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Abstract

Biometric sensors and portable devices are being increasingly embedded into our everyday life, 

creating the need for robust physiological models that efficiently represent, analyze, and interpret 

the acquired signals. We propose a knowledge-driven method to represent electrodermal activity 

(EDA), a psychophysiological signal linked to stress, affect, and cognitive processing. We build 

EDA-specific dictionaries that accurately model both the slow varying tonic part and the signal 

fluctuations, called skin conductance responses (SCR), and use greedy sparse representation 

techniques to decompose the signal into a small number of atoms from the dictionary. Quantitative 

evaluation of our method considers signal reconstruction, compression rate, and information 

retrieval measures, that capture the ability of the model to incorporate the main signal 

characteristics, such as SCR occurrences. Compared to previous studies fitting a predetermined 

structure to the signal, results indicate that our approach provides benefits across all 

aforementioned criteria. This paper demonstrates the ability of appropriate dictionaries along with 

sparse decomposition methods to reliably represent EDA signals and provides a foundation for 

automatic measurement of SCR characteristics and the extraction of meaningful EDA features.
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I. Introduction

Recent technological achievements are enabling the increasing use of wearable devices that 

allows the sensing of physiological signals for health [1], [2], medical [3], [4] and other [5], 

[6] purposes. These applications stem from the need to monitor individuals over long 

periods of time overcoming the limits imposed by traditional nonambulatory technology and 

providing new insights into diagnostic and therapeutic means [3]. They typically rely on 

small sensors for capturing data, portable devices for temporal storage, and the use of 

wireless networks for (periodic) data transfer to a database [7]. The large volume of 

recordings from these sensors, their use in everyday life and beyond specialized places like 

clinics, the potential variability in the data quality, and the limited resources of appropriately 

trained people for the corresponding signal analysis underscore the need of automatic ways 

to process them. A central goal is to derive meaningful quantitative constructs from the 

measured signal data. Robust representations of physiological signals should consider their 

characteristic structure, efficiently encode the underlying information, and provide reliable 

interpretation.

Electrodermal activity (EDA) is one of the most widely used psychophysiological signals. It 

is related to the sympathetic nerve activity through the changes in the levels of sweat in the 

ducts [8], [9], that result in the observed skin conductance response (SCR) fluctuations. 

EDA has been used in a variety of laboratory settings examining attention, memory, 

decision making, emotion, as well as a predictor of normal and abnormal behavior and other 

psychological constructs [8], [9].

Recently the focus has shifted to collecting EDA signals outside the laboratory “in the wild” 

[10], [11] with wearable devices that can measure continuously, privately logging and/or 

wirelessly streaming data [12]–[14]. This unobtrusive long-term recording of EDA results in 

large amounts of data that require deriving appropriate signal representation and 

interpretation with two separate goals. EDA models should first target efficient signal 

compression yielding reduced memory allocation and fast network transfer, accompanied 

with low reconstruction error. Second, since the availability (and analysis ability) of human 

experts is not always guaranteed, in the light of human–machine applications, automated 

interpretation of the acquired physiological patterns is essential. The reliable detection of 

SCRs, linked to various indexes of psychophysiological interest [8], can serve as a step 

toward this goal. Eventually, inference of internal states based on EDA representations 

could afford us more insights by comparing the parameters of the corresponding models 

across various conditions of emotion, arousal, and attention [15], [16].

Previous research has introduced parameterized [17] and generative causal [15], [18], [19] 

models that consider the characteristic structure of the signal or mimic the physiological 

processes of the sweat ducts. These methods tend to explain the cause and not the observed 
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signal. They are mostly evaluated through empirical findings about hidden variables for 

inferring internal states [20], although several efforts have taken into account signal 

reconstruction criteria [15], [16].

Sparse representation techniques model a signal as a linear combination of a small number 

of atoms chosen from an overcomplete dictionary aiming to reveal certain structures of a 

signal and represent them in a compact way [21]. Since psychophysiological signals, such as 

EDA, show typical patterns over time, their sparse decomposition can yield accurate 

representations of scientific and translational value and contribute to scalable 

implementations (e.g., on mobile devices). Noting that the desired information contained in 

EDA signals is low dimensional, we introduce the use of sparsity to robustly represent them. 

The innovation of our approach lies in that we model the EDA signal directly by taking into 

account its variability through the use of overcomplete knowledge-driven dictionaries and 

evaluate our method explicitly through both signal reconstruction and information retrieval 

measures.

We propose EDA-specific dictionaries that take into account the characteristic signal 

structure in time. Dictionaries include tonic and phasic atoms capturing the signal levels and 

SCR fluctuations, respectively. We represent the characteristic SCR shape with previously 

used sigmoid-exponential [17] and Bateman functions [15], as well as a chi-square function, 

introduced in this study, and decompose EDA into a small number of tonic and phasic atoms 

with matching pursuit [22] and orthogonal matching pursuit [23]. Through postprocessing of 

the selected phasic atoms, we automatically detect the SCRs occurring in the signal. We 

evaluate the usefulness of our approach through goodness of fit criteria and SCR detection 

measures with respect to human annotated groundtruth. Due to potential portable device 

applications for signal storage and transmission, we further analyze the compression rate of 

our algorithm. Our results indicate that the proposed approach provides benefits compared to 

the least-squares fit method that estimates predetermined model parameters [17], with 

respect to reconstruction, discrimination, and efficiency metrics.

In the following, we briefly survey previous EDA models (see Section II). In Section III, we 

present our sparse EDA representation approach with knowledge-driven dictionaries. We 

next describe the data for this study (see Section IV) and the corresponding results (see 

Section V). Finally, we discuss our results and conclusions in Sections VI and VII, 

respectively.

