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Abstract

We describe a flexible family of tests for evaluating the goodness of fit (calibration) of a pre-

specified personal risk model to the outcomes observed in a longitudinal cohort. Such evaluation 

involves using the risk model to assign each subject an absolute risk of developing the outcome 

within a given time from cohort entry, and comparing subjects’ assigned risks with their observed 

outcomes. This comparison involves several issues. For example, subjects followed only for part 

of the risk period have unknown outcomes. Moreover existing tests do not reveal the reasons for 

poor model fit when it occurs, which can reflect misspecification of the model’s hazards for the 

competing risks of outcome development and death. To address these issues, we extend the 

model-specified hazards for outcome and death and use score statistics to test the null hypothesis 

that the extensions are unnecessary. Simulated cohort data applied to risk models whose outcome 

and mortality hazards agreed and disagreed with those generating the data show that the tests are 

sensitive to poor model fit, provide insight into the reasons for poor fit, and accommodate a wide 

range of model misspecification. We illustrate the methods by examining the calibration of two 

breast cancer risk models as applied to a cohort of participants in the Breast Cancer Family 

Registry. The methods can be implemented using the Risk Model Assessment Program (RMAP), 

an R package freely available at http://stanford.edu/~ggong/rmap/.
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1. Introduction

Recent emphasis on personalized medicine has stimulated the development of models that 

specify an individual’s risk of a future adverse health outcome. Such a model uses the 

person’s covariates to calculate his/her hazard rates for future outcome development and 

death, and then combines these hazards into a probability of outcome development during a 

specified future risk period. Typically, clinical care (e.g., chemoprevention) decisions are 

based on short-term predictions (e.g., one-year, five-year, ten-year), with the length of the 

risk period short enough to allow useful assessment and comparison of a person’s risk for a 

future adverse outcome, given his/her risk factors at the time risk assessment. Longer 

projections (e.g. breast cancer risk by age 80 years for a woman who is currently aged 40 

years) are less useful for two reasons. First, they require the assumption that her risk factors 

will not change during the extended future period. Second, validation of these predictions 

would require longitudinal follow-up of large numbers of subjects for long time periods, 

which often is infeasible.

For any given outcome and time period, the models differ in the personal risk factors they 

use, and how they handle the competing risk of death. For breast cancer within ten years, for 

example, the Breast Cancer Risk Assessment Tool (BCRAT) [1–3] uses US incidence and 

mortality hazards to assign a woman a probability of developing the disease before dying 

from other causes, while version 6 of the International Breast Cancer Intervention Study 

(IBIS) model [4] assigns her a probability of developing breast cancer under the assumption 

that her mortality rate during the period is zero. The risks assigned under these two 

assumptions can be expected to differ little for individuals with negligible death rates, but 

they can differ substantially for those with life-threatening comorbidities. In this case, the 

issue of primary concern for clinical decision-making is one’s risk of developing the 

outcome before dying from other causes.

Personal risk models need validation against longitudinal cohort data independent of that 

used to develop them. This paper focuses on model calibration (also called goodness of fit), 

which reflects how well the model-specified outcome probabilities agree with people’s 

subsequent observed outcomes. We need well-fitting models so that patients can rationally 

weigh the costs and benefits of preventive interventions in relation to an accurate assessment 

of their own risks. We also need to understand the reasons for poor fit, when it occurs. For 

example, a model’s poor fit may reflect its misspecification of mortality hazards among 

cohort members, whose health care access and lifestyles may differ from those of the 

population used for the model-specified death rates.

We assume that each individual in the population of interest has an unknown true 

probability μ of developing the outcome during the risk period. We wish to test the null 

hypothesis that each individual’s model-assigned risk r equals is/her true risks μ. Testing 

this hypothesis against longitudinal data from subjects randomly sampled from the 

population is straightforward when all subjects can be classified as outcome-positive (i.e., 

developed the outcome during the risk period) or outcome-negative (died without the 

outcome during the period or survived the period outcome-free). Then, using generalized 

linear models (GLMs) for binary data [5], we can take the response variable to be an 
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indicator taking value one for outcome-positive subjects and zero otherwise, and model the 

expected value μ of this indicator as a function μ(η) of a linear predictor η = α + βT z. Here 

μ(α) equals the model-specified outcome probability r, and z is a vector of covariates 

indicating patterns of possible poor model fit. Thus the null hypothesis that the model is 

well-calibrated becomes the hypothesis β = 0. Two commonly used link functions η(μ)are 

the logistic link

(1)

and the complementary log-log link

(2)

The GLM likelihood-based efficient score statistic for β = 0 has an asymptotic null 

distribution that is central chi-square.

