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Abstract

Objectives—This research develops a framework to objectively measure the degree of fairness 

of any allocation rule aimed at distributing a limited stockpile of vaccines to contain the spread of 

Influenza.

Methods—The trade-off between the efficiency and the fairness of allocation strategies is 

demonstrated through an illustrative simulation study of an Influenza epidemic in Southwestern 

Virginia. A Susceptible-Exposed-Infectious-Recovered (SEIR) model is used to represent the 

disease progression within the host.

Results—Our findings show that among all the criteria considered here, the household size 

(largest first) combined with age (youngest first) based strategy leads to the best outcome. At 80% 

fairness, highest efficiency can be achieved but in order to be 100% fair, disease prevalence will 

have to rise by ≈1.5%.

Conclusions—This research provides a framework to objectively determine the degree of 

fairness of vaccine allocation strategies.
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Introduction

Public health officials, when faced with scarce medical resources like limited vaccines, have 

primarily focused on designing allocation strategies that are efficient so that the prevalence 

and the intensity of infection can be minimized. If the improved efficiency helps overcome 

the scarcity, the problem is solved but if it persists, a set of rules is needed to prioritize 
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individuals in a way that the distribution is fair. To evaluate the fairness of a rule, however, 

a systematic procedure is needed.

A variety of criteria can be applied to justify whether or not a specific allocation rule is 

appropriate when it comes to the distribution of a limited stockpile of vaccines. Broadly 

speaking, they can be categorized into two classes: efficiency and fairness. The former 

concentrates on how well a rule drives the system to the most efficient outcome whereas the 

latter focuses on how well the allocation rule addresses some fairness criteria, i.e., axioms 

that prescribe the relative importance of each individual based only on some of her features, 

which are irrelevant to the resulting outcomes. In reality, an allocation rule is often justified 

by both criteria. For example, in a market economy, the efficiency rule suggests that 

individuals should be paid their marginal contributions to the society in order to motivate 

them to produce the maximum output whereas fairness is covered through redistribution 

mechanism, such as taxes and subsidies, which transfer resources from the rich to the poor, 

the weak, and so on.

Researchers in public health area have extensively studied the efficiency aspects of 

allocations of a limited stockpile of vaccines. The “proper” or efficient distribution rules 

have been shown to minimize the disease prevalence, maximize quality-adjusted years, or 

minimize economic costs among other things [1, 2, 3]. Since all measures of efficiency are 

based on the outcomes of the resulting epidemic, it is straightforward to quantify the degree 

of efficiency for each distribution rule, post-epidemic.

The other aspect of the problem, i.e. fairness, remains insufficiently investigated in the 

literature. There have been very few studies that focused on the fairness of distribution 

strategies, and the criteria for prioritizing the most important individuals are subjective. 

Specifically, researchers have suggested four kinds of fairness: treating people equally, 

favoring the worst-off, maximizing total benefits, and promoting and rewarding social 

usefulness [4, 5, 6]. Given that these analyses in the literature are totally based on qualitative 

analysis, researchers lack a general methodology to quantitatively measure the degree of 

fairness of each distribution rule, and objectively assess the tradeoff between the efficiency 

and fairness.

The problem above leads to the main motivation for this work. This research builds a 

general framework, similar to the Gini coefficient, which measures income inequality, to 

quantify the degree of fairness given a corresponding axiom of fairness. With the help of 

this framework, we investigate the relationship between efficiency and fairness, of various 

vaccine allocation strategies during an Influenza like illness (ILI) epidemic.

Our results show that a distribution rule with a very high degree of fairness is usually 

harmful to the society since it is applied at the cost of efficiency; and the most efficient 

distribution rule turns out to be, not the fairest one. Specifically, this research finds that 

distribution strategies that use household-size, life cycle, and network-degree criteria, are 

well aligned with efficiency to a large extent. In all scenarios, in order to be 100% fair, 

however, some efficiency must be sacrificed. A mixed criterion based on both household-

size and age does better than the individual ones.
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The rest of the paper is organized as follows. Section 2 defines the framework for 

quantifying the degree of fairness and efficiency. Section 3 simulates a variety of 

distribution strategies during an ILI epidemic on a realistic social network. Section 4 

discusses the empirical results and their implications, and Section 5 concludes.

