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Abstract

Over the last decade, advancements in stem cell biology have yielded a variety of sources for stem 

cell-based cardiovascular investigation. Stem cell behavior, whether to maintain its stable state of 

pluripotency or to prime toward the cardiovascular lineage is governed by a set of coordinated 

interactions between epigenetic, transcriptional, and translational mechanisms. The science of 

incorporating genes (genomics), RNA (transcriptomics), proteins (proteomics), and metabolites 

(metabolomics) data in a specific biological sample is known as systems biology. Integrating 

systems biology in progression with stem cell biologics can contribute to our knowledge of 

mechanisms that underlie pluripotency maintenance and guarantee fidelity of cardiac lineage 

specification. This review provides a brief summarization of OMICS-based strategies including 

transcriptomics, proteomics, and metabolomics used to understand stem cell fate and to outline 

molecular processes involved in heart development. Additionally, current efforts in 

cardioregeneration based on the “one-size-fits-all” principle limit the potential of individualized 

therapy in regenerative medicine. Here, we summarize recent studies that introduced systems 

biology into cardiovascular clinical outcomes analysis, allowing for predictive assessment for 

disease recurrence and patient-specific therapeutic response.
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Stem Cells in the Post-Genomic Era

Stem cell biology has entered the post-genomic era, allowing for a holistic understanding of 

developmental molecular events through epigenetic, transcriptional, and post-transcriptional 

signaling. The science of integrating genes (genomics), RNA (transcriptomics), proteins 

(proteomics), and metabolites (metabolomics) data in a specific biological sample is known 

as systems biology [1]. Systems-based approaches utilize the combination of gene and 

protein expression array analyses, gene-gene and protein-protein interactions, and 

intracellular metabolite levels to understand simultaneous occurrence of molecular processes 

[2]. Deciphering critical molecular interactions through systems biology-based strategies 

could guide our goal to achieve functional and safe stem cell-based therapies.

Stem cells are characterized by an inherent ability to self-renew and differentiate into cell 

types from the three primary germ layers, providing a source for tissue regeneration. Stem 

cell behavior, whether to maintain its stable state of pluripotency or to prime toward a 

potential cell fate is governed by a set of coordinated interactions between epigenetic, 

transcriptional, and translational mechanisms. To fulfill the therapeutic potential retained in 

pluripotency, an understanding of molecular properties of self-renewal and commitment is 

required. Several investigators have addressed this challenge with systems biology 

approaches [3–6]. Specifically, Boyer et al used chromatin immunoprecipitation (ChIP) with 

DNA microarrays (Chips) also known as ChIP-Chip analysis [7] to identify the network of 

transcription factors that regulate stem cell fate [3]. Other studies have used in vivo 

biotinylation mediated ChIP (bioChIP) for global target mapping (bioChIP-Chip) and 

reported an expanded set of factors associated with pluripotency maintenance [4]. Compared 

to ChIP-Chip analysis, the bioChIP-Chip relies on streptavidin affinity capture of tagged 

proteins and circumvents issues related to antibody availability [8]. By combining this 

technique with whole-lane liquid chromatography–tandem mass spectrometry (LC–MS/

MS), a commonly used method to measure nuclear protein levels, Wang et al studied the 

protein interaction network and identified factors with critical roles in stem cell pluripotency 

[5]. Systems-level analyses such as ChIP-chip and LC-MS/MS have been used to measure 

global change in histone acetylation and nuclear protein levels to understand stem cell fate 

change [6]. Similar studies assessed stem cell development on the basis of chromatin 

structure and its epigenetic modifications [9,10]. Indeed, integrating systems biology in 

progression with stem cell biologics can contribute to our knowledge of mechanisms that 

underlie pluripotency maintenance and guarantee fidelity of lineage specification.

Advancements in Stem Cell Biology

Natural and bioengineered stem cell populations have been identified including 

hematopoietic stem cells (HSCs), mesenchymal stem cells (MSCs), embryonic stem cells 

(ESCs), tissue-specific adult stem cells, and induced pluripotent stem cells (iPSCs) (Figure 

1).

