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Abstract

Mathematical modeling is a powerful tool for unraveling the complexities of the molecular 

regulatory networks underlying all aspects of cell physiology. To support this claim, we review 

our experiences modeling the cyclin-dependent kinase (CDK) network that controls events of the 

eukaryotic cell cycle. The model was derived from classic experiments on the biochemistry and 

molecular genetics of CDKs and their partner proteins. Because the dynamical properties of CDK 

activity depend in large part on positive and negative feedback loops in the regulatory network, it 

is difficult to predict its behavior by intuitive reasoning alone. Mathematical modeling is the 

correct tool for reliably determining the properties of the network in comparison to observed 

properties of dividing cells and for predicting the behavior of the control system under novel 

conditions. In this review we describe six unexpected predictions of our 1993 model of the CDK 

control system in frog egg extracts and the remarkable experiments, performed much later, that 

verified all six predictions. The dynamical properties of the CDK network are consequences of 

feedback signals and ultrasensitive responses of regulatory proteins to CDK activity, and we 

describe the experimental evidence for the predicted ultrasensitivity. This case study illustrates the 

novel insights that mathematical modeling, analysis and simulation can provide cell physiologists, 

and it points the way to a new “dynamical perspective” on molecular cell biology.
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Introduction

Although mathematical modeling of biological interactions played important roles in 

developing scientific theories of population biology, genetics, evolutionary theory, 

neuroscience, and organismal physiology in the 20th century, it was ignored for the most 

part in the areas of molecular, cell and developmental biology. To be sure, there were early 

efforts to develop mathematical theories of bacterial operons, allosteric regulation, circadian 

rhythms, and embryonic pattern formation, but these efforts (as useful as they may seem to 

regular readers of this journal) never percolated into the zeitgeist (or textbooks) of molecular 

cell biology. This neglect is understandable, perhaps, in the heady atmosphere of 1980-2000, 

when new tools for manipulating DNA enabled molecular geneticists to identify and 

characterize the genes and proteins that underlie all basic features of cell physiology. 
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Molecular cell biologists were too busy cloning genes to pay much attention to the few 

theoreticians who were trying to use mathematical models to understand the dynamical 

properties of the complex regulatory networks being uncovered by the experimentalists.

The golden age of molecular cell biology culminated in the publication of the “Millennium 

Issue” of Cell (Vol. 100, No. 1, 7 January 2000), in which giants of the field summarized the 

astounding progress made on many fronts over the previous twenty years. Amid the 

triumphalist themes of this issue were occasional hints of something new on the horizon, as 

exemplified by a quote from Paul Nurse (2000): “Perhaps a proper understanding of the 

complex regulatory networks making up cellular systems like the cell cycle will require a 

shift from common sense thinking…to a more abstract world, more readily analyzable in 

terms of mathematics.”

The shift was already underway; thanks to a new focus on “computational biology” at the 

National Institute of General Medical Sciences, under the direction of Marvin Cassman at 

the time. As money and attention began to turn toward mathematical and computational 

approaches to molecular cell biology, the initial benign neglect of experimentalists turned to 

outright hostility from some corners. However, within the last few years the battles have 

subsided, and “computational cell biology” is now firmly entrenched in academic and 

research institutions around the globe.

In this review article, we present an example of this new way of thinking about molecular 

regulatory systems in cell physiology. Our example concerns the cyclins and kinases (the 

genes and proteins) that govern progression through the cell cycle in frog eggs and early 

embryos and in frog egg extracts. In the process of describing our mathematical theory of 

this control system, we hope to answer the questions: what is computational cell biology? 

And what good is it?

Molecular Regulation of Cell Cycle Progression

The DNA replication-division cycle is the sequence of events by which a cell replicates its 

genome (making exact copies—called sister chromatids—of each DNA molecule) and then 

partitions the sister chromatids to two daughter cells at division, so that each daughter 

receives one and only one copy of every chromosome. The DNA replication-division cycle 

is usually coordinated with the cell growth-division cycle, in which all other components of 

the cell (proteins, RNAs, organelles, etc.) are doubled in number and divided more-or-less 

evenly to the two daughter cells (Mitchison 2003). But we are considering cases of the 

control of DNA replication and division in non-growing cells (frog eggs and extracts), so we 

shall ignore issues relating cell growth to DNA replication.

The DNA replication-division cycle (the “cell cycle” henceforth) is usually subdivided into 

four phases: G1 (unreplicated chromosomes), S (DNA synthesis), G2 (replicated 

chromosomes) and M (mitosis, i.e., nuclear and cell division). The combined phases of 

G1+S+G2 are sometimes referred to simply as “interphase”. During early embryonic cell 

division cycles, G1 and G2 phases are often very short, so we shall refer to embryonic cell 

cycles as alternating between interphase (the phase of DNA synthesis) and mitosis (the 

phase of chromosome partitioning and cell division).
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A fundamental question confronting cell biologists of the 1970s and 1980s concerned the 

molecular mechanisms governing this alternation between interphase and mitosis. What 

molecular events triggered DNA synthesis followed by entry into mitosis? What molecular 

events were responsible for exit from mitosis (nuclear and cell division) and return to 

interphase? These questions were attacked on two fronts: by biochemical methods and 

genetic analysis.

M-phase promoting factor

On the biochemical front, a major breakthrough was the identification by Masui and Markert 

(1971) of a biochemical factor that promotes maturation of frog oocytes. Frog ovaries 

contain copious quantities of immature oocytes, which are arrested in G2 phase of the first 

meiotic cell cycle. In response to progesterone, a hundred or more of these oocytes undergo 

a maturation process, proceeding through meiosis I and into meiosis II, arresting at 

metaphase of the second meiotic cycle. These mature oocytes are ready for fertilization, 

which induces them to enter the mitotic cell cycles of the early embryo (the fertilized egg). 

