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Abstract

Purpose—To develop an automated magnetic resonance imaging (MRI) parotid segmentation 

method to monitor radiation-induced parotid gland changes in patients after head and neck 

radiation therapy (RT).

Methods and Materials—The proposed method combines the atlas registration method, which 

captures the global variation of anatomy, with a machine learning technology, which captures the 

local statistical features, to automatically segment the parotid glands from the MRIs. The 

segmentation method consists of 3 major steps. First, an atlas (pre-RT MRI and manually 

contoured parotid gland mask) is built for each patient. A hybrid deformable image registration is 

used to map the pre-RT MRI to the post-RT MRI, and the transformation is applied to the pre-RT 

parotid volume. Second, the kernel support vector machine (SVM) is trained with the subject-

specific atlas pair consisting of multiple features (intensity, gradient, and others) from the aligned 

pre-RT MRI and the transformed parotid volume. Third, the well-trained kernel SVM is used to 

differentiate the parotid from surrounding tissues in the post-RT MRIs by statistically matching 

multiple texture features. A longitudinal study of 15 patients undergoing head and neck RT was 

conducted: baseline MRI was acquired prior to RT, and the post-RT MRIs were acquired at 3-, 6-, 

and 12-month follow-up examinations. The resulting segmentations were compared with the 

physicians' manual contours.
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Results—Successful parotid segmentation was achieved for all 15 patients (42 post-RT MRIs). 

The average percentage of volume differences between the automated segmentations and those of 

the physicians' manual contours were 7.98% for the left parotid and 8.12% for the right parotid. 

The average volume overlap was 91.1% ± 1.6% for the left parotid and 90.5% ± 2.4% for the right 

parotid. The parotid gland volume reduction at follow-up was 25% at 3 months, 27% at 6 months, 

and 16% at 12 months.

Conclusions—We have validated our automated parotid segmentation algorithm in a 

longitudinal study. This segmentation method may be useful in future studies to address radiation-

induced xerostomia in head and neck radiation therapy.

Introduction

Xerostomia (dry mouth) is a common debilitating adverse effect in patients who have 

received radiation therapy (RT) for head and neck malignancies (1-8). Severe xerostomia is 

associated with oral discomfort, increased rates of dental caries, oral infection, and difficulty 

in speaking and swallowing (6, 8). Several studies have shown that changes in parotid gland 

morphology (e.g. volume reduction) are associated with decreased saliva production and 

xerostomia (1-8). Nevertheless, longitudinal imaging studies with larger cohorts are needed 

to better understand this debilitating side effect, monitor its progression, and evaluate its 

response to interventions, such as partial parotid sparing (available with intensity modulated 

RT).

Longitudinal imaging studies of radiation-induced parotid toxicity require an accurate, 

reliable, and validated imaging method to segment the parotid glands. In the clinic, manual 

segmentation remains the gold standard for parotid delineation with magnetic resonance 

images (MRI). However, it is impractical to apply the manual segmentation method to 

longitudinal or large-scale studies due to time constraints. In addition, manual segmentations 

are also prone to rater drift and bias. A number of CT-based parotid gland segmentation 

methods have been investigated (9-16), yet few studies have been conducted using MRIs. 

Therefore, the goal of this study was to develop an automated, reliable, and robust 

segmentation method to monitor radiation-induced parotid gland changes by using multiple 

MRIs.

We proposed combining atlas registration, which captures global variations of anatomy, 

with machine learning, which captures local statistical features, using kernel support vector 

machine (SVM), to automatically segment the parotid glands in MR images. This method 

uses the baseline parotid contours as the atlas and automates the parotid segmentation for 

post-RT MRIs. Our technology was tested in a longitudinal study of 15 head and neck 

patients with 1-year follow-up examinations.

Methods and Materials

Our segmentation method consisted of 3 major steps: (1) atlas-based registration; (2) feature 

SVM training; and (3) parotid gland volume segmentation using trained feature SVM.
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Step 1: Atlas-based registration

A hybrid deformable image registration combining a normalized mutual information (NMI) 

metric with a normalized sum-of-squared-differences (NSSD) metric was used to map the 

pre-RT MR to the post-RT MRI. The transformation was then applied to the parotid gland 

binary volume manually contoured from pre-RT MR images (Fig. 1).