However such GLMs cannot be used when some subjects are last observed alive and 

outcome-free before the risk period ends, since their outcome indicators are unknown. To 

deal with this problem, some investigators have simply deleted such censored subjects from 

the analysis. While this approach retains the simplicity of the GLMs, it can lead to severe 

upward bias in outcome probability estimates by excluding the time at risk of the censored 

subjects, who were outcome-free until last observed [6].

An alternative strategy is to partition subjects into K disjoint subgroups, and within each 

subgroup, obtain nonparametric estimates of the subjects’ true hazards for outcome and 

death during the period that starts from cohort entry and ends at a time t* years or months 

later. These estimates can then be used to obtain an estimate π̂k of the mean outcome 

probability for comparison with the mean assigned risk r̄k among subjects in subgroup k, 

and to obtain estimates  of the asymptotic variance of π̂k, k = 1,…,K [6,7]. Model 

calibration can then be tested by comparing the statistic

(3)

to a central chi-square distribution on K degrees of freedom (DF). In the absence of 

censoring, this test is similar to one proposed by Hosmer and Lemeshow [8] for goodness-

of-fit of logistic regression models. Because of this similarity, we shall refer to the test 

statistic (3) as the Hosmer-Lemeshow (HL) statistic.

However there are disadvantages to this approach. First, the choice of subgroups is arbitrary, 

and for any choice of subgroups the distribution of risks within a subgroup can differ when 

different models are evaluated using the same cohort, or when different cohorts are used to 

assess the same model. Even when investigators use a common subgroup definition (such as 

quartiles of assigned risk), the quartile cut points vary across different models and different 

cohorts, which complicates model comparison. This problem is aggravated by the fact that 
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estimating the event-specific hazards and the corresponding outcome probability can be too 

cumbersome for exploratory analysis involving different choices of subgroups. Finally, 

aggregating subjects into subgroups large enough for stable hazard estimation involves loss 

of information on model fit at the individual risk level, since some subgroups may contain 

subjects with substantially different risks. For example, Figure 1 shows box plots of the 

breast cancer risks assigned by the BCRAT and IBIS risk models to a subset of the NY 

BCFR data [9] for subgroups defined by quartiles of model-assigned risk. Because the risk 

distributions are right-skewed, the highest risk quartile spans a large range of risks, so that a 

summary calibration measure involves substantial information loss. Importantly, the 

accuracy of individual risks assigned to these high-risk women is often of greatest interest 

for planning preventive strategies.

Here we propose a more flexible and informative way to evaluate model calibration in the 

presence of independent right-censoring. Specifically, we replace the single null hypothesis 

of agreement between true and assigned outcome probabilities for all individuals in the 

population by the joint null hypothesis that the model-specified event-specific hazards agree 

with the actual hazards governing events in the population during the risk period. We test 

this joint hypothesis by extending the model-specified hazards for outcome and death via a 

proportional hazards model. We then use the full (not partial) likelihood-based score 

statistics to test the null hypothesis that the regression coefficients in the extended hazards 

are zero. This approach, which builds on the work of Breslow [10], is analogous to the 

GLMs of equations (1,2) for binary data and enjoys their flexibility and exploratory 

advantages. In the absence of censoring, the extensions form a pair of GLMs for the binary 

outcome and death responses, with the exploratory covariates z contributing via a 

complementary log-log link of the form (2).

We begin by describing these score statistics and illustrating them with examples. We then 

report the results of simulations evaluating the size and power of the tests and comparing 

them to that of the HL test of equation (3). Finally, we illustrate the issues by evaluating the 

fit of risk models for a woman’s 10-year risk of breast cancer as applied to a subset of the 

participants in the New York Breast Cancer Family Registry (NY BCFR) cohort [9].