• Human HSCs are found in the bone marrow, peripheral blood, and placenta, and 

give rise to all lineages of the blood [11]. Adult bone marrow-derived cells 

(Lin−CD34+/−CD45+/−c-kit+) have been shown to modestly augment cardiac 

function recovery by contributing to de novo myocardium in the post-infarcted 
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heart [12]. Alternatively, studies have used cell fate assays to report that HSCs do 

not transdifferentiate into cardiac myocytes in myocardial infarcts [13]. To better 

understand the molecular characterization of HSC microenvironments and the core 

genetic network responsible for HSC differentiation, systems-based approaches 

using messenger RNA (mRNA) and microRNA (miRNA) transcriptomes have 

determined a comprehensive list of hematopoietic regulators [14].

• Human MSCs are found in the bone marrow, adipose tissue, and the umbilical cord 

[15]. They have a propensity for multipotent differentiation into osteoblasts, 

chondrocytes, and adipocytes [16]. Bone marrow-derived MSCs were shown to be 

beneficial in the treatment of chronic ischemic cardiomyopathy [17,18]. Behfar et 

al primed bone marrow-derived MSCs with recombinant trophic factors including 

transforming growth factor-β (TGF-β) or bone morphogenetic protein (BMP), 

allowing for entry into the cardiac program [17]. Similarly, adipose tissue-derived 

MSCs, from minimally invasive liposuction [19,20], can transdifferentiate into 

cells with characteristics of cardiomyocytes and neovascular tissue [21]. However, 

recent studies observed a lack of spontaneous cell contraction in adipose MSC-

derived cardiomyocytes [22]. Comparative analyses of MSCs from bone marrow, 

cartilage, and adipose tissue have been assessed for osteogenic, chrondrogenic, and 

adipogenic differentiation potential [23], yet it remains to be elucidated for 

cardiomyocyte differentiation. Indeed, advances in systems biology provide the 

tools to evaluate global molecular differences in MSCs due to variability in patient 

age, sex, and location of cell isolation. Recent studies utilized microarray 

technology for genomic profiling of bone marrow-derived MSCs and determined 

key molecules regulating stem cell survival, growth, and development [24]. Prior to 

harnessing their clinical benefit, the ability to track MSC regulatory pathway on a 

molecular level by transcriptomic, proteomic, and metabolomic analysis is 

required.

• Embryonic stem cells are derived from the inner cell mass of a blastocyst and are 

pluripotent, giving rise to endoderm, mesoderm, and ectoderm lineages [25]. 

Multiple mouse and human ESC lines have been established [26–28]. Beyond the 

unrestricted growth potential, ESCs create an immunological challenge for 

regenerative medicine [29], limiting therapeutic applications to preclinical studies. 

Systems biology approaches have been actively applied to study ESC properties 

including self-renewal maintenance and lineage commitment [30].

• The adult myocardium has a modest intrinsic regenerative capacity based on the 

presence of cardiac stem-progenitor cells [31–34]. This endogenous cardiac 

regeneration following injury is a highly debated event. Although some findings 

support the concept of the adult heart as a suitable target for regenerative 

intervention [35–37], the contribution of endogenous stem cells to restoring cardiac 

function is limited [38]. Despite the existence of c-kit+ population and the potential 

ability of bone marrow cells to facilitate cardiac repair, intrinsic mechanisms alone 

are inadequate to restore cardiac function to a failing heart [39]. Thus, strategies for 

guiding cells toward the cardiac lineage and stimulating proliferation of post-

mitotic cardiomyocytes are needed. For this purpose, systems-based approaches 
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affords the ability to target genomic, proteomic, and metabolomic influences that 

direct in vivo and in vitro cardiomyocyte differentiation.