II. Background and Related Work

The EDA signal is decomposed into tonic and phasic components. The slow moving tonic 

part, called skin conductance level (SCL), depicts the general trend, whereas the fast 

fluctuations superimposed onto the tonic signal are the skin conductance responses (SCR) 

(see Fig. 1) [8]. The shape of SCRs is characterized by a steep increase in the signal and a 

slow recovery [24]. Amplitude is the most commonly reported SCR measure, quantified as 

the amount of increase in conductance from the onset of the response to its peak (see Fig. 1) 

with typical values ranging between 0.1 and 1.0 μS [8]. SCRs are caused by the burst of the 

sympathetic sudomotor nerves controlling the sweat glands linked to emotion, arousal, and 
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attention [8]. Previous work has modeled explicitly the shape of the resulting signal with 

appropriate functions [17], [25] or implicitly the causal relation between the underlying 

activity of sudomotor nerves and the observable SCRs [15], [18], [19]. A review on EDA 

models can be found in [19].

Several studies have mathematically expressed the SCR shape. Lim et al. [17] developed a 

parameterized sigmoid-exponential model of EDA fitted into signal segments. Results were 

found to be correlated with previously established automatic scoring methods [24]. Storm et 

al. [25] used a quadratic polynomial fit to sequential groups of datapoints to detect SCRs, 

whose total number was compared to manual counting.

In the context of causal EDA modeling, Alexander et al. [18] represented the SCR shape as 

a biexponential function and used deterministic inverse filtering to estimate the driver of 

nerve bursts. Evaluation of the method was performed by visual inspection and by finding 

significant correlations of the resulting SCR measures with variables of gender and age. 

Benedek et al. [15], [26] assumed EDA to be the convolution of a driver function, reflecting 

the activity of sweat glands, with an impulse response depicting the states of neuron activity. 

This method was evaluated through the reconstruction error. It was also compared to 

standard peak detection for a set of noise burst events and was found to give results more 

likely to confound with these environmental conditions. Finally, Bach et al. [16], [19], [27], 

[28] have described a dynamic causal model (DCM) using Bayesian inversion to infer the 

underlying activity of sweat glands. Each sudomotor activity burst is modeled as a Gaussian 

function, which serves as an input to a double convolution operation yielding the EDA 

signal. The correlation of the estimated bursts with the number of SCRs from semivisual 

analysis was reported. This model was found to be a good predictor of anxiety in public 

speaking.

EDA decomposition was cast as a convex optimization problem in [29]. The minimization 

of a quadratic cost function was used to estimate the tonic and phasic signal components, 

represented with a cubic spline and a biexponential Bateman function, respectively. The 

EDA features extracted from the model parameters yielded statistically significant 

differences between neutral and high-arousal stimuli.

Despite their encouraging results, some of these research efforts [17], [25] tend to impose 

restrictions on the signal structure. Also, studies modeling EDA through its relationship with 

sympathetic arousal [15], [18], [19] assume a linear-time invariant system, which is not 

always justified by empirical evidence [20].While several studies take into account signal 

reconstruction measures [15], [16], evaluation is mostly performed by visual inspection or 

implicitly through expected empirical assumptions correlating the systems’ SCR measures 

with physical, mental, and behavioral states. The novelty of this study lies in the fact that it 

directly models the EDA signal with sparsity constraints and takes into account the SCR 

shape variability. We evaluate our approach through both signal reconstruction criteria and 

measures comparing automatically detected SCRs to human-annotated SCRs.
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III. Proposed Approach

Many psychophysiological signals carry distinctive structures in time making the use of 

sparse decomposition techniques appealing. Their small number of nonzero components 

contain important information about the signal characteristics, which can potentially be 

related to various medical conditions and psychological constructs. For this reason, 

dictionaries have to be carefully designed so that they capture the signal variability and their 

underlying information. We propose the use of parameterized EDA-specific dictionaries that 

are able to represent the tonic and phasic parts of the signal (see Section III-A). The benefit 

of introducing these predetermined atoms is that we know their properties in advance, such 

as amplitude and rise and recovery time, which are of interest in a variety of 

psychophysiological studies [30]. We further decompose EDA into a small number of atoms 

(see Section III-B) which are used to retrieve information about its specific constructs, such 

as SCRs (see Section III-C). We compare the proposed parametric EDA representation to 

the least-means-squares parametric fit proposed by Lim et al. [17] (see Section III-D) with 

respect to signal reconstruction, information retrieval, and compression rate criteria (see 

Section III-E).

In the following, we will use x = [x(1) … x(L)]T ∈ ℜL to denote a vector of length L, x(t), t = 

1, …, L, its corresponding value at the tth sample in time and  its p-

order norm. The inner product between two vectors x1 and x2 will be referred as x1
T x2. A 

matrix with L1 raws and L2 columns will be written in bold capital letters as A ∈ ℜL1 × L2.

A. Dictionary Design

Since our approach involves a knowledge-based representation of signals, the choice of 

dictionary atoms is critical. Specifically for EDA, we introduce two kinds of atoms that 

model the tonic and phasic components of the signal (see Table I).

The first group takes into account the tonic part, i.e., the slow varying signal level. It is 

quantified with straight lines having an offset Δ0 and a slope Δ. Tonic atoms will be referred 

as gβ ∈ℜL, where β = (Δ0, Δ) is an element of the set = ℜ2. Negative values of Δ indicate 

decreasing lines, while positive values represent lines with increasing slope.