2. Methods

We wish to test the null hypothesis that the outcome and mortality hazards of a specific risk 

model agree with those of a given population, by comparing the model predictions with 

longitudinal data from a random sample of N subjects from the population. To do so, we use 

the risk model to assign each subject a probability r of developing the outcome of interest 

within t* months or years since cohort entry, based on his/her covariates ascertained at 

cohort entry. (See Appendix A for description of how the model assigns outcome 

probabilities.) To develop the proposed calibration tests, we expand the model’s hazards for 

outcome and death, and then test the null hypothesis that the unknown parameters in the 

expansions are zero, i.e., that the model fits the subjects’ survival data. Specifically, let zij 

denote the ith subject’s values for a vector of covariates related to outcome (j=1) and death 

(j=2). These covariates may be risk factors, functions of the assigned risks such as 
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multinomial subgroup indicators, or simply unit scalars zij = 1. We take the subject’s 

expanded hazard rates as

(4)

where t is time since cohort entry, λij(t) denotes the model-specified hazard for an event of 

type j, and βj and zij are column vectors of dimension K. The subject’s observed data have 

the form (ti, yi1, yi2) where ti is the minimum of t*, time of outcome development, time of 

death and time of censoring, and yij is an indicator assuming the value 1 if event j is 

observed at time ti and zero otherwise, j = 1,2. Under the assumption that the censoring 

times are independent of times to outcome and death, the subject’s contribution to the 

likelihood function for β = (β1, β2) is

(5)

where  is the subject’s model-specified cumulative hazard. Note that 

Li(β) is a full likelihood rather than a partial likelihood as defined by Cox [11]. 

Differentiating log Li(β) with respect to βj gives the subject’s contributions to the efficient 

score and null observed information for βj as

(6)

(Note that any time at risk of death after outcome occurrence is excluded from equation (6). 

This approach is appropriate because the mortality rates of outcome-positive and outcome-

negative subjects may differ, and accounting for this difference would involve a more 

complex multi-state process for both the risk model(s) under evaluation and the evaluation 

itself. Moreover since the evaluation concerns model calibration within a short (e.g. five-

year) time period, time at risk after this period is excluded.)

Equation (6) gives the score test statistic corresponding to events of type j as

(7)

Under the null hypothesis that the model hazards are correctly specified for the population 

of interest, the outcome-based statistic T1 and mortality-based statistic T2 have asymptotic 

chi-square distributions on K DF. In addition, a summary test of agreement between total 

observed and predicted numbers of events (both outcomes and deaths) can be obtained by 

setting zi1 = zi2 = zi for all subjects and β1 = β2 = β. This gives the combined test statistic
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(8)

where the subscript “+” denotes summation over the values j = 1,2. Calculating these test 

statistics requires extracting the model-specified cumulative hazards at arbitrary followup 

times t. If the model software does not provide this information, it can be approximated as 

described in Appendix B.

Regression models of the form (4) and their corresponding test statistics (7,8) provide a 

flexible framework that can be informative in evaluating model calibration. The investigator 

can vary the choice of regression model to examine different types of model fit, and the fit 

for various subgroups of subjects. The choice of regression model can help determine 

whether the model mis-specifies the outcome hazards, the mortality hazards, or both. In 

addition, the choice of covariate vector z can help determine population subgroups of 

individuals for whom the model fits poorly. The following examples illustrate the flexibility 

of the approach.

Example 1—The covariates might be scalar weights zij = wij determined by the subjects’ 

assigned risk or risk factors, to allow focus on those whose attributes are of particular 

interest. Then the test statistics (7) and (8) have the Poisson regression form

(9)

correspond to observed and expected counts of events of type j, j = 1,2,+. These test 

statistics have asymptotic null distributions that are chi-squared on one DF.

Example 2—We might choose as covariates a common vector zi = (zi1,…,ziK)T of 

indicators for membership in one of the K subgroups S1,…,SK in a partition of the subjects, 

as determined by personal risk factors or assigned risks. Then the test statistics (7) and (8) 

become

(10)

denoting observed and expected counts of events of type j in subgroup k, k = 1,…,K, j = 

1,2,+. The asymptotic null distributions of these test statistics are chi-squared on K DF. 

Subjects for whom the model fits poorly can be examined by plotting standardized residuals 

(SRs) of the

(11)
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form against subgroup-specific mean values of covariates or assigned risk. As we shall show 

in the application to breast cancer data, these SR plots allow visual inspection of model 

inadequacy and can help reveal the reasons for poor model fit.

We are currently implementing the methods in the Risk Model Assessment Program 

(RMAP), an R package freely available at http://stanford.edu/~ggong/rmap/.