• Bioengineered stem cells, or induced pluripotent stem cells (iPSC), are generated 

by reprogramming somatic tissue, namely skin fibroblasts, using ectopic expression 

of defined factors [40,41]. Particularly, transcription factor sets Oct4, Sox2, c-Myc, 

and Klf4 or alternatively Oct4, Sox2, Nanog, and Lin28 are described to reprogram 

human somatic cells to the pluripotent state [42,43]. Studies show that iPSC-based 

transplantation into the adult infarcted heart modestly improves post-ischemic 

cardiac performance [44,45]. Despite the immunocompatible nature of iPSCs 

[46,47], their potential for clinical translation is currently hindered by the risk of 

dysregulated cell growth known as tumorigenicity [48]. Recent findings show that 

pharmacological purging with DNA-damaging agent, etoposide can reduce this 

threat of tumorigenicity [49]. While iPSC reprogramming event produces an 

embryonic stem cell (ESC)-like pluripotent state, human ESCs and their pluripotent 

transcriptome remain the standard for understanding lineage-specific differentiation 

[28,50]. Given the advantage of studying patient-specific and mutation-defined 

diseases using the iPSC platform, high throughput technologies and bioinformatics 

analyses could be progressively utilized to expand our knowledge on iPSC 

maturation potential and lineage specification.

Thus, a variety of sources for stem cell-based cardiovascular investigation are available. 

Prior to clinical-grade application, comprehensively mapping molecular signaling events 

that orchestrate different stages of stem cell differentiation into cardiac lineage is necessary. 

These molecular processes and regulatory mechanisms involved in heart development can 

be exploited to repair the injured heart and achieve tissue regeneration [51]. Additionally, 

the molecular and genetic composition of fully differentiated and functional cardiomyocytes 

needs to be defined. To meet these challenges, high-throughput technologies such as whole 

genome shotgun sequencing, deep sequencing, and CHiP-chip/CHiP-Seq are useful tools. 

Instead of focusing on the role of individual genes, proteins, and pathways in biological 

processes, the systems biology method allows for characterizing how molecular parts 

interact with each other to determine the collective intracellular dynamics as a whole [52]. 

Thus, the systems biology approach to understand commonalities of evolutionarily 

conserved regulatory networks provides new insight to controlling aspects of regeneration 

with transcriptomics, proteomics, and metabolomics.

Transcriptomics

Embryonic and adult stem cells possess a diverse developmental transcriptome, which is 

defined as the total set of RNA transcripts [53]. Recent findings suggest that stem cells vary 

in their differentiation potential towards highly specialized cells including cardiomyocytes 

[54]. Cardiogenesis is the developmental process of the embryonic heart and is tightly 

regulated by signaling pathways and networks of transcription factors [55]. Martinez-

Fernandez et al demonstrate that transcriptome analysis can discern the maturation potential 

of bioengineered stem cells [54]. For instance, stage-specific cardiogenesis was assessed by 

genome-wide transcriptome analysis using distinctive mouse embryonic time points. Based 

on this referential gene expression guideline, it was determined that pluripotent cell lines 
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possess variant cardiogenic potentials depending on three-factor versus four-factor 

reprogramming method.

Systems-based approaches have been explored in similar studies to understand the cardiac 

developmental program. Faustino et al investigated the developing mesoderm transcriptome 

in mouse ESCs and identified over 8,000 genes underlying cardiac specification [56]. 

Incorporating this data with bioinformatics analysis streamlined upregulated and 

downregulated signaling components implicated in inducing the cardiac muscle fate [56]. 

Similarly, system-expression profiling, in conjunction with bioinformatics network analysis, 

allowed for identifying specific biomarkers (CXCR4/FLK-1) primed for cardiogenic 

specification [57]. Nelson et al used genome-wide microarrays on ESC-derived cardiac 

progenitors and identified a distinct transcriptome profile of 11,272 transcripts. Based on 

this information, bioinformatics dissection of exposed surface biomarkers prioritized 

CXCR4 chemokine receptor cluster as the most over-represented gene receptor family 

during pre-cardiac induction. Subsequently, CXCR+/FLK-1+ subpopulation was isolated 

from the ESC pool and differentiated to yield an enriched Mesp-1, GATA-4, and Tbx5 

population, indicative of pre-cardiac mesoderm [57]. Indeed, identification of novel 

biomarkers and secreted cardio-inductive signals at each phase of myocyte differentiation 

can be achieved by genomic profiling of cardiogenesis [58,59].