The second group of atoms captures the phasic component of EDA, meaning the rapid 

fluctuations superimposed on the signal, also known as SCRs. We use three types of 

functions that can potentially represent the characteristic steep rise and slow decay of SCRs: 

the sigmoid-exponential, the Bateman, and the chi-square functions. The sigmoid-

exponential was introduced in [17] for representing SCRs with high values of Trise and 

Tdecay resulting in long rise and decay time. The Bateman function [15], inspired by the laws 

of diffusion at the skin pores, represents the shape of an impulse response, which when 

convolved with a driver function results in the EDA signal. Parameters a and b control the 

steepness of recovery and onset, respectively; the higher they are, the less time it takes for 

the SCR to transition to and from a peak. Finally, the probability density function of the chi-

squared distribution, referred here as chi-square function, is introduced by the authors of this 

paper as an alternative way to represent the SCR shape. It involves only one parameter k, 
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with large values resulting in wider SCRs. Although no apparent physiological explanation 

could be found for the chi-square, each dictionary atom is encoded with one fewer 

parameter. Taking into account the large size of (overcomplete) dictionaries in sparse 

representation techniques, this function benefits computational cost and memory allocation, 

an important factor for mobile device applications.

In order to ensure large variety in the dictionary atoms, we considered two additional 

parameters common for all phasic atom types. The time scale s is responsible for the 

compression and dilation of the atom in time with lower values resulting in wider SCRs and 

vice-versa (see Fig. 2). Since there is no a priori information about the location of SCRs 

within an analysis frame, the dictionary contains shifted versions of all atoms over a range 

of time offsets t0 spanning one signal frame.

We will refer to the three types of sigmoid-exponential, Bateman, and chi-square SCR atoms 

as gγ(1) ∈ ℜL, gγ(2) ∈ ℜL, and gγ(3) ∈ ℜL, respectively, with corresponding parameters γ(1) = 

(Trise, Tdecay, s, T0) ∈ Γ(1), γ(2) = (a, b, s, T0) ∈ Γ(2) and γ(3) = (k, s, T0) ∈ Γ(3), where Γ(1) = 

ℜ+4
, Γ(2) = ℜ+4

, and Γ(3) = ℜ+3
. By combining the possible parameters, we created all tonic 

and phasic atoms which are merged into three different dictionaries D(1) = {gβ(t), gγ(1) (t)}, 

D(2) = {gβ(t), gγ(2) (t)}, and D(3) = {gβ(t), gγ(3) (t)}, containing sigmoid-exponential, 

Bateman, and chi-square functions, respectively. In the case of sigmoid-exponential 

dictionary (see Table I), for example, there are nine possible values for scale s, 32 for time 

offset t0, 9 for Trise, and 10 for Tdecay, resulting in 25 920 phasic atoms. Combining the 3 

and 21 different values for Δ0 and Δ, respectively, we get additionally 63 tonic atoms, that 

result in a dictionary size of 25 983 atoms in total. Similarly, Bateman and chi-square 

dictionaries contain eventually the same number of phasic and tonic atoms with the sigmoid-

exponential one. All dictionary atoms are normalized for unit standard deviation. We 

introduced more phasic than tonic atoms in order to capture the large variety of SCR shapes 

compared to the signal level, which remains fairly constant through an analysis frame. The 

parameter values (see Table I) were empirically set so that the resulting atom shapes are 

similar to the observed SCRs. In the future, we plan to automatically learn the dictionary 

parameters for more accurate representation.

B. Sparse Decomposition

Sparse representation of a signal f ∈ ℜL can described by the following equation providing a 

nonconvex problem [21]:

(1)

where D ∈ ℜL × Q is an overcomplete dictionary matrix with Q prototype signal-atoms and c 
∈ ℜQ are the atom coefficients with N ≪ Q nonzero elements.

One way to approach this NP-hard problem is to use greedy strategies, that abandon 

exhaustive search in favor of locally optimal updates. The most well known are MP [22] and 

OMP [23], [31] reaching suboptimal solutions. Another way of solving Eq. (1) is through 

relaxation of the discontinuous l0-norm leading to basis pursuit [32] and focal 

underdetermined system solver [33], [34]. Despite the fact that these relaxation approaches 

Chaspari et al. Page 6

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2015 March 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



can obtain global solutions, they are far more complicated and less efficient in terms of 

running time [21], rendering MP algorithms compelling because of their simplicity and low 

computational cost. Theoretical guarantees of correctness [35] along with empirical 

experiments [36]–[38], led us to the use of MP and OMP in this paper. (O)MP will denote 

cases referring to both these algorithms.

Let D be a dictionary described in Section III-A containing a total of Q tonic and phasic 

atoms from either the sigmoid-exponential, Bateman, or chi-square functions, i.e., D = D1, 

or D = D2, or D = D3, and gζn an atom from the dictionary, i.e., gζn ∈ D: ζn ∈ ∪ Γ(1), or ζn 

∈ ∪ Γ(2), or ζn ∈ ∪ Γ(3). According to MP [22], the initial signal f can be written as a 

linear combination of infinite atoms as follows:

(2)

where cn are the atom coefficients. MP selects a set of atoms from D that best matches the 

signal structure. If gζ0 ∈ D is the atom at the first iteration, the signal f can be written as 

follows:

(3)

where Rf is the signal residual after approximating f in the direction gζ0. The selection of gζ0 
is greedily performed in order to maximize the similarity of the atom to the original signal, 

i.e., such that fT gζ0 is maximum. Note that in the selection criterion, we did not use the 

absolute value, as in the original MP algorithm. If we allowed negative inner product values, 

i.e., negative atom coefficients, the shape of the predefined atoms would change, resulting in 

a totally different signal interpretation. Negative coefficients of the SCR atoms, for example, 

would not have any physical meaning and would disturb the structure of the original EDA 

signal.