The Framework to Measure Fairness

We first define the general forms of efficiency and fairness that are suitable for empirical 

studies.

Baseline. For an epidemic on graph G(N, T), where N is the set of vertices and T denotes all 

edges; for a given individual i ∈ N, fi(G) denotes the probability of i getting infected, 

without any intervention.

Intervention. Now consider an intervention, i.e. distribution of a limited stockpile of L 

vaccines to the public. Based on a set of demographic variables Xi for each individual i, let 

D(Xi) ∈ [0, 1] be the probability that she gets vaccinated, such that .

Let hi(G, D) be the probability of individual i getting infected when the intervention policy 

depicted by function D(·) is in place.

Definition 1. Given a vector of weights W = (ωi)i∈N, the efficiency of policy D is defined as 

.

Given that the term Σωi · fi(G) is fixed and exogenously given, let us just focus on the value 

of Σωi · hi(G, D) while comparing the efficiency of different intervention policies. 

Intuitively speaking, given the corresponding weights of individuals for an intervention, the 

efficiency is (negatively) determined by the weighted sum of individual costs caused by the 

epidemic. For this reason, we define  as the social cost, after 

applying intervention characterized by D, and focus mainly on this term in the rest of the 

paper.

The definition of fairness of an intervention, however, is more complicated. The term 

“fairness” should be derived from some axiom that justifies the set of people who should get 

vaccinated for some righteous reasons. Formally speaking, given a function V:Xi → ℝ, an 

axiom of fairness characterized by V claims that individuals should get vaccinated according 

to their importance as determined by V. Then given V, it is easy to define the fairest 

distribution rule D1(V) and the unfairest distribution rule D0(V): First rank all V(Xi) values in 

descending order, the distribution rule D1(V) will vaccinate only the first L individuals 

whereas rule D0(V) vaccinates only the last L individuals. All other distribution rules that 

assign L vaccines to individuals in N, must reside somewhere between the fairest and the 

unfairest rules. To further quantify the degree of fairness for any distribution rule, we define 

a cumulative allocation function, PD,V(·), for any distribution rule D and fairness axiom V: 

Rank all individuals in descending order of their V(Xi) values, then for fraction λ ∈ [0, 1], 

PD,V(λ) tells us, in expected values, the proportion of L vaccines that have been distributed 
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out to the first λ|N| individuals. Obviously we have PD,V(0) = 0, PD,V(1) = 1, and PD,V(·) is a 

non-decreasing function.

PD1,V(λ) equals  if  and 1 otherwise. PD0,V(λ) equals  if 

and 0 otherwise. Any other curve of PD,V(·) should locate between these two, and constitute 

a closed image with either of them. For this reason, it is reasonable to define the fairness 

degree of D as the relative area between curves PD,V(·) and PD0,V(·).

Definition 2. Given an axiom characterized by V, the fairness degree of D is the area 

between curves PD,V(α) and PD0V(α), normalized by the area between curves PD1V(α) and 

PD0,V(α), where α is the degree of fairness

Next we would like to characterize a distribution rule exclusively by its degree of fairness, 

but according to the above setting, for any fairness degree α ∈ (0, 1), there are infinitely 

many distribution rules whose fairness degree is exactly α. To make our analysis tractable, 

we investigate only a subclass of distribution rules, namely rules that have up to two-piece 

linear cumulative distribution functions. More specifically, for all distribution rules with 

fairness degree higher than or equal to 0.5, we work with the one that vaccinates a 

proportion with the highest V(Xi) values for sure and distributes the remaining vaccines to 

the rest uniformly randomly.