Mapping transcriptome networks accelerates our understanding of stem cell-based 

cardiogenesis and its biological underpinnings. Embryonic heart formation occurs through 

strict combinations of extracellular signaling and structured patterns of timing that guide 

pluripotent cells through mesoderm induction into specialized cardiac cells, including atrial 

and ventricular cardiomyocytes, conducting cells, fibroblasts, and vascular endothelial and 

smooth muscle cells [60,51]. In the developing embryo, WNT and NODAL signaling 

networks are evolutionary conserved molecular cascades that induce mesoderm and 

endoderm, and are widely used to initiate cardiogenesis in ESC cultures [61,62]. Instructive 

guidance from NOTCH and FGF play an important role in the proliferation and fate 

selection of cardiac progenitors and is directed by a temporal window that is either inductive 

or inhibitive [63]. Global changes in the transcriptome of newborn cardiomyocytes revealed 

that myocardial NOTCH signaling drives cardiomyocytes to a conduction-prone phenotype 

[64].

Recent transcriptome studies identified factors that differentially regulate cardiogenesis from 

murine ESCs. Cai et al showed that both NODAL and TGFβ signaling induced early cardiac 

progenitor formation, yet NODAL expression declined due to feedback inhibition and TGFβ 

expression continued [65]. At later stages of cardiogenesis, TGFβ suppressed cardiomyocyte 

formation and stimulated vascular smooth muscle and endothelial differentiation [65]. 

Indeed, specification of cardiogenic cells is highly regulated by methodical exposure to 

these signaling factors. To comprehensively analyze the dynamic gene expression profile 

from the stem cell stage to adult cardiac structures, Li et al used a time-course transcriptome 

analysis of innate murine cardiogenesis [66]. Stage-specific analysis of the cardiogenic 

interactome identified developmental disturbances in epithelial-to-mesenchmyal transition 

(EMT), BMP signaling, NF-AT signaling, TGFβ-dependent EMT, and NOTCH signaling, 

elucidating regulatory networks at the boundaries of health and disease (87). Such initial 
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gene expression trends of cardiovascular development concur with the dynamism of lineage 

specification as each stage of cardiac differentiation assumes a discrete molecular 

fingerprint.

Identifying pro-cardiogenic genes by means of transcriptome analysis could allow for 

targeted execution of the cardiac program. High throughput approaches such as DNA 

microarrays have been used to elucidate cardiogenic instructive signaling in mouse ESCs 

[67]. Several studies agree that transcription factors including Nkx2.5, MEF2C, and GATA4 

are upregulated with cardiac-specific commitment [56,68,67]. In addition, cellular binding 

small molecules including cytoskeletal, polysaccharide, and metal-ion-binding factors are 

upregulated during cardiovascular development [69,56]. Conversely, there is a decline of 

pluripotency markers including Oct4, Sox2, and Nanog, implying that differentiation 

downregulates components of DNA replication, cell cycling, and cancer mechanisms [56]. 

Gene Ontology Consortium studies of the differentiating transcriptome also found that 

downregulated transcripts exhibited significant RNA binding activity, ribosome structure, 

and translation regulators, defining a loss of oncogenicity associated with pluripotency and 

an acquisition of cardiac tissue-specificity [70]. This phenomenon of losing pluripotent 

expression prior to gaining mesoderm-specific markers suggests mutual exclusivity among 

each phase of cardiogenesis. Integration of gene expression profiles with proteomic and/or 

metabolic profiles could increase the precision of conserved cardiogenic transcripts.