After the first iteration, residual Rf is similarly decomposed by selecting an atom from 

dictionary D that best matches its structure. Iteratively, the residual Rn+1 f can be written as 

follows:

(4)

where gζn ∈ D is selected to maximize (Rn f)T gζn. After N iterations, the original signal f is 

approximated by fN:

(5)

where δn ∈ {0, 1} selects either a tonic or a phasic atom (see Table I), βn ∈ and γn ∈ Γ(1), 

or γn ∈ Γ(2), or γn ∈ Γ(3) are the parameters of the nth atom.
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Since processing of long duration signals is involved, we perform segmentation and frame-

by-frame analysis. Let the superscript (k) denote the kth time frame of length L, where k = 1, 

…, K with K being the total number of frames. Therefore, the kth frame of the original 

signal in terms of the atoms selected by MP can be approximated by

(6)

We use a step of  samples in order to avoid discontinuities introduced by the start and end 

of the signal frame. As will be described in Section III-C, SCR detection is based on the 

middle part of each signal frame for the same reason. A similar approach has been followed 

with other biosignals [39].

OMP [23], [31], [35], [40] is a refinement of MP which adds a least-squares minimization to 

obtain the best approximation over the atoms that have already been chosen at each iteration. 

Let DSN = [gζ0, …, gζN−1] ∈ ℜL × N be the matrix containing the selected atoms after N 

iterations. The least-squares approximation fN of signal f is

(7)

where the term in brackets corresponds to the N nonzero coefficients used to scale the 

selected atoms. OMP updates the residual by projecting the original signal onto the linear 

subspace spanned by the selected atoms; therefore, it never selects the same atom twice. 

Similar expressions hold for the signal of the kth time frame.

A schematic representation of the way OMP sparsely decomposes a signal frame is 

presented in Fig. 3. The original and reconstructed signals are shown with solid and dashed 

lines [see Fig. 3(a)]. OMP first selects a straight line atom in order to represent the signal 

level and then two phasic atoms centered around the 100th and 220th sample to capture the 

two SCRs. The original normalized atoms as well as the resulting phasic atoms when scaled 

with the coefficients computed by OMP are shown in Fig. 3(b) and (c). We also notice that 

the phasic atom centered around sample 100 has the highest energy [see Fig. 3(c)], since it 

represents the wider SCR of the frame. Finally, the third selected phasic atom is centered 

toward the end of the first annotated SCR around sample 140. This happens because the first 

phasic atom did not capture the entire energy of the corresponding SCR; therefore, another 

atom with much smaller coefficient was introduced. In Section III-C, we will describe how 

we combine these two phasic atoms located at samples 100 and 140 in order to reliably 

represent an SCR.

C. SCR Detection

Let  be the phasic atoms selected after N (O)MP iterations at the kth 

signal frame with M < N, as at least one tonic atom will compensate for the signal level. 

Since the dictionary is predetermined, we know exactly the location of the maximum 

amplitudes of the phasic atoms, denoted as . As shown in Fig. 3 for atoms centered 
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around samples 100 and 140, more than one phasic atoms might be selected to represent a 

single SCR because the fit between dictionary atoms and signal is not always perfect. 

Taking advantage of their time proximity, we can group phasic atoms according to their 

location with a histogram of the  values with Nb bins. Each nonempty histogram bin h 

will contain all phasic atoms  capturing one SCR, which is represented by the linear 

combination of the grouped phasic atoms:

(8)

The weights  correspond to the atom coefficients computed by (O)MP. Because of the 

simple shape of the above SCR signal, we are able to find its amplitude and time of peak by 

simply locating its maximum point. SCRs with amplitude less than a predetermined 

threshold athr were omitted [8], in accordance to the manual annotation (see Section IV-B).

To estimate the final SCR locations for the whole signal, we merged the SCRs from all 

analysis frames. Since the starting and ending samples of each frame are more prone to 

errors due to discontinuity issues, we only take into account SCRs located in the middle 

samples of each frame. The value  was chosen to coincide with the length of the analysis 

step in order to ensure that each SCR is taken into account once. For the first and last frame 

we also consider SCRs from the first  and last  samples, respectively. A signal frame of 

10 s (320 samples), for example, will result in analysis step of approximately 3.3 s (107 

samples), in which the shape of an SCR is easily identifiable, as shown in Fig. 3.

Since our approach involves local decisions made on each signal frame, a postprocessing 

step that takes into account the global EDA shape is necessary. Simple peak detection was 

performed and the located SCRs were then mapped to the nearest detected peak within a 

distance threshold dthr. SCRs not paired with a neighboring peak were omitted and those 

matched to the same peak were only counted once. In Fig. 3, for example, the phasic atoms 

centered around samples 100 and 140 were grouped together based on the proximity of their 

location and were further mapped to the peak of sample 110 to represent the first SCR. In 

order to capture the second SCR, the phasic atom centered around sample 220 was mapped 

to the peak from sample 230.

D. Description of the Least-Squares Fit Model for EDA

We compare our approach against the least-squares fit EDA representation model by Lim et 

al. [17], since it is conceptually the closest to our method involving a parameterization of the 

signal. The authors proposed a eight-parameter model that incorporates the signal tonic 

level, at most two SCRs and a recovery phase. SCL is represented by a straight line with 

offset c. SCRs are captured by sigmoid-exponential functions with common rise time tr and 

decay time td. They are located at time offsets Tos1, Tos2, and have amplitudes g1, g2, 

respectively. Finally, the recovery phase is assumed to follow the exponential decay of 
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SCRs with the same time constant decay td and an initial amplitude a0. Therefore, the eight-

parameter model representing an EDA signal frame can be written as follows:

(9)

(10)

The nonlinear least-squares fit [41] was used to estimate the model parameters from the 

data. Time offset and amplitude of SCRs were initialized from peak detection. If less than 

two peaks were detected in a signal frame, only the corresponding parameters were 

estimated and the remaining were set to zero.