3. Simulations

We used simulations to explore the performance of the proposed statistics and to examine 

the utility of residual plots for exploratory analyses. To do so, we considered the problem of 

evaluating a set of risk models using data from cohorts consisting of N = 1000 and N = 

10,000 subjects randomly selected from a given population and followed for outcome 

occurrence or death during a ten-year period. The following is a brief description of how we 

generated and analyzed the data, and the summary measures we used to assess goodness of 

model fit.

3.1 Data generation

For each of the N subjects, we randomly and independently sampled times to censoring (j = 

0), outcome (j = 1) and death (j = 2) according to independent exponential distributions with 

hazard parameters λj, j = 0,1,2. We then recorded the subject’s observed data as (ti, yi1, yi2) 

where ti = min(ti0,ti1,ti2,t*), with t* = 10 years and tij denoting time to censoring (j = 0), 

outcome development (j = 1) and death (j = 2), and where yij takes value 1 if ti = tij and zero 

otherwise, j = 1,2. We assumed that the hazard parameters governing the distributions of 

censoring and death do not vary across subjects, with λ0 = 0.056 and λ2 = 0.0042. We also 

assumed that the hazard parameters λi1 governing the distribution of times to outcome 

development are log normally distributed in the population, with log λi1 = ci1 + ci2. The 

covariate pairs (ci1, ci2) were sampled from a bivariate Gaussian distribution with 

parameters (μ, Σ), where μ = (−6.155,0.500) and Σ=diag(0.640,0.562). These parameter 

values were chosen to approximate those seen in the NY-BCFR data – they correspond to a 

3% risk of death and a 4% mean risk of developing the outcome in the ten-year risk period, 

in the absence of competing risks.

3.2 Data analysis

We checked how well three risk models were calibrated to the population from which the 

data were generated. All three models assign risk according to Appendix Equation (A.1), but 

they differ with respect to their outcome and mortality hazards. The correct model specifies 

the same hazards used to generate the data. The biased outcome model specifies the correct 

mortality hazard, but its outcome hazard depends only on the first covariate ci1. The biased 

mortality model specifies the correct outcome hazard, but misspecifies the mortality hazard 

as λ2 = 0.0084 (twice the correct value).

For each of these three risk models, we evaluated the performance of 12 calibration tests 

corresponding to three choices of covariates z and four types of test statistic. The first 

covariate choice was the constant zij ≡ 1, which provides a test of overall agreement 

between observed and predicted numbers of events (outcomes and deaths). The resulting test 
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statistic has a null asymptotic chi-square distribution on K=1 DF. (We also examined tests 

obtained using covariates zij = wi = exp(|ri − r̄|)/exp(rmax − r̄)), which weight a subject’s 

contribution in proportion to the distance between his/her assigned risk and the mean for all 

subjects, and found that this test performed similarly to the unweighted version). The 

remaining two covariate choices were indicators for membership in quintiles of assigned 

risk and in quintiles of the covariate ci2 that is omitted from the biased outcome model. Here 

the resulting statistics have null asymptotic chi-square distributions on K=5 DF. The four 

types of test statistic were: 1) the HL statistic of equation (3); 2) the combined statistic T+ 

(obtained by setting zi1 = zi2 and β1 = β2 = β); 3) the outcome-based statistic T1(β1 = β, β2 = 

0)); and 4) the mortality-based statistic T2(β1 = 0, β2 = β). For each risk model and each test, 

we examined the proportion of 1600 replications in which the test statistic exceeded the 95th 

percentile of its chi-square distribution. We also examined standardized residuals (SRs) to 

determine those subsets of subjects for whom the model fit poorly.

3.3 Simulation results

Table I shows the size and power of the 12 tests as applied to the correct, biased-outcome 

and biased mortality risk models. Several patterns are evident. For the correct risk model 

(column 1) the nominal and actual sizes of the tests agree well, with occasional exceptions 

for the HL test, which tends occasionally to incorrectly reject a well-calibrated model. 

However differences emerge when the risk model misspecifies the hazards. For the model 

that misspecifies the outcome hazard, the outcome-based test is most sensitive to poor fit, 

and the HL and combined tests show similar sensitivity, as measured by the statistical power 

of the test. In contrast, for the model that misspecifies the mortality hazard, the mortality-

based and combined tests outperform the HL test.