Proteomics

Proteomics is defined as the large-scale study of protein abundance and its variations at 

specific time point [71]. Intracellular signaling events and post-translational modifications 

that direct self-renewal and differentiation events can be largely understood by mass-

spectrometry-based proteomic technologies [72]. For example, 2D electrophoresis 

comparing the proteomic profile of spontaneous mouse ESC-derived cardiomyocytes and 

neonatal-derived cardiomyocytes yielded a 95% similarity of the proteins [73]. Similarly, 

human ESC-derived cardiomyocyte transcriptome revealed a gene expression profile at 

levels corresponding to 20-week fetal heart cells [74]. In contrast, Yin et al showed that 

ESC-derived smooth muscle cells (SMCs) expressed identical smooth muscle markers yet 

their proteome was vastly different from aortic SMCs [75]. This suggests that marker 

proteins used for characterizing mature cell populations may not be sufficient to classify 

stem cell-derived cell populations [75,76]. Discerning the divergent expression pattern 

between the naturally differentiated cell types and stem cell derived-mature cell types at 

both transcriptomic and proteomic levels could be considered an important step in 

advancing cell therapy-based regenerative medicine.

Proteomic methodologies used for lineage specification can reveal growth factor signaling 

relationships [77,78]. Although extracellular cues such as cytokines and matrix factors 

generate cell behavioral responses such as proliferation and differentiation, it is challenging 

to assign cue-response relationships in a direct manner [77]. Prudhomme et al used the 

computational partial-least-squares (PLS) analysis in combination with Western blot to 

delineate this cue-response relationship. Using this method, strongly correlated 

phosphorylated proteins involved in the signaling network that governs self-renewal versus 
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differentiation were identified [77]. Similarly, comparative proteomics by tandem mass 

spectrometry (MS/MS) revealed candidate effectors of mouse ESC cardiac differentiation 

[79], contributing to our understanding of guided developmental cardiogenesis.

Network hub analyses, a commonly used technique to map nodes and interactions of 

proteins, have cross-referenced subsets of stem cell-derived cardiac progenitors to reveal a 

robust pro-cardiogenic network en route to cardiomyocyte differentiation [80]. Targeted 

treatment with SDF-1, VEGF, and BMP2 was shown to activate signaling networks that 

guide cardiac determination [80]. Further network analysis of cardiogenesis-associated 

signaling cascades identified integrin, WNT/β-catenin, IL6, IGF-1 and cardiovascular 

hypoxia pathways as prominent in cardiac progenitor cells [56,81]. Such signaling networks 

converged with TGF-β, JAK/STAT, granulocyte-macrophage colony stimulating factor/

colony stimulating factor 2 (GM-CSF/CSF2), and calcium signaling in stem cell-derived 

cardiomyocytes [82]. In addition to factors that accelerate cardiomyocyte differentiation, 

studies also described network decelerants that postpone cardiogenesis [56,83]. Identifying 

promoting and rate-limiting signaling hubs in the cardiopoietic framework could be 

advantageous in directing cardiac lineage specification.

Metabolomics

Integrating OMICS data in cardiovascular research could guide our understanding of global 

regulation of signal transduction and cellular metabolism [76]. In particular, the study of 

metabolomics captures the chemical fingerprint behind cellular processes. Bioengineered 

stem cells undergo a metabotype conversion from oxidative metabolism to glycolysis during 

nuclear reprogramming [84]. Conversely, during cardiogenesis, the metabolomic module 

acquires a mandatory switch from glycolysis to oxidative phosphorylation that drives ESC 

cardiac differentiation [85,86]. Chung et al assessed the glycolytic phosophotransfer 

network during mouse ESC cardiogenesis by high-throughput arrays [86]. Lactate-

generating capacity of ESCs, quantified by uncoupling agents and respiratory chain 

inhibition, was measured during stem cell cardiac differentiation and correlated with array 

findings [86]. Linking alteration of cellular metabolism and function to both proteomics and 

transcriptomics could facilitate our goal in engineering specialized cardiovascular tissues.