Masui and Markert discovered that maturation can be induced, in the absence of 

progesterone, by extracts prepared from mature oocytes. Not knowing the identity of this 

component of mature oocytes that induces maturation of immature oocytes, they called it 

“maturation promoting factor,” or MPF for short.

Picking up on this theme, Marc Kirschner and his collaborators showed that MPF activity is 

low in interphase and high in mitosis during the mitotic cycles of early embryos (Gerhart et 

al. 1984). Because MPF peaks at both meiotic and mitotic metaphase, its meaning has 

changed to “M-phase promoting factor.” What precisely is this mysterious factor? The hunt 

was on among biochemists, but MPF proved notoriously difficult to purify.

Cell division cycle genes

Meanwhile, Leland Hartwell was taking a different approach (Hartwell et al. 1970, Hartwell 

et al. 1974). He proposed a screen to identify genes that are necessary for successful 

completion of the cell cycle in a simple eukaryotic cell (budding yeast) that is particularly 

amenable to genetic analysis. After mutagenizing yeast cells, Hartwell et al. streaked them 

out on a petri dish with nutrients, made a replicate plate, and then cultured one plate at 23°C 

and the other plate at 37°C. Hartwell was looking for cells that could form colonies at 23°C 

(the permissive temperature) but not at 37°C (the restrictive temperature); and, furthermore, 

at the restrictive temperature the mutant cells should arrest uniformly at a particular stage of 

the cell cycle (e.g., with or without a bud; before, during or after S phase; in a particular 

stage of mitosis). Mutant cells exhibiting these phenotypic traits he called “cell division 

cycle” mutants, and, by genetic crosses, he identified ~50 CDC genes (CDC1, CDC2, …). 

Each gene was characterized by the stage of the cell cycle in which cells, carrying the 

temperature sensitive allele of the gene (cdc1, cdc2, …), arrested at 37°C. In this way, 

Hartwell et al. could assign to each CDC gene its own particular execution point, i.e., the 

cell cycle event where that particular gene plays a necessary role. The earliest event they 

called “Start”, and CDC28 was identified as a crucial player in the Start transition.
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A few years later, Paul Nurse, at the time a postdoc in Murdoch Mitchison’s lab in 

Edinburgh, Scotland, repeated Hartwell’s genetic analysis in fission yeast, a distant relative 

of budding yeast. Nurse identified ~50 cdc genes in fission yeast, with the added twist that 

cdcts mutant cells should continue to grow at the restrictive temperature (Nurse et al. 1976). 

(Nurse wanted to eliminate from consideration any mutations that interfered with cell 

growth.) In the process of identifying cdc mutations in fission yeast, Nurse stumbled upon a 

mutant strain that grows and divides quite happily but at an unusually small size, about half 

the size of wild-type cells (Nurse 1975). He called this characteristic the “wee” phenotype 

(Scottish for “small”), and he showed that mutations of a single gene, wee1, are primarily 

responsible for the phenotype. (Fission yeast cells are rod-shaped. Wild-type cells, wee1+, 

divide at 14 μm in length; mutant cells, wee1-, divide at 7 μm in length.) The significance of 

the wee1+ gene is that it appears to be involved in regulation of the cell division cycle rather 

than in the machinery of DNA replication and mitosis.

Using standard methods of yeast genetics, Nurse found two cdc genes that interact with 

wee1+, namely cdc2+ and cdc25+ (Nurse 1985). The proteins encoded by wee1+ and 

cdc25+ (call them Wee1 and Cdc25) somehow measure cell length, inhibiting mitosis and 

cell division if a cell is too small (the apparent role of Wee1), or promoting mitosis and cell 

division when a cell grows large enough (the apparent role of Cdc25). The genetic evidence 

suggested that Wee1 and Cdc25 act by inhibiting and activating Cdc2, respectively.

By this point in time (late 1970s), the biochemical and genetic evidences were suggesting 

two very different views of cell cycle regulation, as illustrated in Figure 1.

Discovery of cyclin proteins

In the early 1980s, Tim Hunt was studying the proteins expressed in sea urchin embryos 

during their early synchronous mitotic cycles by the method of gel electrophoresis. Although 

most of the bands on his gels showed no change from one time to the next, two bands 

showed remarkable oscillations. As cells progressed though the cell cycle, these bands got 

darker and darker until, in late mitosis, the bands disappeared abruptly, only to accumulate 

again in the next cell cycle. Hunt called these proteins “cyclin A” and “cyclin B” (Evans et 

al. 1983).

Identification of gene products

In the 1980s, yeast cell cycle genes were cloned and characterized in labs run by Paul Nurse, 

Kim Nasmyth, and others. They found that cdc2+ in fission yeast and CDC28 in budding 

yeast both encode protein kinases, and, furthermore, that these protein kinases are 

functionally interchangeable between species (Beach et al. 1982). Wee1 was found to be a 

protein kinase as well (Russell & Nurse 1987), and Cdc25 a protein phosphatase (Russell & 

Nurse 1986, Gould et al. 1990). Wee1 and Cdc25 were determined to act by phosphorylating 

and dephosphorylating Cdc2. The kinase activity of Cdc2 is inhibited by Wee1-dependent 

phosphorylation, and Cdc2 is activated when this inhibitory phosphate group is removed by 

Cdc25.
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Identification of MPF

In 1988, James Maller’s team of protein biochemists succeeded in purifying MPF (Lohka et 

al. 1988). At the final step of the purification, MPF activity was associated with two proteins 

of apparent molecular weights 32 kD and 44 kD. Using antibodies supplied by Nurse and 