The term “atlas” in the context of this work is defined as the pairing of structural MRI 

volumes with their corresponding segmented parotid gland binary volumes. We built a 

subject-specific atlas for each patient, which included the patient's baseline (pre-RT) MR 

images and the manually contoured parotid binary volume. The advantage of using the pre-

RT MR as the basis for the SVM approach is that the pre-RT MRI often shows anatomy 

structure that is clearer than that of post-RT MRI, where radiation damage may occur. The 

MR parotid segmentations at various follow-up times for a specific patient were based on 

this atlas. Using this patient's post-RT MR scan obtained at follow-up, we aligned the pre-

RT MRI to the post-RT MRI, using deformable registration (detailed in the following 

section) and applied the transformation to the parotid gland binary volume of the pre-RT 

MRI.

In order to handle the local intensity contrast induced by RT (17) and inhomogeneity 

changes associated with various MR scans (18, 19), we applied a hybrid image matching 

metric (10), which is a combination of NMI and NSSD metrics.

(1)

where I and J denote the pre-RT and follow-up images; H(I) and H(J) denote the marginal 

entropies I and J; and H(I, J) denotes their joint entropy, which is calculated from the joint 

histogram of I and J. α and β are the relative weighting of the two terms α= β = 0.5. μI = Gs 

* I denotes the local intensity mean, and σI = Gs*(I − μI)2 denotes the local intensity 

variation of image, I. The same denotations are for the target image J.Gs, which denotes a 

Gaussian filter with the kernel size s (the kernel size s was chosen to be 2-3 times the image 

voxel size). The hybrid matching metric provides a better image alignment than the NSSD 

or NMI, because they are sensitive only to edges or local image contrast, respectively (10).

After this atlas registration, the registered baseline (pre-RT) MRI had similar global 

anatomy information as the follow-up MRI. However, the size and intensity of the parotid 

glands in MRI often change over time after RT (17). In order to capture local changes 

(intensity contrast variation) of parotid glands and improve the segmentation accuracy, we 

used this pair with large similarity as the follow-up MRI to train the kernel-based SVM.

Step 2: Support vector machine training

Multiple operators (gradient, enhanced Sobel and Gabor wavelets) were used to extract the 

local features from registered baseline MRI, and multiple different features were extracted to 

aid in the kernel-based SVM classification process (Fig. 2). A total of 41 features, some 

sensitive to the boundary and some sensitive to the microstructures, were made up of the 
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original intensity feature, gradient features, enhanced Sobel features, and Gabor features. 

Four gradient and Sobel operators were convolved with aligned pre-RT MR images to detect 

horizontal, vertical, and diagonal edges and strength of edges (20). We also obtained a total 

of 32 Gabor features on 4 levels and 4 rotations for the original intensity image. Gabor 

wavelet was used to capture image features in multiple scales and multiple orientations (21, 

22). The mother function of the 2-dimensional Gabor wavelet is:

(2)

with the corresponding Fourier transformation as.

(3)

where σu = 1 / (2πσx)and σv =1/(2πσy) and σx and σy characterize the spatial extent and 

frequency bandwidth of the Gabor wavelet, and W is a shifting parameter along the u axis in 

the frequency domain. The Gabor wavelet can be obtained by dilation and rotation of the 

mother function. Use of the Gabor wavelet offers at least 2 advantages for parotid gland 

segmentation. First, with the Gaussian factor in the Gabor wavelet, the noise in the MRI (19) 

can be smoothed or removed. Second, the multiscale and multi-orientation structure of the 

Gabor wavelet enables the extractions of edge direction as well as edge strength. The Gabor 

wavelet provides rich edge maps that correspond to a variety of directions, rather than a 

single “maximum edge intensity” map.

SVM is a popular, supervised machine learning model with associated statistical learning 

algorithms that analyze data and recognize patterns for classification and regression analysis 

(23). The idea behind SVMs is to map the original data points from the input space to a 

high-dimension (hy-perplane) feature space such that the classification problem becomes 

simpler in the hyperplane space. The training phase of SVMs looks for a linear, optimal 

separating hyperplane as the maximum margin classifier with respect to the training data 

(24). Because the training data are not linearly separable, kernel-based SVM methods are 

used to classify these features. Kernel-based SVM methods map data from an original input 

feature space to a kernel feature space of higher dimensionality and then solve a linear 

problem in that space. In this study, kernel-based SVM was used to identify the features of 

parotid gland tissue. Although these features may vary greatly among various follow-up MR 

scans, the kernel-based SVM nonlinearly classifies subjects by extracting different features. 

The method defines a hyperplane to classify the subjects by minimizing the following 

function.