Metabolomics allows for identification of unique biomarkers that are informative of cellular 

status during stem cell differentiation and dedifferentiation [87]. Specifically, intracellular 

(fingerprint) and extracellular (footprint) metabolomes have defined baseline stem cell 

metabolic landscape and its changes in the diseased state [88,89]. Studies have utilized 

metabolomic techniques to investigate the role of energy metabolism in controlling stem cell 

fate [90,91]. Mohyeldin et al showed that hypoxia-mediated activation of glycolytic 

metabolism increased the efficiency of nuclear reprogramming and maintained the 

pluripotent ground state [92]. Conversely, upregulation of the electron transport chain 

subunits and tri-carboxylic acid enzymes with decreased expression of glycolytic enzymes 

propagated cardiomyocyte differentiation [93,94]. Metabolic profiling techniques allow for 

the resolution of energy-dependent pathways that control lineage specification and could be 

utilized to enrich the examination of metabolic dynamics in different physiological and 

pathological states.
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The main question arising from current studies in systems biology remains how these 

molecular regulatory mechanisms interact during cardiac differentiation. Investigating the 

transcriptional, translational, and epigenetic interplay would provide a holistic perspective in 

understanding cardiovascular development. One systems biology approach combined 

cardiac mRNA profiles with cardiac transcription factors (Gata4, Mef2a, Nkx2.5, and Srf), 

activating histone modifications and miRNA profiles [70]. In this study, Schlesinger et al 

showed that combinatorial regulation of mouse HL-1 cardiomyocytes exhibited 

interdependency among the three levels of molecular regulation, suggesting a capacity for 

mutual and reciprocal regulation [70]. Future studies directed at leveraging system 

interdependence may extrapolate novel therapeutic avenues in the context of regenerative 

cardiology.

OMICS Approach to Cardioregenerative Medicine

Introducing OMICS-based strategies into clinical outcomes analysis may allow for 

predictive assessment for disease recurrence and patient-specific therapeutic response. 

Recent studies using whole-genome expression microarray on blood samples from first-time 

acute myocardial infarction (AMI) patients elucidated differentially regulated genes and 

modulate pathways associated with recurrent cardiovascular outcomes [95]. Furthermore, 

corresponding bioinformatics analysis revealed increasing disease severity was associated 

with decreased expression of genes involved in the developmental epithelial-to-

mesenchymal transition pathway, providing a cell-based approach for risk stratification in 

patients following AMI [95]. Disease anticipation prior to symptomatic presentation 

provides opportunities for proactive and preventative clinical management.

In the current era of cell therapy approaches for ischemic heart disease, clinical trials 

continue to evaluate the use of multipotent stem cells for cardiac regeneration. Investigators 

of the Phase I SCIPIO trial studied the delivery of mast/stem cell growth factor receptor Kit 

(SCFR; also known as c-Kit) positive cardiac stem cells and reported therapeutic benefit in 

LVEF of 12.3% ejection fraction units in the initial eight patients treated compared to 

baseline values [96]. Similarly, the Phase II C-CURE trial determined the safety of 

cardiopoietically-induced hMSCs in the context of heart failure and established a benefit in 

LVEF of 7% over baseline values [97]. Among the patients receiving C-CURE cell therapy 

that had 6-month follow-up (n=21) the reported change in LVEF varied from 2% to 10% 

over baseline values, suggesting a variability in patient response [97]. Genomic and 

proteomic analysis of patient-specific response could allow for stratification of therapeutic 

responders versus non-responders in cardiac regeneration (Figure 2). Additionally, current 

therapeutic benefit varies between clinical trials due to differences in transplanted cell types, 

differing in their paracrine potency, anti-apoptotic properties, tissue engraftment, and 

regenerative efficacy [98,99]. Such discrepancies could be analyzed using systems-based 

technologies to propose the most effective individualized cell therapy on a patient-specific 

basis.
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Clinical Implications of Integrated Network Modeling

Novel insights into the biological networks governing cardiac regenerative mechanisms, 

including signaling factor and cytokine interaction, present innovative and effective 

strategies for applying stem cell therapeutics in acute regeneration of the infarcted ventricle 