Hunt, Maller quickly determined that the smaller protein was Cdc2 and the larger protein 

was cyclin B (Dunphy et al. 1988, Gautier et al. 1988, Gautier et al. 1990). MPF was now 

recognized as a heterodimeric protein kinase, consisting of a catalytic subunit (Cdc2) and a 

regulatory subunit (cyclin B). The yeast proteins, Cdc2 and Cdc28, were renamed Cdk1 

(cyclin-dependent kinase) in recognition of their dependence on binding to a cyclin partner 

to become active kinases. Nonetheless, in the frog-egg cell-cycle literature it is still common 

to refer to the kinase subunit of MPF as Cdc2, and we shall use Cdk1 and Cdc2 

interchangeably.

Frog egg extracts

In 1989, Murray and Kirschner (1989) described a method for making frog egg extracts that 

could support repeated cycles of DNA synthesis and nuclear division in vitro, thereby 

creating a powerful tool for studying the biochemistry of MPF activation and inactivation 

during mitotic nuclear division cycles. They demonstrated that progression of an extract 

through interphase (DNA synthesis) and into mitosis is dependent on the synthesis of only 

one protein, cyclin B; and that exit from mitosis and return to interphase is driven by the 

proteolysis of cyclin B by the ubiquitin-proteasome system. (The proteasome is an organelle 

that degrades proteins that have been polyubiquitinated. Ubiquitin is a small peptide that is 

conjugated to proteins singled out for destruction. The ubiquitin-conjugating enzyme that 

labels cyclin B for destruction during anaphase and telophase is called the “Anaphase 

Promoting Complex.” The APC requires an auxiliary protein, Cdc20, to target its activity 

toward cyclin B as nuclei complete the division process.)

Using frog egg extracts, William Dunphy and other investigators (Kumagai & Dunphy 

1992, Tang et al. 1993, Mueller et al. 1995) showed that Wee1 and Cdc25 become 

phosphorylated as MPF is activated and extracts enter mitosis. The evidence suggested that 

Wee1 is inactivated by Cdc2-dependent phosphorylation and that Cdc25 is activated by 

Cdc2-dependent phosphorylation.

By 1990 a picture of MPF regulation was beginning to emerge from these separate lines of 

inquiry (Nurse 1990); see Figure 2. Notice, in particular, that MPF and Cdc25 are engaged 

in a positive feedback loop (each protein activates the other) and that MPF and Wee1 are 

engaged in a double-negative feedback loop (each protein inactivates the other). 

Furthermore, MPF and Cdc20 are engaged in a negative feedback loop (MPF activates 

Cdc20 indirectly through the APC, but the APC:Cdc20 complex inactivates MPF by 

labeling its cyclin subunit for proteolysis). These feedback loops play significant roles in the 

dynamics of the MPF control system, but it is not intuitively obvious exactly what their 

consequences may be. Is it obvious, for example, that the reaction network in Figure 2 is 

consistent with all the facts (as they were known at the time) about cell cycle regulation in 

early embyros and yeast cell mutants? Might a careful examination of the dynamical 

properties of this control system predict some unexpected new properties of MPF-driven 
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regulation of cell cycle events? To answer these sorts of questions requires careful 

examination of a proper mathematical model of the control system.

Mathematical Models of the MPF Control System

As the picture in Figure 2 was emerging, several early attempts to model the MPF control 

system were published by Hyver & Le Guyader (1990), Norel & Agur (1991), Goldbeter 

(1991) and Tyson (1991). Each of these models had its own characteristic strengths and 

weaknesses, but we think it is fair to say that they were replaced by our 1993 model (Novak 

& Tyson 1993a, Novak & Tyson 1993b), which provided a more comprehensive and 

accurate description of cell cycle control. The 1993 model applies equally well to MPF 

fluctuations in frog eggs and extracts (Novak & Tyson 1993b) and to mutant phenotypes of 

fission yeast (Novak & Tyson 1995). It is this model that we shall focus on.

Using standard principles of biochemical kinetics (as in the earlier studies just cited), we 

cast Figure 2 into a set of nonlinear ordinary differential equations (ODEs) for the 

concentrations (or “activities”) of the constituent proteins (see Table I). By a combination of 

phase plane analysis, bifurcation theory, and numerical simulations, we studied this control 

system in great detail, with special attention to quantitative reckoning of the experimental 

facts. We will not review this evidence for the validity of the model but instead focus on the 

predictions derived from the model.

Cyclin thresholds

In 1990, Solomon et al. (1990) published a paper on the activation of Cdk1 by binding to 

cyclin. They used “interphase arrested” frog egg extracts, which have been treated with a 

drug to block cyclin synthesis. Such extracts contain copious amounts of Cdk1, Wee1 and 

Cdc25, but they cannot activate Cdk1 because they lack cyclin B. By adding a known 

amount of a non-degradable form of cyclin B to interphase-arrested extracts, Solomon et al. 

could adjust the total concentration of cyclin B to any value and thereby determine how 

MPF activity depends on cyclin concentration. They found striking evidence for a distinct 

cyclin threshold for MPF activation (see Figure 3). If total cyclin concentration is 12 nM or 

less, then the extract exhibits a low (background) level of MPF activity; but at [total cyclin] 

≈ 15 nM there is an abrupt jump to a high level of MPF activity, which increases steadily 

with additional cyclin added. Furthermore, Solomon et al. pointed out that there is a constant 

time lag of ~15 min from the moment of cyclin addition (above threshold) until the time of 

half-maximal activation of MPF.