(4)

subject to.
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(5)

where C is a penalty parameter and ξi is a slack variable to measure the deviation of training 

samples. w is the vector of coefficients, and b is a constant offset. To find the optimal input 

parameter values, the grid search method is used. The index i labels the N training cases. 

yi∈; ± 1 is the class label, and xi is the independent variable. The kernel k is used to 

transform data from the input to the feature space. There are a number of kernels that can be 

used in SVM models. In our implementation, radial basis function (RBF) was used as 

follows

(6)

We used the registered pre-RT MRI with multiple features (gradient, Sobel, and Gabor 

features), as well as the transformed parotid binary volume, to train the RBF kernel-based 

SVM.

Step 3: Volume segmentation

In order to segment the parotid glands, we performed the same feature extraction process for 

the follow-up MRIs (Fig. 3). The follow-up MR images and their multiple features 

(gradient, Sobel, and Gabor features) were the input of trained kernel-based SVM, and the 

trained SVM adaptively labeled the parotid tissue based on its texture and location. The 

output of trained SVM is a binary image (volume) consisting of many “0” (nonparotid 

tissues) and “1” (parotid tissue) points. The 3D parotid segmentation was obtained from the 

classification-based binary volume using the following steps: (1) the pre-RT segmented 

parotid volume plus 10-mm margin was defined as the volume of interest (VOI); (2) the 

VOI was applied to the binary volume to set the volume outside the VOI to 0; (3) a 3D filter 

was applied to smooth the binary volume; (4) a 0.5 threshold was applied to the filtered 

volume; and (5) 3D morphology operation was used to eliminate the holes or disconnections 

in the parotid glands.

Reliability evaluation of the segmentation algorithm

The automatic parotid segmentation results were compared with the gold standard of 

physicians' manual contours. A common evaluation measure for a segmentation method is 

the Dice overlap ratio. The Dice overlap ratio is defined as follows:

(7)

where Vol1 represents the voxels of the parotid gland segmented by the automated 

algorithm, and Vol2 represents the voxels of the corresponding manual segmentation of the 

experts.
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Results

Subjects

We conducted a longitudinal study of 15 patients receiving radiation therapy for head and 

neck malignancies, such as laryngeal and oropharyngeal cancers. This MR imaging study 

was approved by the Ethics Committee of our university. The 15 patients (10 men and 5 

women) ranged in age from 40 to 65 years (mean, 49.5 ± 6.6 years). The median radiation 

dose to the left parotid gland was 50.3 Gy (43.1-61.1 Gy) and 51.9 Gy (38.5-63.2 Gy) to the 

right parotid gland. All patients received a baseline MR scan prior to RT and an additional 3 

MR scans post-RT at 3- and 6-month and 1-year follow-up examinations. Among the 15 

patients, 2 patients missed the 6-month follow-up scan, and 1 patient missed the 1-year 

follow-up scan. A total of 57 MR scans were included in this study.

MRI scan

All MRI examinations were performed with a dedicated head and neck coil, with a Signa 

model HDxt 1.5-T machine (GE Healthcare). T1-and T2-weighted MR sequences were 

obtained after an intravenous injection of contrast material (gadopentetate dimeglumine). 

The parameters for the T2-weighted sequence were TR/TE/ETL = 3000 ∼ 4000/90 ∼ 120/8 

∼ 16 ms, 3.0-mm slice thickness, 256 × 256 matrix, maximum voxel resolution of 0.8 × 0.8 

× 3.0 mm3.

Interobserver reliability study

The interobserver reliability study showed consistency in the physicians' manual baseline 

contours, which were used as the ground truth, as well as in the automatic parotid 

segmentations, using the 2 different sets of baseline contours.

Parotid gland segmentation: a case report

Figure 4 shows the case of a 41-year-old patient who received intensity modulated RT for 

laryngeal cancer. The mean dose to the right parotid was 55.26 Gy, and the mean dose to the 

left parotid was 53.05 Gy. Prior to RT, the baseline volume of the right parotid gland was 

28.14 cm3 and 26.98 cm3 of the left parotid. Post-RT, the right parotid gland volumes 

obtained from the automatic segmentation compared to those from manual segmentation 

(Dice volume overlap) were 21.55 versus 22.82 cm3 (89.9%), respectively, at 3-month 

follow-up; 20.86 versus 22.26 cm3 (91.3%), respectively, at 6-month follow-up; and 23.35 

versus 25.29 cm3 (89.6%), respectively, at 1-year follow-up. Similarly, the left parotid gland 

volumes obtained from the automatic compared to those of the manual segmentations were 

19.90 versus 21.14 cm3 (91.8%), respectively, at 3 months; 19.71 versus 18.93 cm3 (90.4%), 

respectively, at 6 months; and 22.96 versus 24.77 cm3 (90.1%), respectively, at 1-year 

follow-up. Differences between automatically segmented parotid gland volumes and the 

physicians' manual contours ranged between −8.3% and 7.7% at the 3 follow-up time points.