E. Evaluation

Evaluation of the proposed model is performed with respect to the quality of signal 

reconstruction, the ability to capture EDA-specific characteristics and the compression rate.

1) Signal Reconstruction—Signal reconstruction is evaluated with the root mean square 

(RMS) error, defined as follows:

(11)

where f(k) (l) denotes the value of the lth sample at the kth signal frame with k = 1, …, K and 

l = 1, …, L; similarly for the reconstructed signal  with N (O)MP iterations. Low 

RMS error values reflect high-quality signal representation.

2) Information Retrieval—Evaluation with RMS error provides a limited view of the 

representation quality, since an overly complex model may result in perfect representation of 

the existing data, but might perform poorly on unseen patterns [42]. One technique to avoid 

overfitting with greedy algorithms, such as (O)MP, is early stopping, that might result in a 

better estimate of the original signal without introducing too many erroneous or noisy entries 

[43], [44]. Indeed, our results (see Section VA2) suggest that 4–7 (O)MP iterations provide 

the most reliable EDA representation. An alternative way is the use of quantitative and 

qualitative criteria, depending on the application that assess the amount of meaningful 

information captured by the proposed models [45], [46]. In this study, we measure the 

ability of our approach to detect SCRs, an important EDA component [8], [9]. SCR 

detection is assessed in two ways, each containing complementary accuracy metrics.

We first quantify the quality of SCR representation based on the amount of detected SCRs 

and their distance from the human annotated reference ones. Let Sr = {pri} and Sd = {pdi} be 

the sets of locations of real and detected SCRs, respectively. The absolute relative difference 
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between the number of real and detected SCRs captures the portion of hand annotated SCRs 

that is correctly located by our system:

(12)

where | · | denotes the cardinality of a set. In order to see how many of the detected SCRs are 

correct, we compute the mean distance of each detected SCR from the closest real one

(13)

We further calculate precision and recall measures. If Srd = {pdi : ∃j s.t. minprj
 |pdi − prj| < 

dmax} are the estimated SCRs whose distance to their closest real SCR is less than a 

maximum threshold dmax, precision equals to the portion of detected SCRs that are close to 

a real one within the distance boundary dmax: Precision = |Srd|/|Sd|. Recall captures the 

fraction of hand-annotated SCRs that are detected from our system within the same 

boundary: Recall = |Srd|/|Sr|.

F-score is the harmonic mean of precision and recall, providing a single measure from these 

complementary ones:

(14)

These goodness of detection measures improve as the distance boundary dmax increases, 

since evaluation becomes more forgiving to errors. Note that the distance boundary dmax 

used for evaluation of SCR detection is different from the distance threshold dthr for 

mapping SCRs detected from the phasic atoms to the signal peaks (see Section III-C).

One can observe that precision is related to the MinDistmetric quantifying how close an 

estimated SCR is to a real one. On the other hand, recall is closer to RDiff that captures the 

algorithm’s ability to reliably detect the hand-annotated SCRs.

SCR detection results (see Section V-A2) are reported with a tenfold cross validation by 

randomly splitting the data from the 37 subjects. At each fold, the training set was used to 

find the optimal combination of dthr and Nb (see Section III-C) from a pool of parameters 

dthr ∈ {32, 64, … 320 samples} and N ∈ {2, 3, 4, 5 bins}, selected to maximize the Fscore 

of the corresponding data, since this yields a combined measure of the amount of missed and 

erroneously detected SCRs. The average value of each metric on the test set is reported 

based on the optimal parameters of each fold, as found from the training set. This reduces 

the risk of overfitting and is more indicative of the performance of our algorithm on novel 

data.

3) Compression Rate—Compression rate is evaluated as the number of bits used for 

representing the EDA signal over 1 s with low values indicating better compression ability.
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IV. Data Description

A. Data Collection

Our data contain 10-min recordings of 37 children watching a preferred television show in 

order to sustain attention and keep the subject stationary. Two silver-silver chloride 

electrodes were placed on the index and middle finger of the child’s nondominant hand. 

These were connected to the BIOPACMP150 system that recorded EDA at a sampling rate 

of 32 Hz. Details about the experiment can be found in [47].

B. Preprocessing and Annotation

High-frequency noise artifacts were removed with a low-pass Blackman filter [48] of 32 

samples (1 s).

Annotation of SCRs was performed by an expert using the visualization capabilities of 

BIOPAC’s AcqKnowledge software. SCR scoring involved visual inspection of the denoised 

EDA signal within a 30-s time frame and detection of signal “peaks” with the typical steep 

rise and slow decay. Each SCR amplitude was visually determined (see Fig. 1) and a 

minimum threshold of 0.05 μS was set for an SCR to be eligible for annotation [8]. In order 

to ensure reliable annotations, 25% of the data were double coded, yielding interannotator 

agreement of 96%.

V. Experiments

We evaluate the performance of our method based on the collected and annotated data (see 

Section IV) and compare it against the least-squares fit approach (see Section V-A). Results 

concern the mean of each evaluation metric over all subjects. We further discuss how the 

analysis frame length and the SCR detection parameters affect our results (see Sections V-B 

and V-C).

In the following experiments, the maximum number of (O)MP iterations was determined so 

that the coherent signal structures, i.e., the nonzero signal components, are likely to be 

recovered. As explained in [22], this occurs when the residual decay ratio r = 2 · log10(‖Rn 

f‖2/‖f‖2) decays at a constant rate. Our data suggest that this occurs after 15 OMP iterations 

with a dictionary of Bateman phasic atoms, while after 30 iterations decay happens at an 

even steeper constant slope (see Fig. 4). Similar results are obtained from other types of 

dictionaries, omitted for the sake of simplicity. For this reason, we examine 1–15 (O)MP 

iterations and in fact, our experimental results indicate that even a smaller number can 

achieve reliable representation (see Section V-A).