To account for Solomon’s observations, we removed cyclin synthesis and degradation from 

our model equations and considered only the phosphorylation and dephosphorylation of 

MPF by Wee1 and Cdc25. Looking for steady state solutions of these ODEs, we plotted a 

one-parameter bifurcation diagram of MPF activity as a function of total cyclin in the 

(simulated) extract (see Figure 4A). Because of the feedback loops in the control system, the 

bifurcation diagram shows a region of bistability for intermediate cyclin concentrations. The 

bistable region is bounded by two saddle-node bifurcations: one is a threshold for MPF 

activation (upon increasing cyclin concentration), and the other is a lower threshold for MPF 
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inactivation (upon decreasing cyclin concentration). This lower threshold is a clear and non-

intuitive prediction of the mathematical model.

Critical slowing down

If one adds a supra-threshold amount of non-degradable cyclin to an interphase-arrested frog 

egg extract, the newly formed Cdk1:cyclin dimers are rapidly phosphorylated (inactivated) 

by Wee1 in the extract, and it takes ~15 min to engage the positive feedback loops and 

reactivate MPF (as observed by Solomon). But this is true only if the final concentration of 

cyclin is well above threshold. If the final concentration is only slightly above the threshold, 

then, according to the mathematical model, the lag time gets considerably longer than 15 

min. In fact, the lag time becomes infinitely long as the cyclin concentration approaches the 

threshold from above. This phenomenon is well known in the theory of dynamical systems, 

where it is called “critical slowing down.” It is an inescapable consequence of the bistable 

character of the model, and it is in direct contradiction to the experimental evidence 

provided in Solomon’s paper.

Checkpoint function

It was a well-known fact at the time that the addition of unreplicated DNA to a frog egg 

extract delays the activation of MPF and the entry of nuclei into mitosis (Dasso & Newport 

1990). We predicted that this “checkpoint” effect of unreplicated DNA operates by raising 

the threshold for cyclin-induced activation of MPF.

Spontaneous oscillations

Next, we studied spontaneous oscillations of MPF in the model when cyclin is being 

synthesized and degraded. The model predicts (quite obviously, from a theoretical 

perspective) that MPF activity should exhibit “relaxation oscillations” around the bistable 

region of the bifurcation diagram (Figure 4B). The model also predicts that, if the positive 

feedback loops are compromised (by adding a non-phosphorylable form of Cdk1), then the 

control system might still oscillate due to the negative feedback loop through APC and 

Cdc20 (see Figure 2). Our numerical simulations of these oscillations showed that, in 

comparison to the relaxation oscillations in the presence of Cdk1 phosphorylation, the 

negative feedback oscillations should be faster, of lower amplitude, and more sinusoidal.

Propagating waves of MPF activity

In a companion paper (Novak & Tyson 1993a), we pointed out that the MPF control system 

would support waves of MPF activation that propagate from one nucleus to surrounding 

nuclei in tissues that are not subdivided by cell membranes (“syncytial” tissues). 

Furthermore, by a back-of-an-envelope calculation, we predicted that these waves should 

propagate with a speed of ~50 μm/min. We drew attention to two obscure published reports 

of such waves in slime mold microplasmodia and in nuclear division cycles of fruit fly 

embryos. The clear prediction was that such waves should propagate in frog egg extracts, 

but such an experiment seemed technically impossible at the time.

For future reference, these predictions of the Novak-Tyson model are collected in Table II.
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Experimental Confirmation of Model Predictions

All six predictions of the Novak-Tyson model have been confirmed in a paper from Jill 

Sible’s lab at Virginia Tech (Sha et al. 2003) and in an impressive series of papers from Jim 

Ferrell’s lab at Stanford (Pomerening et al. 2003, Pomerening et al. 2005, Chang & Ferrell 

2013). In Figures 5-7 we reproduce three figures from Sha et al. (2003) that confirm 

predictions 1-3 in Table II. Similar results were reported by Pomerening et al. (2003) at 

about the same time. In Figure 8 we reproduce two figures from Pomerening et al. (2005) 

that confirm predictions 4-5 in Table II, and in Figure 9 we reproduce a figure from Chang 

& Ferrell (2013) that confirms prediction 6. See the figure legends for details.

Roles of Ultrasensitivity in Cell Cycle Regulation

The distinctive dynamical features of cell cycle regulation (bistability, oscillations, critical 

slowing down, wave propagation) are intimately associated with the positive and negative 

feedback loops in the network (Figure 2), operating through regulatory proteins (Wee1, 

Cdc25 and APC:Cdc20) that respond in an “ultrasensitive” way to CDK activity. 

Ultrasensitivity refers to a sigmoidal response to an input signal. The classical example is 

oxygen-loading of hemoglobin molecules as a function of oxygen tension in the lungs. In 

this case the sigmoidal response is due to cooperative binding of O2 molecules by the α and 

β subunits of the hemoglobin tetramer, and it is described by the well-known Hill function. 

However, ultrasensitive responses may arise for many reasons other than cooperativity.