Figure 2 shows box plots of SRs obtained from the simulations involving N = 1000 subjects, 

with subjects classified in quintiles of the covariate c2 that is omitted from the biased 

outcome model. The columns correspond to the three risk models (correct, biased outcome, 

biased mortality) and the rows correspond to the three tests (combined, outcome-based, 

mortality-based). These SRs are asymptotically standard normal deviates under the null 

hypothesis that the model is well-calibrated to the population from which the subjects were 

sampled. The first column of Figure 2 shows that the SRs for all three tests behave as 

expected when the correct model is applied to the data. In contrast, the second column (for 

the model that omits the covariate c2) indicates that combined and outcome-based SRs show 

trends of increasing poor fit with increasing quintile of c2, while the mortality-based SRs 

conform to their null expectation, as they should. These results suggest that we can use SR 

patterns to identify covariates whose addition to a risk model will improve model fit without 

having to construct an expanded model that includes the covariate of interest. Finally, the 

third column of Figure 2 shows that when the risk model overestimates the population 

mortality hazard, the SRs from both the combined and mortality-based tests are 

systematically negative, while those from the outcome-based test show the expected null 

behavior. These results suggest that examination of outcome- and mortality-specific SRs can 

reveal reasons for poor model fit, and a simple way to determine covariates whose addition 

to a risk model would substantially improve its calibration.
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4. Application To Cohort Data

We now use the proposed tests to evaluate how well the BCRAT and IBIS models predict 

the 10-year breast cancer risks of a cohort of women recruited and followed at the New 

York site of the Breast Cancer Family Registry (BCFR) [9,12]. Eligible subjects (N = 1857) 

were those who at cohort entry reported a family history of breast or ovarian cancer or a 

personal history of ovarian cancer but not breast cancer (see [9] for details). During the first 

ten years after cohort entry, 83 subjects developed breast cancer, 55 died without breast 

cancer, 989 were last observed alive and breast-cancer-free before 10 years, and 730 were 

alive and breast-cancer-free at ten years.

4.1 The risk models

We used each of the two risk models (BCRAT and IBIS) to calculate each subject’s ten-year 

cumulative hazards for outcome and death, and then used these cumulative hazards in the 

test statistics and SR plots. Both models assign 10-year breast cancer probabilities according 

to the Appendix formulae (A.1–A.3).

The BCRAT breast cancer hazard depends on a subject’s age at risk assessment, race, and 

other personal covariates such as age at menarche, age at first birth, number of affected first-

degree female relatives, number of breast biopsies, and history of atypical hyperplasia. This 

empiric model specifies this hazard by combining race- and age-specific breast cancer 

incidence rates with hazard ratios determined from the estimated odds-ratios in a case-

control study of breast cancer [1–3]. For the mortality hazards, the model uses all-cause 

mortality rates among US females, specific for age and race (white, nonwhite). We adapted 

the code and hazard rates of the BCRAT software (Breast Cancer Risk Assessment Tool) 

[13] to assign each subject values for her BCRAT cumulative hazards Λi1(ti) for breast 

cancer (j = 1) and death (j = 2), as evaluated at her time ti of last observation.

The IBIS breast cancer hazards depend on a two locus genetic model with one locus 

containing information on BRCA genes and the other locus containing information on a 

latent, dominantly acting low penetrance gene, plus nongenetic risk factors similar to but not 

identical with those used by BCRAT [4]. Version 6.0.0 of the IBIS risk evaluator specifies 

the mortality hazards as zero, although version 7.0.0 allows user-specified mortality hazards. 

To evaluate the proposed test statistics, we used the zero mortality hazards of Version 6.0.0, 

and checked how well the observed deaths in the cohort agree with this specification. (Note 

from equations (9,10) that the assumption of zero mortality hazards implies that all IBIS-

based expected death counts are zero.) We first assigned each subject a ten-year risk ri using 

the IBIS software available at the web link (IBIS Breast Cancer Risk Evaluation Tool) (IBIS 

risk evaluator – Version 6.0.0) [14]. We then approximated her cumulative breast cancer 

hazard Λi1(ti) using Appendix equation (A.4) with ri(t*) taken as her IBIS-assigned 10-year 

risk. We took her cumulative mortality hazard Λi2(ti) = 0, and evaluated the accuracy of this 

assumption by taking the null variance of the mortality-based score statistic as

(12)
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Here yi2 is an indicator assuming the value one if she died at time ti and zero otherwise, and 

zi2 = (zi21,…,zi24)T is a vector of indicators for membership in one of the four quartiles of 

assigned risk.