Parotid gland segmentation: first follow-up study for all patients

Fifteen pre-RT MR image volumes corresponding to 15 patients were first manually 

contoured by an experienced radiation oncologist (NW) to obtain respective the left and 
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right parotid gland binary volumes (masks). We built 15 atlases (pre-RT T2-weighted MRI 

volume plus corresponding parotid gland binary volume comprised an atlas for each patient) 

for 15 patients in our longitudinal study.

We compared the automatic parotid gland segmentations with the physicians' manual 

contours for the 42 follow-up MRIs. Figure 5 shows the Dice volume overlap, maximum, 

and mean surface distance comparisons of the first follow-up time point for the 15 patients. 

The averaged volumes obtained from the automatic segmentations compared to the manual 

contours were 20.56 ± 7.63 versus 22.23 ± 8.39 cm3, respectively, for the left parotid 

glands; and 21.31 ± 6.16 versus 23.01 ± 7.87 cm3, respectively, for the right ones. The 

averaged Dice volume overlap was 91.1 ± 1.6% (left) and 90.5 ± 2.4% (right); the averaged 

absolute volume difference was 7.98% (left) and 8.12% (right); the averaged maximum 

surface distance was 3.46 ± 1.22 (left) and 3.79 ± 1.47 mm (right); and the averaged surface 

distance was 0.29 ±0.11 mm (left) and 0.32 ± 0.17 mm (right).

Parotid gland segmentation: all follow-up studies for all patients

For the longitudinal study, the pre-RT parotid gland volume was used as the reference with 

which to observe the parotid gland volume reduction in all patients at various follow-up 

times. Figure 6 shows a comparison of the average percentage of volume reduction in the 15 

patients, obtained by automatic and manual segmentations. For the manual and automatic 

segmentations, the percentage of parotid volume reduction was 24.9% ± 8.2% and 26.1% ± 

8.4%, respectively, at 3 months post-RT (P=.42); 27.4% ± 7.9% and 27.9% ± 9.3%, 

respectively, at 6 months post-RT (P= .83); and 16.1% ± 15.6% and 17.3% ± 15.2%, 

respectively, at 1 year post-RT (P=.55). There were no significant differences (P = .37) 

between the parotid gland volume reductions at 3 and 6 months post-RT, whereas there were 

significant difference in volume reductions between the 3-month and 1-year follow-up 

examinations (P=.019) and the 6-month and 1-year follow-up examinations (P = .014).

Discussion

We proposed an automatic MR parotid gland segmentation algorithm with which to study 

RT-induced parotid volume changes in head and neck cancer RT. In this algorithm, an atlas 

registration combined the NMI with the NSSD and was used to register the pre-RT MRI to 

the post-RT MRI, and multiple features were extracted from the registered pre-RT MRI to 

train the kernel SVM. The trained kernel SVM was subsequently used to perform the 

segmentation for the post-RT MRI. In this automatic segmentation, the atlas registration was 

used to capture the radiation-induced global anatomical variation of the parotid glands, 

whereas the trained SVM with multiple features was used to capture the local statistical 

structural variation. Automatic segmentation results were compared with physicians' manual 

contours (gold standard). The average Dice volume overlaps between our segmentations and 

the manual contours of the bilateral parotid glands were more than 90%. Compared to the 

pre-RT parotid gland volume, the percentage of parotid volume reduction was 25% at 3 

months post-RT, 27% at 6 months post-RT, and 16% at 1 year post-RT.

Parotid gland volume reduction was observed in all 15 patients after RT, which is consistent 

with previous studies (6-8, 17, 25, 26). Wu et al (8) demonstrated that the post-RT parotid 
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glands had an average of 35% volume reduction compared with normal glands. Vasquez et 

al (25) observed that the average parotid volume reduction was 14% to 17% at the end of 

treatment. In a clinical study of 82 patients, Wang et al (6) indicated the average parotid 

gland volume loss was 20.1% after 3 weeks of RT, 26.93% upon completing RT, and 

27.21% at 2 months post-RT.