In the original Novak-Tyson equations (Table I), ultrasensitivity is modeled in terms of 

“zero-order” ultrasensitivity, as originally envisioned by Goldbeter & Koshland (1981), who 

showed (quite surprisingly at the time) that, if (1) a protein X is phosphorylated by a kinase 

and dephosphorylated by a phosphatase, (2) the rates of these chemical modifications are 

governed by Michaelis-Menten kinetics, and (3) the total concentration of X is very much 

greater than the Michaelis constants of the kinase and phosphatase (so the chemical 

reactions are operating in the “zero-order” regime), then the fractional phosphorylation of X 

is an ultrasensitive function of the kinase-to-phosphatase ratio. Indeed, the fractional 

phosphorylation of X (at steady state) is given by a universal function, the “Goldbeter-

Koshland function” G(u,θ,J) in Table 1, where u is the kinase-to-phosphatase ratio, θ is the 

switching threshold, and J is the ratio of Michaelis constant (assumed to be the same for 

kinase and phosphatase) to total concentration of X. It is easy to show, for J << 1, that 

G(u,θ,J) ≈ 0 for u < θ, and G(u,θ,J) ≈ 1 for u > θ. The Goldbeter-Koshland function in 

Table 1 provides the nonlinearity necessary to generate bistability and oscillations needed to 

account for the characteristic properties of cell cycle regulation in frog eggs and yeast cells.

Although zero-order ultrasensitivity seems natural for regulating the activities of Wee1, 

Cdc25 and APC, there is a serious snag. If MPF is the kinase that phosphorylates these 

proteins and if the kinase is saturated with its substrate (the zero-order regime), then MPF 

will not be available to bind to any other substrates that need to be phosphorylated in order 

to drive the cell into mitosis. Hence, early theories of cell cycle regulation left two open 

questions: Are the responses of these regulatory proteins indeed ultrasensitive? And, if so, 

what is the molecular basis of the observed ultrasensitivity?
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The first question was answered affirmatively by James Ferrell’s research group in a series 

of careful experiments demonstrating ultrasensitive responses of Wee1 (Kim & Ferrell 

2007), Cdc25 (Trunnell et al. 2011), and APC:Cdc20 (Yang & Ferrell 2013) to CDK activity 

in frog egg extracts. In Table III we collect data from Yang & Ferrell (2013) on the 

“effective” kinetic parameters for these three enzymes obtained by fitting the observed 

ultrasensitive signal-response curves to either a Hill function (parameters nH and EC50) or a 

Goldbeter-Koshland function (parameters J and θ). In our mathematical model of bistability 

and oscillations in frog egg extracts (Table I), we have used values of J and θ consistent with 

these experiments.

To answer the second question, we must take into account the fact that these regulatory 

proteins (and most other substrates of MPF) are phosphorylated on multiple sites (5-15 sites 

of phosphorylation) (Kumagai & Dunphy 1992, Mueller et al. 1995). In a number of papers, 

theoretical biologists have pointed out that multi-site phosphorylation can lead to an 

ultrasensitive dependence of the fractional phosphorylation of substrate molecules on the 

kinase-to-phosphatase ratio (Yang et al. 2004, Gunawardena 2005, Salazar & Hofer 2007, 

Salazar & Hofer 2009, Kapuy et al. 2009). If N = total number of phosphorylation sites, u = 

kinase activity, θ = phosphatase activity, and at least q+1 sites must be phosphorylated to 

activate the regulatory protein, then the fractional activity of the protein, as a function of the 

kinase-to-phosphatase ratio, is (Kapuy et al. 2009)

which is a sigmoidal function of u, similar to a Hill function or a Goldbeter-Koshland 

function. Indeed, the observed ultrasensitivity of Wee1, Cdc25 and APC:Cdc20 can also be 

described by this sigmoidal function for reasonable values of q and N, as indicated in Table 

III. In the theory of multi-site phosphorylation, all enzymatic reactions are assumed to be 

operating in the regime [substrate] << Michaelis constant, so MPF is never saturated by any 

of its substrates.

Although multi-site phosphorylation is a likely cause of ultrasensitivity in the cell cycle 

regulatory network, there are other possibilities, notably substrate competition, as described 

in Kim & Ferrell (2007) and Verdugo et al. (2013). Regardless of its molecular basis, we can 

consider “ultrasensitivity” as another prescient contribution to the field by mathematical 

modelers, notably Albert Goldbeter, which was later confirmed by careful quantitative 

measurements.

Other Mathematical Models of Cell Cycle Regulation

In the 1990s and 2000s many additional molecular details of the cell cycle control system in 

eukaryotes were revealed. This progress in experimental characterization of the system was 

accompanied by ever more comprehensive and accurate mathematical models, focused for 

the most part on the control systems in specific organisms, for example:

• Fission yeast (Novak & Tyson 1997, Novak et al. 2001)
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• Budding yeast (Chen et al. 2000, Chen et al. 2004, Barberis et al. 2007, Faure et al. 

2009, Barik et al. 2010, Brummer et al. 2010, Vinod et al. 2011, Zhang et al. 2011, 

Hancioglu & Tyson 2012)

• Mammalian cells (Obeyesekere et al. 1994, Obeyesekere et al. 1995, Aguda 1999, 

Aguda & Tang 1999, Qu et al. 2003, Novak & Tyson 2004, Alfieri et al. 2009, 

Gerard & Goldbeter 2009, Toettcher et al. 2009, Singhania et al. 2011)

In addition, it is encouraging to see that many experimental studies of cell cycle regulation 

now incorporate mathematical modeling as an integral part of the project, as illustrated by 

several of works cited in our reference list.

A Dynamical Perspective on Molecular Cell Biology

In our opinion, mathematical models of molecular regulatory systems are “hypothesis 

testing” tools. The reaction diagram in Figure 2 was, at the time (1990), a hypothesis about 

how we imagined the CDK control network to be interconnected. In general, how are we to 

know whether such “working hypotheses” are correct or not? There are four tests that must 

be applied.