A. EDA Representation Results

For consistency with [17], in which 10-s isolated EDA segments were evaluated, results in 

this section are reported and compared to [17] with the same analysis frame.

1) Signal Reconstruction—During the first iteration, MP yields better signal 

reconstruction than OMP [see Fig. 5(a)]. Since MP does not reestimate the atom 

coefficients, it selects more tonic atoms in order to adjust signal levels after the addition of 
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new phasic ones. On the contrary, OMP readjusts the levels of the already selected tonic 

atoms. It is also apparent from Fig. 6 that tonic atoms are mostly selected by OMP during 

the first two iterations, whereas this occurs very often in MP. Therefore, during the first 

iteration, MP tends to capture part of the signal energy that is more attributed to the signal 

level and less to the signal fluctuations, resulting in lower RMS values. As more iterations 

occur, OMP achieves lower RMS indicating its ability to more reliably capture the signal 

variability.

2) Information Retrieval—Since OMP introduces more phasic atoms than MP for a 

given iteration, the absolute relative difference between real and estimated SCRs RDiff is 

lower and becomes optimal around 4–7 iterations [see Fig. 5(b)]. This can be also justified 

by the fact that in a 10 s frame, we have on average 1–3 tonic and 2–4 phasic atoms, the 

latter capturing the 1–3 expected SCRs. To achieve similar RDiff, MP needs more iterations 

due to the tonic atoms it keeps selecting.

Because MP selects less phasic atoms than OMP, it tends to capture the most distinct SCRs, 

resulting in smaller distances MinDist from the estimated to the real SCRs [see Fig. 5(c)] 

and higher precision [see Fig. 5(d)]. For the same reason MP shows poorer recall [see Fig. 

5(e)], as it misses many SCRs. Compared to the least-squares fit approach, Fscore is higher 

for both MP and OMP [see Fig. 5(f)], indicating the ability of our system to reliably detect 

SCRs.

3) Compression Rate—In a 10 s segment, we compute the number of encoding bits for 

the raw signal, the least-squares fit and the proposed models. Long integers and single-

precision binary floating-point numbers of 32 bits are assumed.

Since the original signal was recorded with 32 Hz, a 10 s signal segment is represented with 

320 samples (1280 Bytes); therefore, its compression rate is CRraw = 1024 bits/s.

Lim et al. [17] use a 8-parameter model to represent a 10 s signal. Assuming that the time 

offset parameters Tos1, Tos2 are long integers and the remaining parameters are floating 

points, we need 32 Bytes, resulting in CRb = 25.6 bits/s.

In our approach, given a known dictionary, each atom is represented by its indexed location 

in the dictionary and the corresponding coefficient. A 16 bit integer can encode the location 

of the 25 983 atoms used in our experiments. Assuming that each atom coefficient is a 

single-precision floating point, N selected atoms can be encoded by (16·N + 32·N) bits, 

which is equivalent to compression rate CRp = 4.8N bits/s.

The proposed model achieves compression rate between 14.2 to 213 times upon the original 

signal depending on the number of (O)MP iterations (see Fig. 7). Compared to the least-

squares approach, signal decomposition with 2–5 atoms also yields lower compression rate 

(see Fig. 7) and lower RMS error [see Fig. 5(a)].
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B. Effect of Analysis Frame Length

The different time scales over which tonic and phasic EDA components coevolve, the first 

being much slower, create the need of analyzing multiple window lengths. Since the tonic 

component of the signal lies in the frequency range between 0–0.05 Hz [49], the upper limit 

corresponding to 20 s, we examined EDA representation metrics of variable frame lengths 

between 5–30 s. For the sake of simplicity, our experiments for this section are performed 

with OMP based on Bateman phasic atoms, but no significant differences occur from other 

combinations.

Representation results for the various analysis windows are greatly influenced by the 

number of (O)MP iterations. Signal reconstruction based on a few selected atoms is better 

for shorter than longer analysis frames, while this difference converges as the number of 

OMP iterations increases [see Fig. 8(a)]. Similar patterns occur with SCR detection Fscore, 

although the short-term nature of the phasic part makes short analysis frames more 

compelling with respect to that [see Fig. 8(b) and (c)].

C. Effect of SCR Detection Parameters

We analyze SCR detection with respect to the distance threshold dthr used for mapping the 

estimated SCRs to the nearest signal peaks and with respect to the number of histograms 

bins Nb for grouping the selected phasic atoms of each analysis frame. As given in Section 

V-B, we report results using OMP with Bateman atoms.

When changing dthr, the absolute relative difference RDiff between the number of real and 

detected SCRs remains almost unaltered [see Fig. 9(a)]. This is not the case for their 

minimum average distance MinDist, which decreases as dthr becomes larger [see Fig. 9(b)], 

suggesting that more information about signal peaks benefits SCR detection.

The number of histogram binsNb strongly affects the absolute relative difference RDiff 

between real and estimated SCRs, since the latter directly depends on the number of groups 

in which the phasic atoms are combined. In contrast, metric MinDist is not largely affected 

by this parameter.

VI. Discussion

Our method involves the design of EDA-specific dictionaries that take into account the tonic 

and phasic parts of the signal and the use of sparse decomposition techniques to represent 

the EDA. Compared to previous EDA models, our approach incorporates the idea of sparsity 

and is quantitatively evaluated directly on the signal as well as its human annotated 

characteristics. We examined three different types of phasic atoms of similar nature. These 

provided equivalent results in terms of signal reconstruction and information retrieval 

metrics (see Fig. 5); therefore, no definite conclusions can be drawn with respect to the most 

suitable dictionary for representing EDA among these variants. A larger amount of data 

from variable sources could potentially address this further in the future.