4.2. Results

We estimated the cohort’s overall cumulative breast cancer risk during the 10-year period as 

6.25% (95% confidence interval 5.02%–7.76%), using survival analysis that accommodates 

censoring and the competing risk of death [7]. This estimate significantly exceeds the mean 

risk of 3.20% assigned by the BCRAT model (P < 0.001), but agrees more closely with the 

risk of 5.49% assigned by IBIS (P = 0.98). The top panel of Figure 3 shows attribute 

diagrams (ADs) for the two models, based on quartiles of model-assigned risk. Under the 

null hypothesis that a model is well-calibrated, the points and confidence intervals of its AD 

should lie close to the diagonal line. The BCRAT AD shows that observed risks 

significantly exceed the mean assigned risks in the first three quartiles, while the results for 

IBIS show less discrepancy. The HL statistics of equation (3) support this conclusion, with 

values  (P < 0.001) for BCRAT and  (P = 0.27) for IBIS. These results 

suggest that the breast cancer risks assigned by BCRAT are too low for this cohort. 

However we shall see that the quartile-specific SRs for breast cancer and death offer a 

different interpretation.

Table II shows quartile-specific and overall counts of observed and expected breast cancers 

and deaths for the two models. Also shown are the quartile-specific SRs of (11) and the 

corresponding stratified calibration test statistics (10). These SRs are plotted in the lower 

three panels of Figure 3. The SRs of a well-calibrated model should lie within the band 

defined by the dashed lines in these panels. It is evident from both Table II and Figure 3 that 

the BCRAT-based expected counts for both breast cancer and death are too high compared 

to the cohort observations. This excess of BCRAT prediction over observation is particularly 

high for the deaths, indicating that the US mortality rates specified by BCRAT are 

substantially higher than those observed in this cohort. Thus the BCRAT underestimation of 

10-year risk shown in the AD reflects the model’s overestimation of these competing death 

rates. In contrast to the negative BCRAT SRs, those for IBIS are largely positive, and show 

the statistically significant excess of observed (O = 55) vs. predicted (E = 0) deaths in 

Version 6.0.0 of the IBIS model.

These results should be interpreted with caution, for two reasons. First, in a cohort of this 

sample size (N = 1857 subjects), some SRs will have large absolute values purely by chance. 

Second, the ADs and SR plots are not directly comparable. On the one hand, an AD shows 

10-year observed risks as calculated by cumulating the nonparametric hazard estimates for 

both types of event until 10 years after cohort entry. In contrast, the SRs are deviances 

between event counts as observed and as predicted at the subjects’ actual event times (which 

are typically less than 10 years). Despite these differences, the SRs provide useful 

information regarding the reasons for the poor model fit reflected in the overall test statistics 

and ADs.
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The ease with which SRs can be plotted and evaluated allows flexibility in identifying 

population subgroups for which model calibration is poor. For example, we also plotted the 

model-specific SRs obtained by stratifying subjects by age at cohort entry, race/ethnicity, 

and number of blood relatives with breast or ovarian cancer (data not shown). These plots 

revealed subgroups for whom model fit was particularly poor. Identifying these subgroups 

and the reasons for the poor fit (outcome discrepancies, mortality discrepancies or both) can 

help identify specific needs for improvement in model performance.

5. Discussion

We have noted that evaluating the calibration of personal risk models for long-term adverse 

events is needed to help patients and their caregivers make rational decisions about 

preventive interventions with potential adverse side effects. Despite this need, evaluating 

model calibration has received less attention in the literature than evaluating risk model 

discrimination. We also have noted the complications of evaluating model calibration when 

some subjects cannot be followed for the full risk period, a common feature of large, long-

term cohort subjects with staggered cohort entry. For this common situation, we have 

proposed simple and flexible efficient score tests that avoid some of the limitations of the 

commonly used HL test. We also have presented results of simulations showing that the 

score tests have good performance characteristics, and we have applied the tests to cohort 

data on ten-year risk of developing breast cancer.