First, is a working hypothesis consistent with everything that is already known about the 

control system from careful, reliable experiments? If not, then there must be something 

seriously incorrect or incomplete about the model, and the nature of the discrepancies 

between theory and experiment may well suggest the origin of the problem. Consistency 

checks require accurate characterization of the consequences of a model. The very process 

of building a mathematical model forces us to be precise about the assumptions inherent in 

our hypothetical reaction network. And numerical simulations of the model equations allow 

us to make trustworthy predictions of how the model behaves under a variety of 

experimental conditions. The Novak-Tyson model of the eukaryotic cell cycle was 

thoroughly checked for consistency with known biochemical properties of MPF activation in 

frog oocytes, fertilized eggs and egg extracts (Novak & Tyson 1993b), and also for 

consistency with known phenotypes of cell cycle mutants in fission yeast (Novak & Tyson 

1995, Novak & Tyson 1997).

Second, if a mathematical model is adequately verified against known experimental facts, 

then we would like the model to make clear predictions about how the control system is 

expected to behave under novel experimental conditions. The experimental tests should be 

“doable”, but one cannot reasonably demand the modeler to carry out the tests. In our early 

papers, we made six intriguing predictions, but we were in no position to do the 

experiments.

Third, when the tests are made, either they will provide confirming evidence for the 

working hypothesis, or, if they contradict the predictions of the model, they may point to 

ways to modify the model and improve our understanding of the control system. In this 

review, we have stressed how the six predictions of the Novak-Tyson model were confirmed 

in a series of careful, quantitative experiments carried out ten and more years later. This 

confirmation was not to say that the working hypothesis in Figure 2 was to be the “last 
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word” on the cell cycle control system. Indeed, many new experimental facts have been 

discovered since 1993, and the “working hypothesis” for the CDK control system in 

eukaryotes has gotten increasingly complex. Nonetheless, the basic tests of consistency, 

predictive power, and experimental confirmation have served the community well over the 

years, and the necessity of carrying out these tests in terms of mathematical models has 

become more evident as our knowledge of the control system becomes more comprehensive 

and detailed (Chen et al. 2000, Novak et al. 2001, Tyson & Novak 2001, Chen et al. 2004).

Fourth, the mathematical model should provide us with new ways of thinking about cell 

cycle regulation. The classic theory, reviewed here, introduced the community of molecular 

cell biologists to a number of new ideas—bistability, relaxation oscillations, phase planes, 

critical slowing down, trigger waves—that have become standard parlance in the field. In 

recent papers, we have stressed the importance of bistability in accounting for irreversible 

transitions at all the major cell cycle checkpoints (Novak et al. 2007). This idea suggested 

many new experiments to look for evidences of bistability, and the predictions of the model 

have been confirmed in each case (Cross et al. 2002, Yao et al. 2008, Lopez-Aviles et al. 

2009).

Perhaps the most sweeping of all these new ways of thinking is a new “dynamical 

perspective” on molecular cell biology (Figure 10) that is taking root in many universities 

and research institutes around the world. Modern techniques in genetics, biochemistry and 

cell biology are producing an avalanche of information that can be used to formulate 

complex hypotheses about the molecular regulation of any aspect of cell physiology. These 

regulatory mechanisms are now so complex and inter-related that we cannot depend on 

intuitive reasoning to carry out believable consistency checks or reliable predictions. We can 

build well-defined mathematical models of these hypothetical control systems by standard 

methods of biophysical chemistry, but these models usually entail a host of poorly defined 

kinetic constants. Without knowing values for these constants, we cannot simulate the 

behavior of the model in a computer, which is the first step in comparing the predictions of a 

model to the realities of experiments. The “dynamical perspective,” as illustrated in this 

review, relies on ideas from dynamical systems theory (phase planes, nullclines, bifurcation 

diagrams, stochastic models, etc.) to derive the qualitative features of a mathematical model 

(oscillations, bistability, robustness), which can be compared to the qualitative behaviors of 

living cells (signal-response curves, oscillations, checkpoints, mutant phenotypes). The first 

test of any model is to match the qualitative features of the experimental system. In doing 

so, the qualitative theory of dynamical systems will direct the modeler to those regions of 

parameter space (values of kinetic constants) where the model has the potential to match 

experimental observations. By providing initial guesses for parameter values, the qualitative 

theory (the dynamical perspective) sets the stage for numerical simulations that can quickly 

home in on accurate quantitative fits of a model to experimental data. Although in this 

review we have not illustrated how dynamical systems theory helps us to find “good” sets of 

parameter values, it has been our experience over the course of 30 years of modeling cell 

cycle control that this “guidance principle” of the dynamical perspective is one of its most 

useful functions.
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Figure 1. Two views of cell cycle regulation circa 1980
Top: Biochemical studies of frog eggs focused on the role of M-phase promoting factor 

(MPF) in driving cells from interphase (DNA synthesis) into mitosis. Injection of active 

MPF into cells can stimulate premature entry into M phase. MPF activity disappears as cells 

exit mitosis and return to interphase. Bottom: Genetic studies in fission yeast focused on the 

roles of three genes in controlling the transitions between interphase and mitosis. The cdc2 

gene encodes a protein (Cdc2) that is a dosage-independent initiator of mitosis. The wee1 

and cdc25genes encode proteins that inhibit and activate Cdc2, respectively, in dosage-

dependent pathways. Overexpression of wee1 delays mitosis until cells grow larger than 

normal, whereas overexpression of cdc25induces cells to divide at a smaller size.
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Figure 2. Unified view of cell cycle regulation circa 1990 (Nurse 1990)
M-phase promoting factor (MPF) was recognized to be a heterodimer of Cdc2 (kinase 

subunit; gray rectangle) and cyclin B (regulatory/targeting subunit; red oval). Because 

kinase subunits are present in excess, MPF activity can be raised or lowered by controlling 

the availability of cyclin subunits. In frog eggs and fission yeast cells, this control is 

exercised primarily at the level of protein degradation, by controlling the activity of the 