[98]. Preclinical studies have validated the ability of cell therapy to increase myocardial 

functionality in various animal models, yet significant challenges preclude immediate 

clinical standardization of stem cell therapy [97]. The main challenges prior to achieving 

clinically meaningful regeneration include: (1) obtaining optimal amounts of primed cardiac 

progenitor cells and (2) assuring functional integration into the myocardium without 

inducing arrhythmic complications [35,100]. Systematic assessment of the signaling and 

genetic networks that target cardiac differentiation would advance our understanding of the 

genomic and proteomic regulators involved in enhancing cardiac repair. Utilizing OMICS-

based network studies to standardize stem cell expansion and their cardiogenic guidance 

may facilitate implementation of safe and effective clinical translation (Figure 2).

The promise of cellular cardiogenesis and neovascularization using the regenerative 

platform necessitates thorough knowledge of the myocardial transcriptome, proteome, and 

metabolome. Genome-wide studies could elucidate key developmental circuits that might be 

involved in the transition of cardiac progenitor-stem cells into the cardiac muscle fate. 

Indeed, interdependent genomic and proteomic evaluation of adult stem cells demonstrating 

efficacy is necessary to devise an approach that maximizes cell capacity for repair prior to 

transplantation [101].

With the multiplicity of available stem and progenitor cell populations, the scope of clinical 

cardiac trials is continuously expanding [102,98]. Yet, a key concern in implementing stem 

cell transplantation therapy for heart disease is the selection of a particular developmental 

cell stage for post-engraftment safety and efficacy. Many studies have evaluated the 

generation and characterization of stem cell-derived cardiac progenitor cells, however little 

is known about the interdependent molecular signaling that subsequently converts 

committed cells into cardiomyocytes. Moreover, functional cardiomyocyte maturation 

including the acquisition of electrophysiological properties for conduction deserves further 

investigation. Understanding the cardiac transcriptome produces beneficial preclinical 

research regarding how each cell type affects cardiac performance and pathology. High-

throughput systems biology approaches provide an unbiased holistic means to identify 

crucial signaling pathways involved in functional cardiomyocyte maturation and 

cardioprotective mechanisms. Integrated OMICS studies could yield global perspectives that 

view human development as a composition of highly interlinked cellular networks and 

bridge current knowledge gaps in myocardial lineage specification. Many investigators 

concur that a combination of tissue engineering, pharmacological approaches, and cellular 

transplantation, with appropriate quality control and validation of inter-trial consistency, 

would produce the safest and most promising therapies [103–105]. Indeed, system biology 

approaches characterizing the physiological and pathological cardiac blueprint can progress 

our ability to clinically regenerate the heart in situ and in vivo.
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Conclusion

Current efforts in cardioregeneration based on the “one-size-fits-all” principle limits the 

potential of individualized therapy in regenerative medicine. Integrated systems biology 

presents the opportunity to match molecular defects in patients to the regenerative product 

required for safe and effective therapeutic benefit. Additionally, next generation systems 

biology approaches define with increased resolution the means for risk stratification in 

patients. In the era of translating stem cell advances into the clinic, bioinformatics serves as 

a critical tool to better inform our clinical practice and elevate patient care.
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Figure 1. Initial developments in stem cell biology in parallel with the evolution of systems 
biology
Unraveling DNA structure, technological development of DNA sequencing, emergence of 

genomics, proteomics, and the completion of the genome project has coincided with critical 

discoveries in stem cell isolation and reprogramming strategies, resulting in cutting-edge 

efforts to utilize these findings for translational applications.
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Figure 2. Integration of systems biology algorithms towards clinical application
Genomics, proteomics, metabolomics, and others allow for the elucidation of novel 

pathways involved in the step-wise differentiation of pluripotent stem cells to 

cardiomyocytes. Such bioinformatics analyses in the context of clinical translation can lead 

to patient-specific risk stratification and therapeutic response characterization.
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