPRESS 944 



4. Discussion 

A major goal of the study presented here was to reveal the significance of wavelength 
optimization for resolving changes in brain tissue chromophore concentrations. Our main 
findings can be outlined as follows: (i) the optimal 3-wavelength combination gives 
reasonable results for ∆[HbO2] and ∆[HHb], but not for ∆[oxCCO], (ii) increasing the number 
of wavelengths to 4, 5, and 8 can lead to a ~2-, 3-, and 7-fold improvement in estimation 
accuracy, respectively, and (iii) the optimal 8-wavelength combination is highly 
recommended for simultaneous assessment of ∆[HbO2], ∆[HHb], and ∆[oxCCO]. 

Wavelength optimization is undoubtedly a requisite for designing efficient and high-
performing optical monitoring and imaging tools. Various strategies have recently been 
proposed to identify optimal wavelength combinations for analysis of different tissue sites 
using NIRS or other optical modalities. These include adoption of analytical or model-driven 
performance metrics to minimize chromophore cross-talk and to maximize separability [22–
29], recursive elimination of extraneous wavelengths [30], and implementation of GA-based 
search routines that can be applied to experimental, clinical, or model-generated data [31]. 
Our group has collected a significant amount of cerebral NIRS measurements from newborn 
piglets over the past several years; this has motivated us to implement a GA-based routine and 
to perform a heuristic search for wavelength combinations that can provide accurate 
information on HI-induced changes in cerebral chromophore concentrations. In order to verify 
that the routine we implemented was indeed capable of identifying wavelength combinations 
with the least possible estimation errors, we carried out an exhaustive search for k = 3 over all 
possible combinations. Both methods generated the same output, offering evidence into the 
validity of our GA-based optimization approach. 

Overall, the GA results plotted in Fig. 3 point to different optimal wavelength 
combinations for different piglet datasets, but a high degree of clustering around the centroid 
wavelengths is evident in all the histograms presented in Fig. 4. Consistently small within-
cluster standard deviations listed in Table 1 are also in line with this observation. We can 
hence conclude that even though inter-subject variability is inevitable, the centroid 
wavelengths are likely to represent spectral positions that are most suitable for cerebral 
monitoring in general. Note that as illustrated in Fig. 5, all three cerebral chromophores have 
broad spectral profiles. It is thus not possible to visually inspect the wavelength dependence 
of specific extinction coefficients and directly infer which wavelength combinations can be 
used to best resolve these chromophores. This serves as yet another justification for the 
systematic approach we adopted for our optimization study. 

It has been previously reported that the performance of spectroscopic algorithms can be 
greatly improved by increasing the number of measurement wavelengths [12]. The results of 
our analysis are in full agreement with this assertion. The trends depicted in Fig. 6 and the 
error metrics listed in Table 2 indicate that the use of a 3-wavelength combination is not 
sufficient for simultaneous assessment of ∆[HbO2], ∆[HHb], and ∆[oxCCO]. Incorporation of 
additional wavelengths leads to a consistent decrease in NRMSEk and time-averaged PAEk; the 
level of accuracy achieved with k = 8 is especially promising as it appears that concentration 
changes can all be recovered with mean errors of less than 2%. These findings reveal the 
redundancy associated with the use of all 121 wavelengths and provide guidelines for refined 
cerebral measurements. As is evident from Figs. 7 and 8, the centroid wavelengths listed in 
Table 1 can indeed be considered to be optimal, especially when their respective within-
cluster standard deviations are small due to a high degree of clustering. In such cases, small 
shifts from the centroid wavelengths can negatively affect the performance of NIRS 
algorithms. It is also important to note that time-averaged PAEk for ∆[oxCCO] tends to be 
particularly sensitive to wavelength perturbations; the mean values for k = 4 and 8 are 
characterized by up to a ~2- and 3-fold increase, respectively, over a range of ± 4 nm. This is 
not surprising since the inherently low cerebral concentration of cytochrome c oxidase renders 
the recovery of ∆[oxCCO] most challenging. 

#230939 - $15.00 USD Received 16 Dec 2014; revised 9 Feb 2015; accepted 11 Feb 2015; published 23 Feb 2015 
(C) 2015 OSA 1 Mar 2015 | Vol. 6, No. 3 | DOI:10.1364/BOE.6.000933 | BIOMEDICAL OPTICS EXPRESS 945 



In fact, there has been much debate on how reliable it is to quantify ∆[oxCCO] from 
cerebral NIRS signals in the presence of significantly higher concentrations of 
oxyhemoglobin and deoxyhemoglobin. It has been claimed that chromophore cross-talk, 
insufficient separability due to physical noise, and any concurrent changes in scattering can 
all give rise to spurious ∆[oxCCO] traces [12,22]. Yet, recent studies disprove these claims 
and establish ∆[oxCCO] as a NIRS-derived indicator of the redox state of mitochondrial 
cytochrome c oxidase and hence as a brain-specific optical biomarker of cerebral metabolic 
status [5,8–11,14,15,32,33]. Also note that our study employs a restrictive wavelength range 
of 780-900 nm; exclusion of shorter wavelengths helps to enhance the contribution of 
cytochrome c oxidase to attenuation signals [14]. Further, this chromophore is expressed 
predominantly in deeper brain regions [5,10] that are thoroughly probed with our transmission 
mode measurements. 