APC:Cdc20 ubiquitination machinery. Alternatively, MPF activity can be inhibited by 

Wee1-catalyzed phosphorylation of Cdc2, and MPF activity can be restored by Cdc25-

catalyzed removal of the inhibitory phosphate group. Wee1 and Cdc25 are, in turn, 

phosphorylated by active MPF. Phosphorylation of Wee1 decreases its kinase activity, 

whereas phosphorylation of Cdc25 increases its phosphatase activity.
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Figure 3. Cyclin threshold for activation of MPF (Solomon et al. 1990)
Top: Solomon’s protocol for assaying the dependence of MPF activity on total cyclin 

concentration. Mature frog oocytes (arrested in meiosis II with high MPF activity) are 

crushed by centrifugation and the cytoplasmic components are separated from the debris. 

The addition of calcium ions to the extract activates APC:Cdc20, causing degradation of 

cyclin B and loss of MPF activity. The addition of cycloheximide (an inhibitor of protein 

synthesis) prevents de novo production of cyclin B from maternal stores of mRNA. This 

preparation is called an interphase-arrested extract. To such extracts Solomon added 

exogenously prepared cyclin B molecules that had been genetically engineered to lack the 

C-terminal amino acid sequence necessary for APC-induced proteolysis. In this way, 

Solomon created a cytoplasmic extract with a fixed and known concentration of cyclin B. 

These cyclin B molecules combined with endogenous Cdc2 molecules to form MPF 

heterodimers, which could be either active (unphosphorylated) or inactive (phosphorylated 
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on the Cdc2 subunit by the action of Wee1 in the extract). Bottom: Solomon measured MPF 

activity as a function of total cyclin concentration in the extract. He observed a distinct 

cyclin threshold for MPF activation, at [total cyclin] ≈ 15 nM. For total cyclin 

concentrations well above this threshold, Solomon observed a time lag of ~15 min from the 

time of cyclin addition to the time when MPF activity reached 50% of its ultimate maximum 

activity.
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Figure 4. The MPF bistable switch
(A) The Novak-Tyson ODEs (Table 1) predict that MPF activity in an interphase-arrested 

frog egg extract may function as a bistable switch in response to the addition of a fixed 

amount of non-degradable cyclin B. For low levels of added cyclin, MPF activity is very 

small (the “off” state), whereas for high levels of cyclin, MPF activity is very large (the “on” 

state). Black (gray) squares: MPF activity as a function of total cyclin concentration if the 

extract starts in the off-state (on-state) and cyclin concentration is increased (decreased). For 

increasing cyclin concentrations, MPF activity turns on abruptly at the activation threshold 

(the upward pointing arrow). If the switch starts in the on-state, then the concentration of 

cyclin must be decreased below the inactivation threshold (the downward pointing arrow) in 

order to flip the switch back to the off-state. (B) In a cycling extract (without the addition of 

cycloheximide), endogenous (degradable) cyclin is synthesized from maternal mRNA in the 

extract and degraded by the APC-proteosome system in the extract. In this case, cyclin 

concentration is increasing when MPF activity is low and decreasing when MPF activity is 

large, and the dynamical system executes relaxation oscillations around a hysteresis loop. 

The blue and red curves are “nullclines” for MPF and cyclin, respectively (Novak & Tyson 

1993a, Novak & Tyson 1993b).
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Figure 5. Hysteresis in the activation and inactivation of MPF in frog egg extracts
Images from Sha et al. (2003); used by permission. (A) Interphase-arrested frog egg extracts 

are prepared as in Fig. 3A. Sperm nuclei are added to the extract to report on MPF activity: 

in interphase the nuclei are compact with dispersed chromatin (stained blue by DAPI in the 

first row of fluorescent images). Furthermore, interphase nuclei have an intact nuclear 

membrane, which is clearly visible in phase contrast images (not shown). When the freshly 

prepared extract is in interphase, non-degradable cyclin B is added to separate aliquots in 

increasing amounts from 0 to 40 nM. Ninety minutes later, nuclei in the 40 nM aliquot have 

entered mitosis (condensed chromatin and dispersed nuclear membrane), but nuclei in the 

other aliquots are still in interphase. The cyclin threshold for MPF activation in this 

experiment is ~35 nM (up arrow). (B) Frog egg extracts are allowed to enter mitosis at t = 

60 min, when separate aliquots are treated with cycloheximide (to block any further 

synthesis of cyclin B) and supplemented with increasing concentrations of non-degradable 

cyclin B. Because MPF activity is high in these extracts, the APC:Cdc20 machinery is active 

and the endogenously synthesized cyclin B is degraded. But the supplementary, non-

degradable cyclin is left behind. By t = 140 min, nuclei in the 16 nM aliquot have returned 

to interphase, but nuclei in the 24 nM aliquot are still in mitosis. The cyclin threshold for 

MPF inactivation in this experiment is ~20 nM (down arrow). For total cyclin B 

concentration = 24 and 32 nM, the extract can persist stably in the low MPF steady state 
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(panel A) or in the high MPF steady state (panel B), confirming the prediction of bistability 

and hysteresis in the MPF control system.
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Figure 6. Critical slowing down of MPF activation in frog egg extracts
Images from Sha et al. (2003); used by permission. As in Fig. 5A, interphase arrested 

extracts are supplemented with a fixed amount of non-degradable cyclin B at t = 0. When 

supplemented with 80 or 60 nM cyclin B, sperm nuclei in the extract have entered mitosis 

by t = 60 min, but extracts supplemented with lower concentrations of cyclin B (50 or 40 

nM; getting closer to the activation threshold) exhibit a longer lag time before entering 

mitosis (75 and 90 min, respectively).
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Figure 7. Unreplicated DNA raises the cyclin threshold for MPF activation in frog egg extracts
Images from Sha et al. (2003); used by permission. (A) Interphase arrested extracts are 

supplemented with 0 or 40 nM non-degradable cyclin B at t = 0 and checked for entry into 

mitosis at t = 40 and 140 min. The cyclin threshold for activation of MPF is less than 40 nM, 

as in Fig. 5 and 6. (B) Same as panel A, except that aphidicolin (an inhibitor of DNA 

synthesis) is added to the extract at t = 40 min. In the presence of unreplicated DNA, the 

cyclin threshold for MPF activation is raised to ~90 nM.