Sparsity is important for representing biomedical signals, especially for efficient storage and 

transmission in ambulatory (mobile device based) applications. Parameterization of EDA in 
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light of compression was considered by Lim et al. [17], who used a eight-parameter sigmoid 

exponential model. This effort has several constraints, as it assumes the existence of at most 

two SCRs within 10 s and is tested on predefined signal segments. In real-world 

applications, however, the shape of the signal is more unpredictable and can be better 

captured by the variability of the proposed EDA-specific dictionaries. Sparsity has also been 

examined by the DCM approach [16], that computes the onset and amplitude of spontaneous 

fluctuations every 2 s, resulting in 10 parameters for every 10 s. In our sparse EDA model, 

each atom is represented by its location in the dictionary and the coefficient to which it is 

multiplied. This results in 2N parameters for a 10 s segment, where N is the number of 

(O)MP iterations. Taking into account that 5 (O)MP iterations give adequately reliable 

results (see Fig. 5), the two algorithms are fairly equivalent with respect to compression rate. 

Sparse representations can be further used to represent other psychophysiological signals 

with characteristic structure in time, such as electroencephalogram (ECG), 

electrocardiogram (ECG), and photoplethysmograph (PPG).

Our approach offers also advantages in terms of quantitative evaluation criteria. Most 

previous studies were implicitly validated with statistical analysis of the resulting 

parameters. Lim et al. [17] visualized an example residual error and reported residuals 

below 5% of the signal amplitude, while Bach et al. [19] plotted an original example and 

reconstructed signal with no further quantitative results. Bach et al. [16] reported the 

negative log-likelihood of the mean sum of squares of the residual, referred as Log Bayes 

Factor (LBF), with DCM reaching LBF values around −3 × 106. In their nonnegative 

deconvolution approach, Benedek et al. [15] examined signal reconstruction with average 

RMS error of 0.019 μS. In our study, OMP running for 15 iterations achieves mean RMS 

error of 0.015, 0.019, 0.017 μS for dictionaries containing sigmoid-exponential, Bateman, 

and chi-square phasic atoms, respectively. Although 15 iterations are not indicative of the 

representation quality of our algorithm, a smaller number of iterations appears more suitable 

for the inherent low-dimensionality of EDA (see Fig. 5), they give the least compressed 

representation in our setup and are more comparable with [15]. Despite the fact that 

comparisons are performed on different data and in the context of slightly different 

approaches, these results indicate a promising framework for our method. Since dictionaries 

were empirically designed, our future work will examine dictionary learning techniques for 

data-specific dictionaries that can improve signal reconstruction measures.

The high correlation between SCRs and sympathetic nerve activity bursts and their 

extensive use in various psychophysiological studies [8] suggest that reliable SCR detection 

mechanisms are necessary. It is therefore essential to validate automatic scoring systems 

with human-annotated ground truth, since the increasing use of longitudinal data renders 

manual annotation techniques laborious and time consuming. To the best of our knowledge, 

only Storm et al. [25] compared the number of automatically detected and manually 

annotated SCRs with linear regression analysis. For 0.05 μS minimum SCR amplitude, the 

magnitude of linear regression ranged between 0.75 and 0.98 depending on the model 

parameters and the data. Although it is useful to compare the total number of real and 

estimated SCRs, information about their relative location is also important. One of the 

novelties of this paper lies in the use of SCR detection criteria assessing both the sensitivity 
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and specificity of automatic SCR scoring. These include two complementary pair measures: 

1) the relative absolute difference between the number of real and detected SCRs, the 

average distance of detected SCRs to their closest real one and 2) the precision and recall of 

SCR detection, yielding the Fscore. Fscore is 83.43% using six OMP iterations and a 

tolerance threshold of 1.25 s between real and estimated SCRs [see Fig. 5(f)]. This improves 

upon [17], which achieves 75.1% Fscore for the same conditions, and suggests that our 

approach appears promising for an automatic system.

Continuous advances in wearable technology suggest that physiological models should go 

beyond traditional signal reconstruction and pattern detection to signal interpretation in the 

context of internal human state tracking that could lead to individualized assessment and 

intervention [3], [7]. Previous efforts have provided meaningful interpretations of EDA 

models in terms empirical expectations (e.g., public versus nonpublic speaking [19], 

baseline versus anticipation [19], different noise stimuli [15], neutral, negative and positive 

arousing images [16]). Other studies have analyzed EDA patterns in the context of human–

computer interaction relatively to individual’s affective states [6], [50]. The parameterized 

nature of the dictionary atoms in our approach can capture SCR characteristics, such as 

width, rise, and recovery time, which could further lead to more intuitive interpretations of 

EDA signals in terms of cognitive, social, and emotional stimuli. Data that allow these types 

of comparisons, including in the context of clinical translation such as therapy for Autism 

[51], will be explored as part of our future work.

A common problem when measuring changes in EDA is overlapping SCRs. It is typically 

agreed that when a second response occurs before completion of the first, one would count 

two overlapping responses [30]. Such an example is shown in Fig. 3(a) with two 

overlapping SCRs at samples 110 and 230, which we notice that our sparse decomposition 

approach is capable of discriminating. Previous studies have also assessed this by 

considering the underlying processes that contribute to SCRs as a linear time invariant 

system and measuring the event onsets of the system generator [27], [28].