Currently, there are no commercial NIRS instruments that measure ∆[oxCCO]. Early-
generation systems of the NIRO series, namely the NIRO-1000, 500, and 300 (Hamamatsu 
Photonics K.K., Hamamatsu City, Japan), enabled measurement of ∆[oxCCO], but these 
systems are no longer available [34]. The NIRO-1000 used 6 wavelengths (780, 808, 830, 
847, 867, and 911 nm), while the NIRO-500 used 4 wavelengths (775, 810, 870, and 904 nm); 
a comparative assessment of the performance of these two systems in resolving ∆[oxCCO] 
can be found in [12]. The NIRO-300 was also a 4-wavelength system that typically used 775, 
810, 850, and 910 nm [35,36]. The particular choice of wavelengths was mainly dictated by 
the availability of laser sources at the time of development of these instruments and attempts 
were made to equally distribute the wavelengths across the near-infrared range from 770 nm 
and above. Current research instruments for measuring ∆[oxCCO], on the other hand, are 
broadband systems [5,8,10,11,37,38]. 

From a practical viewpoint, our proposed NIRS wavelengths are well within the range of 
what is available from LED sources made of AlGaAs-type materials. The results of our 
optimization study can hence be readily applied to develop compact and cost-effective NIRS 
systems capable of resolving ∆[HbO2], ∆[HHb], and ∆[oxCCO]. It is also important to note 
that the potential ease of implementation was the main reason for limiting the analysis 
presented to combinations of a maximum of 8 wavelengths; the use of more populous 
combinations would raise feasibility issues and defeat the original purpose of our work. After 
all, the optimal 8-wavelength combination yields the desired level of accuracy for monitoring 
HI-induced changes in cerebral chromophore concentrations. 

On a related matter, the level of accuracy required for quantification of ∆[HbO2], ∆[HHb], 
and ∆[oxCCO] largely depends on the specific clinical application under consideration. For 
example, changes in chromophore concentrations during functional activation are usually an 
order of magnitude less compared to changes due to physiological insults such as hypoxia, 
hypocapnia, and hypercapnia. In addition, even though a sub-μM accuracy may be sufficient 
for ∆[HbO2] and ∆[HHb], an extra order of magnitude is needed for ∆[oxCCO]. This can be 
achieved with the optimal 8-wavelength combination, making our results potentially 
applicable to various clinical contexts. We intend to carry out further validation tests in order 
to assess whether the results presented here generalize to other measurement systems and to 
other clinically relevant models. 

As a final remark, we point out that even though our GA-based approach is an effective 
strategy for data-driven wavelength optimization, a simulation-based extension of this study is 
likely to prove useful in interpreting the empirical results obtained. The Monte Carlo method 
[39–41] can provide a flexible modeling framework to simulate specific experimental or 
clinical conditions and to assess the contribution of each of the three chromophores to 
attenuation signals at different wavelengths. There is no doubt that such a comprehensive 
sensitivity analysis will be instrumental in revealing the physical basis of optical 
measurements obtained from brain tissues. 
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5. Conclusions 

In summary, the research presented here highlights the importance of a systematic approach 
to identifying optimal wavelength combinations for NIRS-based cerebral monitoring. Our 
analysis indicates that the optimal 3-wavelength combination (785, 833, and 885 nm) leads to 
mean errors of up to 10% in estimating ∆[HbO2], ∆[HHb], and ∆[oxCCO]. Increasing the 
number of wavelengths to 4 (785, 809, 849, and 889 nm) or 5 (784, 810, 847, 869, and 891 
nm), however, reduces mean errors to less than 4%. The optimal 8-wavelength combination 
(784, 800, 818, 835, 851, 868, 881, and 894 nm) is quite promising with mean errors of less 
than 2%. These results suggest that it is possible to significantly reduce the number of 
measurement wavelengths used in conjunction with spectroscopic algorithms and still achieve 
a high performance in estimating changes in cerebral chromophore concentrations. Such a 
design simplification is expected to improve the clinical adaptability and utility of NIRS 
systems. 
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