Analogously, for all distribution rules with fairness degree smaller than 0.5, we only select 

the one that vaccines a proportion with the smallest V(Xi) values and distributes the 

remaining vaccines to the rest uniformly randomly. By doing so, given any fairness degree α 

∈ [0, 1], a distribution rule Dα(V) is uniquely determined, and for any PDαV(·) we can thus 

write  for short. For instance, in Figure 1, the area between curves  and  should 

be 30% of the area between curves  and .

To sum up, we have introduced a general framework to measure the degree of fairness of 

any vaccine allocation rule. Furthermore, given any fairness degree α ∈ [0, 1], we focus on a 

unique allocation rule, which can be characterized exclusively by α, given the axiom of 

fairness V.

Experimental Methods

Next we describe the simulation methods, experimental settings, efficiency criteria as well 

as various axioms of fairness.

Disease Model and Simulation Setting

We use an agent-based epidemic simulation tool called EpiFast [7], to study the propagation 

of an Influenza-like-illness, over the social contact network of Montgomery County in 

Southwest Virginia. The synthetic population, representing approximately 75,000 

individuals, is obtained through a detailed population synthesis process that makes it 

statistically indistinguishable from the US census data when aggregated to a block group 

level [8]. Further a detailed set of daily activities and their corresponding locations are 

assigned to each individual in order to generate a colocation based social contact network. 
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The estimation of the social network is described in detail in several peer-reviewed studies 

[9, 10, 11].

A Susceptible-Exposed-Infectious-Recovered (SEIR) model is used to represent the disease 

progression within the host. This is a widely used disease model in Epidemiology. There are 

no deaths and births in the model, each health individual is initially assigned as susceptible; 

once an individual has been infected but is not infectious, she enters the incubation period 

and is thus labeled as exposed; after the incubation period, she becomes infectious; once an 

infectious individual recovers, she becomes immune to the disease and is thus labeled as 

recovered.

For each individual, the incubation period duration is sampled from a discrete distribution 

with mean 1.9 days and standard deviation 0.49 day; the infectious period duration is 

sampled from a discrete distribution with mean 4.1 days and standard deviation 0.89 [12]. 

Five infections from external sources occur within the population each day to seed the 

epidemic. The simulation is run for 300 days. Only 15,000 vaccines are assumed to be 

available which means only 20% of the population can get vaccinated. These individuals are 

chosen at the beginning of the simulation based on different fairness criteria. The efficacy of 

the vaccine is assumed to be 90%.

Recall that for any fairness degree, a proportion of vaccines are distributed to individuals 

with the greatest (or the smallest) V(Xi) values, and the remaining vaccines are distributed to 

other individuals uniformly randomly. To account for the stochasticity embedded in the 

random distribution part, for each degree of fairness, we run 30 simulation replicates and 

report the average of these results.

Efficiency Measures

We consider two standard measures of (negative) efficiency in the current work: the 

prevalence rate of the disease and the loss in the total number of quality days.

Disease Prevalence—Our first measure of (negative) efficiency is prevalence of disease, 

namely, the ratio of infected individuals in the population. This measure is widely used in 

practice and the literature because the prevalence of a disease can is a signal of how severely 

the disease is affecting the society. As a result, this measure can, to some extent, serve as a 

proxy for the social costs due to the disease. Under this measure, each individual is weighted 

equally.

Quality Days Lost—Different individuals are valued differently by the society, and thus 

should be assigned different weights based on their value while considering the efficiency of 

an intervention. We use the survey results in [13], which uses age to determine the weights 

of the individuals. The negative efficiency is then measured by the sum of weighted 

infectious days lost.

By fitting the results into a simplistic function, the weight, ωi for each individual is given as:
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(1)

Where Agei stands for the age of individual i. This function simply claims that the 30-year-

old individuals should be given the highest weight and the younger and older should be 

valued less important. This idea is also explained in [5] which argue that the importance of 

an individual should be calculated based on two considerations: how many resources have 

already been invested in that person and how many years are left to complete an ordinary 

life-cycle. The youth are weighted less because less investment has been made in them so 

far and the old are weighted less because they have fewer years to live to complete a life-

cycle. Hence, middle-aged individuals are given the highest weights.