VII. Conclusion

We propose a knowledge-driven EDA model that sparsely decomposes the signal into a 

small number of atoms from a dictionary. We focus on the dictionary design, which contains 

tonic and phasic atoms relevant to the signal levels and SCR fluctuations, respectively. With 

appropriate postprocessing, we automatically retrieve the SCRs from the EDA. Evaluation 

of our approach includes signal reconstruction, SCR detection, and compression rate 

analysis. These measures are improved upon the least-square fit model, that uses a 

parameterized template, providing benefits in terms of all criteria.
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Fig. 1. 
Example of an electrodermal activity (EDA) signal of skin conductance responses (SCR), 

marked with red “o,” and an indicative notation of SCR amplitude measure.
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Fig. 2. 
Examples of normalized phasic atoms represented with sigmoid-exponential, Bateman and 

chi-square functions for different time scale parameters s = 0.06, 0.1, 0.14 and time offset t0 

= 20. For each time-scale value, plots were created using all combinations of corresponding 

atom-specific parameters.
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Fig. 3. 
EDA representation scheme and SCR detection for an example signal frame. (a) Input and 

reconstructed signal with solid blue and dashed red lines. The location of expert hand-

annotated SCRs is marked (red “×”), along with the signal peaks (magenta “*”) and the 

SCRs estimated based on the phasic atoms of the sparse decomposition algorithm (green 

“•”). The final SCRs (black “○”) are located by combining the SCRs from the phasic atoms 

according to their location and mapping them to the signal peaks. (b) The normalized 

dictionary atoms selected by the first four iterations of OMP. The first tonic atom (solid 

cyan line) captures the signal level, the first and third phasic atoms (dashed magenta and 

dash-dotted green lines) the first SCR, while the second phasic atom (black dotted line) the 

second SCR. (c) The normalized phasic atoms multiplied by the corresponding OMP 

coefficients (dashed magenta, dotted black, and dash-dotted green lines). The energy of each 

atom is indicative of the order they have been selected by OMP with higher energy atoms 

selected first.
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Fig. 4. 
Logarithmic ratio between the second-order norms of the residual Rn f and original signal f, 
r = 2 · log10 (‖Rn f ‖2/‖f‖2), computed for 1–50 orthogonal matching pursuit (OMP) 

iterations based on a dictionary of tonic and Bateman phasic atoms. Red-dashed line denotes 

a decay of approximately constant rate between 15–30 iterations. Green dashed-dotted line 

denotes a steeper constant decay between 30–50 OMP iterations.
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Fig. 5. 
Signal reconstruction and SCR detection results. (a) Root mean square (RMS) error between 

original and reconstructed signal with respect to (w.r.t.) the number of (orthogonal) 

matching pursuit ((O)MP) iterations. (b) Absolute number of relative difference between 

real and estimated SCRs w.r.t. the number of (O)MP iterations. (c) Mean distance of 

estimated SCRs from their closest real SCR w.r.t. (O)MP iterations. (d), (e), (f) Precision, 

recall, and Fscore of SCR detection with 6 (O)MP iterations w.r.t maximum distance 

threshold dmax between real and detected SCRs, the latter ranging between 10–100 samples, 

or 0.3125–3.125 s. Results on Fig. (b)– (f) are reported based on a tenfold cross validation, 

during which SCR detection on the test set is performed using the parameter combination 

(dthr, Nb) that gave the best results on the training data, where dthr is the distance threshold 

for mapping estimated SCRs to the nearest signal peaks and Nb is the number of histograms 

bins for grouping the selected phasic atoms of each analysis frame. Same legend applies to 

all plots.
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Fig. 6. 
Percentage of selected tonic atoms with respect to the number of iterations for (orthogonal) 

matching pursuit ((O)MP) and the various dictionaries (with sigmoid-exponential, Bateman 

and chi-square phasic atoms).
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Fig. 7. 
Compression rate of the original EDA signal and the EDA representation with the proposed 

sparse decomposition and the least-squares fit methods. (Y-axis break between 100 and 900 

bits/s).
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Fig. 8. 
Effect of the analysis frame length L (in seconds) to signal reconstruction and SCR 

detection. (a) Root mean square (RMS) error between original and reconstructed signal for 

1–15 orthogonal matching pursuit (OMP) iterations. (b) and (c) Fscore of SCR detection 

with 4 and 10 OMP iterations. Same legend applies to both plots.
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Fig. 9. 
SCR detection metrics with respect to the distance threshold dthr for mapping estimated 

SCRs to signal peaks and the number of histogram bins Nb for grouping the selected phasic 

atoms from sparse decomposition. (a) Absolute relative difference RDiff of real and detected 

SCRs. (b) Mean distance MinDist of detected SCRs to the closest real one.
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TABLE I

Equations and Parameter Values of Dictionary Atoms Representing Tonic and Phasic EDA Components

Atom EDA part Equation Parameter Values

Straight Line Tonic gβ (t) = Δ0 + Δ · t Δ0 ∈ {−20, −10, 1}
Δ ∈ {−0.010, −0.009, …, −0.001, 0, 0.01, 0.02, …, 
0.10}

Sigmoid-exponential Phasic Trise ∈ {0.5, 0.8, …, 2.9}
Tdecay ∈ {0.3, 0.6, …, 3}

s ∈ {0.06, 0.07, …, 
0.14}

Bateman Phasic gγ(2) (t) = (e−a (st −t0) − e−b (st −t0)) u(t − t0)
a < b

a ∈ {0.2, 0.3, …, 2}
b ∈ {0.4, 0.6, …, 2} t0 ∈ {0, 10, 20, …, 310}

Chi-Square Phasic gγ(3) (t) = χ2 (st − t0, k)u(t − t0) k ∈ {2.70, 2.73, …, 5.37}

u(t) = 1, t ≥ 0, and u(t) = 0 otherwise, χ2 (t, k): the value of k-degrees chi-square distribution at point t.
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