The simulations and application to data show that in the presence of poor model fit, the 

score tests can help determine the reasons for the poor fit, and inform investigators about 

changes needed to improve fit. For example, plotting residuals corresponding to categories 

of a new marker can reveal how much adding the marker to a risk model is likely to improve 

its calibration. In addition, mortality-based residual plots can reveal model misspecification 

of death rates. This is an overlooked reason for poor model fit, often due to specification of 

population death rates that are higher than those of highly selected and well-educated 

participants in long-term cohort studies. By decomposing the calibration tests into 

components due to misspecification of the hazards for outcome and mortality, the methods 

provide leads to the reasons for discrepancies between observed and predicted outcomes.
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Appendix

A. Assigning model risks

The risk model software uses the covariates of subject i at cohort entry to assign him/her an 

outcome probability

(A.1)

where ai denotes the subject’s age at cohort entry, and hij(u) denotes the subject’s model-

assigned hazard at age u with , for outcome development (j = 1) and 

death (j=2). It is convenient to transform these hazards from functions hij of age to functions 

λij of time t since cohort entry, via the relation

(A.

2)

With this transformation, the subject’s model-assigned risk (4) can be written

(A.3)

B. Calculating model-specified cumulative hazards

Some online risk models may not provide the code needed to extract the model’s cumulative 

hazards for outcome and death at subjects’ last observation times, as needed to compute the 

test statistics. If the software allows user-specified mortality hazards, specifying these 
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hazards as zero gives equation (6) as ri(ti) = 1 − e−Λi1(ti), which then gives the cumulative 

outcome hazards as Λi1(ti) = −log[1 − ri(ti)]. If the model software does not provide assigned 

risks ri(t) at arbitrary followup times t but the outcome hazard rates can be assumed 

approximately constant in the risk period (0,t*), then Λi1(ti) can be approximated as

(A.4)
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Figure 1. 
Box plots of BCRAT and IBIS risks as assigned to N = 1747 NY-BCFR subjects, within 

quartiles of assigned risk.
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Figure 2. 
Box plots of three types of standardized residuals corresponding to three risk models (A. 

correct model, B. biased outcome model, C. biased mortality model) as applied to simulated 

data from 1600 cohorts, each of size N = 1000 subjects. Each box plot in a panel 

corresponds to the residuals of subjects stratified by quintiles of the covariate c2. The three 

types of residuals are determined by the score test (combined, outcome-based, mortality-

based).
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Figure 3. 
Attribute diagrams and plots of standardized residuals for BCRAT and IBIS models as 

applied to the NY-BCFR cohort by quartile of assigned risk.
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Table I

Size and Powera of Tests for Risk Model Calibration using Simulated Cohorts of Size N

Test Statistic Risk Model

Correct outcome and death 
hazards Biased outcome hazardb Biased mortality hazardc

N = 1,000

Overall (zi=1)

 (HL) d
0.049 0.966 0.049

T+ (Combined) 0.054 0.849 0.884

T1 (Outcome-based) 0.056 0.989 0.056

T2 (Mortality-based) 0.053 0.058 0.991

Risk-stratifiede

 (HL)

0.087 0.684 0.074

T+ (Combined) 0.051 0.769 0.630

T1 (Outcome-based) 0.052 0.963 0. 052

T2 (Mortality-based) 0.056 0.057 0.907

Covariate-stratifiedf

 (HL)

0.112 0.967 0.098

T+ (Combined) 0.041 0.967 0.596

T1 (Outcome-based) 0.065 0.999 0.065

T2 (Mortality-based) 0.057 0.059 0.903

N = 10,000

Overall (zi=1)

 (HL)

0.041 1.000 0.064

T+ (Combined) 0.054 1.000 1.000

T1 (Outcome-based) 0.048 1.000 0.048

T2 (Mortality-based) 0.053 0.053 1.000

Risk-stratified

 (HL)

0.071 1.000 0.064

T+ (Combined) 0.042 1.000 1.000

T1 (Outcome-based) 0.044 1.000 0.044

T2 (Mortality-based) 0.038 0.053 1.000

Covariate-stratified

 (HL)

0.061 1.000 0.056

T+ (Combined) 0.054 1.000 1.000

T1 (Outcome-based) 0.051 1.000 0.051

T2 (Mortality-based) 0.046 0.046 1.000

a
proportion of 1600 replications in which T exceeded the 95th percentile of a chi-square distribution with K degrees of freedom (K=1 for 

unweighted and weighted statistics; K = 5 for all others)

b
model omits covariate c2 (see text)

c
model misspecifies the mortality rate as triple its correct value
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d
goodness-of-fit test of text equation (3)

e
in quintiles of assigned risk

f
in quintiles of covariate c2 omitted by biased outcome model
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