Further, to make the “loss in quality days” meaningful in reality, the weights are normalized 

by factor  for all individuals. By doing so, ωi for individuals in age 30 are set to be 4.1, 

which is exactly the average number of infection days. In other words, we take 4.1 quality 

days lost for an infected individual who is 30, and the quality days lost for all other 

individuals are set accordingly such that their relative days lost are revealed by their relative 

importance.

To understand the intuition behind this treatment, recall that the mean infection period in our 

simulation model is 4.1 days, so without lost of generality every individual is assumed to 

spend 4.1 days to recover from the disease. The 4.1 days for different individuals, however, 

may be valued differently according to their importance in the society. So we normalize the 

lost days of disease for individuals in age 30 as 4.1 full days and discount others’ 

accordingly. The probability of infection is calculated empirically for each person by 

averaging the health outcomes over 30 replicates. The expected number of quality days lost 

in an epidemic is calculated by summing up the number of days lost to infection for all 

individuals, weighted by their respective ωi.

Fairness axioms

Three axioms of fairness have been investigated in this research: taxpayer, life-cycle and 

investment-adjusted life cycle.

Taxpayer—This axiom simply states that households who pay more taxes should be given 

higher priority because they financially contribute most to the society. Given that we do not 

have data on taxes paid by the households, we use household income as a proxy to prioritize 

the individuals. Formally, we have V(Xi) = HIi, where HIi stands for the taxes paid by the 

household to which individual i belongs. Note that through this axiom, we can study another 

widely argued but opposite fairness concern i.e. the poorest first, which is defined by V(Xi) = 

−HIi. Hence an intervention with fairness α under the taxpayer axiom could also be regarded 

as an intervention with fairness 1 − α under the poorest first axiom.

Life-Cycle—The life-cycle axiom states that priority should be given to the youngest 

individuals. It is justified by the idea that all individuals have the right to go through a 
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complete life cycle, and the youngest need to be protected most because they have lived the 

smallest fractions of a complete life cycle. Formally, we have here V(Xi) = −Agei, where 

Agei is individual i’s age.

Investment-Adjusted Life Cycle—This axiom states that priority should be given to 

middle aged individuals as stated in (1) because a substantial investment has been made and 

the person has many more years left to live. Formally speaking, V(Xi) = ωi, where ωi is as 

defined in equation (1).

Results and Discussion

Figure 2 illustrates the relationship between the efficiency and fairness measures. Subfigure 

(a) shows the efficiency-fairness relationships when “disease prevalence rate” is used as the 

efficiency measure whereas subfigure (b) shows the same when “Quality days lost” is taken 

as the efficiency measure.

The two subfigures show that the choice of efficiency measure does not qualitatively change 

the results: For the taxpayer and life-cycle fairness, both subfigures show that although an 

improvement in fairness is accompanied by an improvement in efficiency at low degree of 

fairness (below 0.5), no obvious trends exist for greater fairness degrees. More strikingly, in 

case of investment adjusted life cycle fairness, pursuing fairness actually harms the 

efficiency.

Note that, in both subfigures the curves intersect with each other at fairness degree of 0.5. 

This is not a coincidence; recall that according to the definition of the fairness degree of a 

specific distribution rule, the cumulative allocation function of the distribution rule with 

fairness degree 0.5 should be a straight line between points (0,0) and (1,1), i.e. curve  in 

Figure 1. In other words, this distribution rule treats all individuals equally by allocating 

vaccines uniformly randomly to the society. Strictly speaking, there exist infinitely many 

distribution rules whose fairness degree is 0.5. After imposing the two-piece linearity 

requirement on the curves of cumulative allocation functions, however, the straight curve 

shown in Figure 1 is the unique rule for consideration. This specific distribution rule is 

fairness-independent; i.e. regardless of the fairness axiom, the fairness-degree-0.5 

distribution rule remains the same. As stated before, we run 30 replicates for each 

distribution rule to deal with the randomness embedded in the selection process, and report 

the average of the simulation results; for all distribution rules that follow α = 0.5, the 

average results are statistically identical, as shown in Figure 2.