Tyson and Novak Page 25

Bull Math Biol. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8. MPF oscillations in cycling extracts
Data from Pomerening et al. (2005); used by permission. Frog egg cytoplasmic extracts are 

prepared without addition of either cycloheximide or exogenous non-degradable cyclin B. 

The extract synthesizes endogenous degradable cyclin B from maternal mRNA. Such 

extracts can exhibit three or more spontaneous cycles of MPF activation and inactivation. 

(A) Careful measurements of total cyclin concentration and MPF activity during the first 

mitotic cycle. (B) Replotting the data in panel A on the phase plane, MPF activity versus 

total cyclin concentration, parameterized by time (increasing in direction of arrows). The 

oscillation follows the hysteresis loop predicted in Fig. 4B. (C) MPF oscillations in cycling 

extracts supplemented with 200 nM Cdc2 protein that is phosphorylable (Cdc2wt, left) or 

non-phosphorylable (Cdc2AF, right). The Cdc2wt extract exhibits relaxation oscillations 

(spikes of MPF activation). As predicted by the model, oscillations in the Cdc2AF extract 

(with compromised positive feedback loops) are more sinusoidal, more rapid, and of lower 

amplitude.
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Figure 9. Waves of MPF activation in spatially extended extracts
Data from Chang & Ferrell (2013); used by permission. (A) Cycling frog egg extracts, 

supplemented with sperm nuclei, are dispersed in long, thin capillary tubes. During 

interphase, the nuclear envelope is intact and the nuclei fluoresce green. In mitosis, when the 

nuclear envelope breaks down, the fluorescence disperses through the cytoplasm. As nuclei 

complete mitosis, the nuclear envelope re-forms and the green nuclear fluorescence re-

appears. In this preparation nuclei go through repetitive mitotic cycles with a period of ~40 

min. (B) Space-time plots of nuclear entry into mitosis (red points) and exit from mitosis 

(blue points). Over time, mitotic entry and exit organizes into traveling waves (see inset). 

The slope of the space-time plots is the speed of these waves, ~60 μm/min.

Tyson and Novak Page 27

Bull Math Biol. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 10. A dynamical perspective on molecular cell biology
See text for commentary.
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Table I
The Novak-Tyson model of the MPF control system in frog egg extracts (Fig. 2)

du
dt

= k1 − kapc(u) + kwee(u) u + k25(u) v − u u(t) = active MPF

dv
dt

= k1 − kapc(u)v v(t) = total cyclin

kapc(u) = kapc
′ + kapc

″ G(u, θ, J ) kapc(u) = activity of APC:Cdc20

kwee(u) = kwee
′ + kwee

″ G(θ, u, J ) kwee(u) = activity of Wee1

k25(u) = k25
′ + k25

″G(u, θ, J ) k25(u) = activity of Cdc25

G(u, θ, J ) =
2Ju

θ − u + Jθ + Ju + (θ − u + Jθ + Ju)2 − 4Ju(θ − u) Goldbeter-Koshland Function

k1 = 0.018 min−1 θ = 0.3 J = 0.02

k25′ = 0.04 min−1 k25″ = 40 min−1 kwee′ = 0 kwee″ = 3 min−1

kapc′ = 0.03 min−1 kapc″ = 0 Bistability

kapc′ = 0.01 min−1 kapc″ = 1 min−1 Oscillations

These ODEs are derived by combining ideas in Novak & Tyson (1993a, 1993b).
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Table II
Predictions and confirmations of the Novak-Tyson model of MPF control in frog egg 
extracts

Prediction# Confirmation

0 Cyclin threshold for MPF activation (Solomon et al. 1990)

1 Cyclin threshold for MPF inactivation (Pomerening et al. 2003, Sha et al. 2003)

2 Critical slowing down of MPF activation (Sha et al. 2003)

3 Elevated cyclin threshold by unreplicated DNA (Sha et al. 2003)

4 Relaxation oscillations in cycling extracts (Pomerening et al. 2005)

5 Sinusoidal oscillations in Cdc2AF extracts (Pomerening et al. 2005)

6 Propagating wave of MPF activation (Chang & Ferrell 2013)

#
0 is a “postdiction”; 1-6 are predictions. Predictions 1-5 are made in Novak & Tyson (1993b), and prediction 6 is described in Novak & Tyson 

(1993a).
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Table III

Ultrasensitivity parameters# for regulatory proteins

The values of nH and θ = EC50 come from Yang & Ferrell (2013).

Protein n H θ J q

Wee1 4 0.23 0.1 3

Cdc25 11 0.31 0.02 6

APC:Cdc20 11 0.33 0.02 6

#
nH = effective exponent in Hill function, θ = switching threshold in theoretical functions = EC50 in experiments, J = effective Michaelis constant 

in Goldbeter-Koshland function, q = parameter in multi-site phosphorylation function (for N = 10).
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