Histologically, normal parotid glands consist entirely of serous cells with densely packed 

translucent secretory granules (3, 27). Radiation doses of more than 26 Gy can cause a 

significant loss of serous acini and reduce the volume of parotid glands (6) during the 

treatment and at the early follow-up examinations after RT. The percentage of parotid gland 

volume reduction produced big difference among those studies, which may be caused by (1) 

different mean doses to parotid glands correlated with parotid damage; and (2) different 

follow-up times. In the current study, no significant differences in gland volumes were 

observed between the 3- and 6-month follow-up examination, which is consistent with 

reports by Wang et al (6) and Nomayr et al (17). The parotid volume increase between 6-

month and 1-year follow-up examinations may indicate the parotid recovery after radiation 

therapy (27).

Due to the complexity of head and neck MRI, most MR-based segmentation methods rely 

on a single or multiple atlases. Single - or multiple-atlas-based segmentation methods need 

to address 2 issues: (1) how to register single or multiple atlases to the images that need to 

be segmented; and (2) how to refine a segmented for the boundary or surface for the single-

atlas-based method and how to combine or select the multiple aligned atlases multi-atlas-

based method. Therefore, a good atlas-based segmentation system requires not only a robust 

registration algorithm but also an effective scheme to select the optimal atlas templates that 

are close to the segmenting image. In our single-atlas-based method, a hybrid deformable 

registration algorithm based on the NMI and NSSD was used to register the atlas (pre-RT 

MRI) to the post-RT MR image. This algorithm could capture the variations of anatomy and 

cope well with the local image contrast changes associated with radiation-induced tissue 

damage. A kernel SVM was used to combine multiple features extracted from an aligned 

subject-specific atlas. Our kernel SVM mapped the feature data from the aligned atlas space 

to the kernel feature space of higher dimensionality and then solved a linear problem 

separating the parotid and nonparotid tissues. Multiple features from subject-specific atlas 

pairs were used to train the kernel SVM, and the well-trained SVM based on RBF kernel 

could then robustly differentiate the parotid tissue from the surrounding tissues by 

statistically matching multiple texture features.

Future areas of study include speeding up the SVM training and segmentation by testing the 

sensitivity of multiple features and decreasing the number of feature numbers. Meanwhile, 

we are conducting a clinical longitudinal study with a larger cohort to further investigate the 

relationship between parotid volume changes and parotid gland function and validate if 

volume changes could predict xerostomia.
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Conclusions

Studies have shown that volume changes of the parotid glands are correlated with the 

severity of radiation damage and may serve as a predictor for xerostomia. To better monitor 

radiation-induced volume change of the parotid gland and fully understand xerostomia in 

head and neck cancer radiation therapy, we developed a novel automatic MR parotid gland 

segmentation algorithm based on atlas registration and machine learning. We also 

demonstrated the feasibility and accuracy of our automatic segmentation algorithm in a 

clinical study. This segmentation method may be useful as we try to address xerostomia in 

patients after radiation therapy for head and neck malignancies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Summary

Parotid gland volume reduction has been associated with decreased saliva production and 

xerostomia (dry mouth) in head and neck cancer radiation therapy. In this study, an 

automated parotid segmentation method, based on atlas registration and machine 

learning, was developed to accurately quantify radiation-induced parotid gland change, 

using pre- and post-treatment magnetic resonance imaging. This automated segmentation 

tool will be valuable to carry out longitudinal or large-scale clinical studies to understand 

toxicity of the parotid gland and treat radiation-induced xerostomia.
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Fig. 1. 
Flow chart of atlas registration (Step 1).
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Fig. 2. 
Flow chart of SVM training (Step 2). SVM = support vector machine.
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Fig. 3. 
Flow chart of parotid volume segmentation (Step 3).
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Fig. 4. 
An example of parotid gland volume reduction post-RT. (Top row) MR images of the pre-

RT parotid glands (a) and at 3-month (b), 6-month (c), and 1-year (d) follow-up 

examinations. The automatic segmentation is shown in red, and the manual contour is shown 

in yellow. (Bottom row) 3D visualization and comparison between automatic (red) and 

manual (blue) parotid gland segmentation 3 months post-RT. A color version of the figure is 

available at www.redjournal.org.
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Fig. 5. 
Dice volume overlap (a), maximum (b) and mean surface distance (c) comparisons of left 

and right parotid glands for 15 patients at the first follow-up time between the automatic and 

manual segmentation.
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Fig. 6. 
Comparison of average percentages of volume reduction in 15 patients between the 

automatic and manual segmentation at different follow-up times.
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