Although the curves exhibit significant variation for higher degrees of fairness, the left-

hand-side of the curves share a common diminishing trend. This in turn suggests an 

important finding i.e. for each axiom of fairness, the inverse of it would not be a reasonable 

criterion. It would not make sense to give priority to older people or less invested 

individuals. It may be reasonable to consider, however, the inverse of the taxpayer based 

fairness axiom, i.e. giving priority to the poor, which is discussed below.
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Vaccinate the Rich or the Poor?

Some people might argue that priority should be given to the poor people who otherwise 

may not be able to afford the vaccine. Our results in Figure 2 suggest that the poorest-first 

fairness is inconsistent with both efficiency measures. In subfigure (a), if the vaccines are 

distributed uniformly randomly to all individuals as in the case of α = 0.5, the expected 

disease prevalence is about 13.5%; however, after implementing the fairest distribution 

under the poorest-first axiom (i.e. the least fair choice under the taxpayer axiom), the disease 

prevalence increases to about 17.5%—the peak of the curve. On the other hand, the taxpayer 

fairness axiom neither improves the efficiency nor harms it—the right-hand-side of the 

corresponding curve is rather flat in both the subfigures.

Vaccinate Based on Age?

Next, we compare the results of the life-cycle and investment adjusted life-cycle based 

axioms. If the life-cycle principle is accepted as the axiom of fairness, pursuing the fairness 

of the interventions does help improve the efficiency in both cases despite some fluctuations 

at fairly high degree of fairness. Furthermore, the fairest distribution rule in this case leads to 

the most efficient result.

The result for the investment adjusted life-cycle rule, however, is more striking. Under our 

experimental settings, we find that assigning more weight to the middle-aged individuals 

and pursuing fairness harms the society both in terms of high prevalence rate as well as 

greater loss in the total number of quality days. Nevertheless, some researchers in the 

literature have argued that this kind of intervention combined with some other rules should 

be well aligned with efficiency [5,14].

One explanation for this could be that, assigning weights to individuals based on their 

investment and potential is quite different from assigning weights to them based on their 

relevance in the spread of an epidemic. The former mainly considers people’s values to the 

society whereas the latter depends on people’s positions in the social contact network. 

Although these two considerations may overlap to some extent, e.g. individuals in their 30s 

may have more social contacts than those much younger or much older, the weighting 

method for the investment adjusted life-cycle does not seem to be a good proxy for the 

connectivity in the social network.

Vaccinate Based on Network Degrees?

In a social network, individuals with the highest network-degrees or connectivity are the 

ones who may help propagate the epidemic by getting infected and infecting others. For this 

reason, it is often argued that priority should be give to the highest degree individuals [15]. 

On the other hand, the network degree weighted by duration, may be even more accurate 

because it not only accounts for the connectivity of the individual but also the duration of 

each contact. The problem is that even if it is a good strategy, in reality, it is hard to 

implement due to the lack of the availability of information on people’s contacts and their 

durations.
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To overcome this challenge, we consider the size of the household as a proxy for the 

network degree and the weighted network degree. Although it represents only a subgraph of 

the entire social network for each individual, it is a useful proxy because it is more easily 

observable and implementable by policy makers. For our synthetic social network, we have 

complete information on each individual’s contacts, the duration of each contact as well as 

the household sizes. Figure 3 considers each of the options i.e. network degree, weighted 

network degree and the household size, to compare the trade-off between the efficiency and 

fairness.

Figure 3 shows that the weighted network-degree based fairness is the most consistent with 

the measures of efficiency. The social costs in terms of prevalence and lost days continue to 

drop as the degree of fairness increases. The inverse of this strategy would lead to the 

highest social costs and level of inefficiency. Surprisingly, network-degree results are quite 

different from the weighted network degree results. For fairness degrees greater than 0.5, 

further improvement in the fairness actually reduces efficiency. This result suggests that 

contact durations are more important than the number of contacts in the spread of the 

epidemic and hence the network degree, although more observable, may not be used as a 

proxy for the weighted degree.

On the other hand, household size seems to be a good proxy for the weighted degree. This is 

because within-household contacts play an important role and represent a large part of the 

interaction duration for the individuals. Furthermore, data on household size is conveniently 

available from the census. In case of household size, fairness improves with the efficiency 

under both measures in Figure 3. This means that in our specific setting, if the authority has 

to choose a fairness principle that is implementable and leads to efficient results, it should be 

the household-size fairness.

Mixed Principle

All fairness principles considered so far have been based on a single variable, but recall that 

in our framework, fairness could be based on a vector of demographic variables Xi. This 

means we should be able to evaluate if a multi-variable criteria performs better than the 

individual ones. In particular, the life-cycle fairness principle is the most consistent with the 

efficiency measures as compared to the other fairness criteria in Figure 2 and the household-

size principle performs better than the others in Figure 3 and is implementable. It is possible 

that a combination of them performs better than either of them individually, so we design a 

new criterion, which gives priority to young individuals from large households.

The relationship between the mixed fairness and efficiency is illustrated in Figure 4. We also 

include the results of the life-cycle and household-size fairness in the same figure for 

comparison purposes. As shown in the figure, the mixed fairness is most well aligned with 

the efficiency measures. This suggests that, for our specific example, distribution rules based 

on the mixed fairness principle could be an ideal choice for the public health officials who 

aim to achieve both efficiency and fairness.
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Conclusions

This study contributes to the public health debate on who to protect when everyone cannot 

be protected, and how to prioritize the distribution of limited vaccines. Allocating limited 

resources is always a challenge but lives are at stake when it comes to medical resources. 

This paper, for the first time, provides a general framework to assess the fairness and 

efficiency of the public health intervention policies. It develops appropriate axioms of 

fairness and examines the trade-offs between the efficiency and fairness under these axioms 

by providing objective ways of measuring fairness. If public health authorities come up with 

a new distribution rule, this framework can help determine its degree of fairness and can 

help alleviate some of the ethical concerns.
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Figure 1. 

Curves for cumulative function  with fairness degree α being equal to 1, 0.7, 0.5, 0.3 

and 0, respectively. Only 20% of the whole population get vaccinated.
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Figure 2. 
Relationship between (negative) efficiency and fairness of vaccine allocation strategies. 

Subfigure (a) uses disease prevalence rate as the efficiency measure and subfigure (b) uses 

the quality days lost. Simulations are run on a synthetic social network of Montgomery 

County in Southwest Virginia. Only 20% of the population gets vaccinated. Vaccine 

efficacy is set at 90%.
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Figure 3. 
Relationship between (negative) efficiency and fairness of vaccine allocation strategies. 

Subfigure (a) uses disease prevalence rate as the efficiency measure and subfigure (b) uses 

the quality days lost. Simulations are run on a synthetic social network of Montgomery 

County in Southwest Virginia. Only 20% of the population gets vaccinated. Vaccine 

efficacy is set at 90%.
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Figure 4. 
Relationship between (negative) efficiency and fairness of vaccine allocation strategies. 

Subfigure (a) uses disease prevalence rate as the efficiency measure and subfigure (b) uses 

the quality days lost. Simulations are run on a synthetic social network of Montgomery 

County in Southwest Virginia. Only 20% of the population gets vaccinated. Vaccine 

efficacy is set at 90%.
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Table 1

Summary of Variables and Notations

L Stockpile of vaccines

|N| Population size

ωi Weight of individual i while computing efficiency

Xi Vector of demographics for individual i

V(Xi) Individual i’s priority, given Xi and fairness characterized by V(·)

α A generic fairness degree in interval [0,1]

D A generic vaccine allocation rule

PD,V(·) Cumulative allocation function given allocation rule D and fairness V(·)

D_α(V) Uniquely determined allocation rule whose fairness degree is α, given V(·)

Cumulative allocation function of allocation rule D_α(V)
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