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Abstract

Protein-protein interactions (PPIs) are emerging as attractive targets for drug design because of 

their central role in directing normal and aberrant cellular functions. These interactions were once 

considered “undruggable” because their large and dynamic interfaces make small molecule 

inhibitor design challenging. However, landmark advances in computational analysis, fragment 

screening and molecular design have enabled development of a host of promising strategies to 

address the fundamental molecular recognition challenge. An attractive approach for targeting 

PPIs involves mimicry of protein domains that are critical for complex formation. This approach 

recognizes that protein subdomains or protein secondary structures are often present at interfaces 

and serve as organized scaffolds for the presentation of side chain groups that engage the partner 

protein(s). Design of protein domain mimetics is in principle rather straightforward but is enabled 

by a host of computational strategies that provide predictions of important residues that should be 

mimicked. Herein we describe a workflow proceeding from interaction network analysis, to 

modeling a complex structure, to identifying a high-affinity sub-structure, to developing 

interaction inhibitors. We apply the design procedure to peptidomimetic inhibitors of Ras-

mediated signaling.
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1. Introduction

The centrality of protein-protein interaction (PPI) networks in regulating cellular function 

offers attractive opportunities for drug discovery [1, 2]. PPIs are considered fertile yet 

challenging targets for inhibitor design [3]; however, advances in molecular and structural 

biology as well as computational chemistry and molecular design have afforded potent 

inhibitors for previously intractable targets [4]. Mimicry of protein domains that are critical 

for the formation of native protein-protein complexes offers an attractive approach for the 
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design of PPI inhibitors [5-8]. This protein domain mimicry approach is complementary to 

small molecule high throughput and fragment based screening approaches, with each 

method offering distinct advantages [9, 10]. While protein domain mimetics employ 

quaternary structure information to imitate native bound states, small molecule high-

throughput screens can reveal binding pockets and molecules that allosterically modulate the 

binding surface [11-14]. Fragment-based methods identify small molecule binders and 

employ an iterative approach to recombine them to produce a potent ligand for the target 

interface [15]. These different yet complementary approaches have yielded orthosteric and 

allosteric inhibitors while revealing general principles that can be extended to broad classes 

of PPIs [16]. In this review, we outline steps to the design of protein domain or protein 

secondary structure mimetics as inhibitors of chosen PPIs. We focus on the design of PPI 

inhibitors that modulate Ras/Sos and Ras/Raf complexes as model systems, with a focus on 

description of the in silico resources available to guide a project from target selection to 

compound design. An overview of the process is depicted in Figure 1.

2. Computational Methods to Target Protein-Protein Interactions

Commonly, efforts to design novel inhibitors begin with a disease state in mind, rather than 

a specific protein or a specific protein complex. Disease states can be distinguished from 

healthy states by comparing the signaling networks present in each; for example, cancers 

typically exhibit upregulated proliferation signaling circuits. Thus, before arriving at a 

specific protein complex, one must examine the perturbations native to the disease state and 

determine what interactions within that signaling network might return it to health.

2.1. From Disease State to Protein-Protein Interaction

The majority of inter-species variation owes to differences in the interactions between gene 

products rather than differences in gene sequences [17]. The connectivity of nodes in PPI 

networks is often employed to distinguish types of targets for prospective modulation [18]. 

High connectivity nodes likely have more off-target effects, which can potentially produce 

toxicity; on the other hand, low-connectivity nodes may be unlikely to have a meaningful 

effect on the disease phenotype. Synthetic inhibitors may be designed to be “frequent 

hitters” that are intrinsically nonselective or to specifically engage more than one target [19, 

20]. As an example of the latter case, tumors with wild-type p53 frequently overexpress two 

negative regulators, Mdm2 and Mdmx; drug molecules that promiscuously bind both 

negative regulators are highly desirable [21].

PPI networks are typically evaluated using gene knockdown strategies, such as RNAi, which 

result in total and irreversible abrogation of a protein’s effects. Under such conditions, high-

connectivity nodes are likely to produce a strong toxic effect. A distinguishing feature of 

molecular interaction inhibitors is that they are uniquely capable of specifically disrupting 

one edge of a network where the impact of modulating high-connectivity nodes can be 

titrated in a concentration dependent manner [22-25]. Thus, synthetic inhibitors afford dose-

dependent controlled inhibition of specific sets of interactions for a particular protein 

[25-27].
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Given a network believed to describe the interactions relevant to a certain disease state, the 

identification and analysis of the most important and inhibition-amenable interaction nodes 

is critical to develop useful PPI inhibitors. Several network analysis tools have been 

described. Network metrics beyond node connectivity can aid in target selection; for 

example, the pairwise disconnectivity index measures how essential a given protein is for 

sustaining the connection between two others [28]. Networks can even be used as inferential 

tools to support the existence of protein-protein interactions for which there exists no direct 

experimental evidence [29]. Johnson’s interface interaction network, or IIN, describes which 

protein interfaces are commonly bound by multiple proteins and thus permits the early 

identification of potential off-target effects [30].

2.2. From Protein-Protein Interaction to a Structural Model

Though there are hundreds of thousands of protein-protein interactions predicted in humans, 

there are fewer than twenty thousand non-redundant multiprotein complexes in the Protein 

Data Bank [31]. High resolution structures are invaluable for structure-based design of 

inhibitors. However, in the absence of experimental structures, homology models and 

mutagenesis data often provide sufficient information for preliminary design. Homology 

models are produced by performing multiple sequence alignments and threading the novel 

sequence along the backbone of template structures. The result is then refined, especially 

where the novel sequence is likely to differ structurally from the template. SWISS-MODEL 

provides a webserver to perform homology modeling and an annotated database of 

previously constructed homology models [32, 33]. Broadly speaking, models arising from at 

least 90-95% sequence identity tend to have equivalent resolution to the experimental 

structures from which they are derived; they exhibit errors mostly due to side-chain packing 

and are suitable for ligand docking and structure-based drug design [34]. For more precise 

and residue-level quality assessment, one may employ algorithms like QMEAN [35]. Many 

utilities for subsequent inhibitor docking and design studies can use an ensemble of top-

scoring homology models or all the models of an NMR structure [36-38].

2.3. From Structural Model to Inhibitory Substructure

The typical protein comprises several hundred amino acids, and a surprisingly large 

proportion of those residues contribute to the interface of protein-protein interactions. One 

study suggests that almost a quarter of all residues in protein dimers appear at the interface 

[39]. Specifically, a sample of over 35,000 two-protein interfaces from the Protein Data 

Bank [31] suggests that a protein at a protein-protein interface typically contributes dozens 

of residues, often in disconnected segments [40]. Typical orthosteric inhibitors must mimic a 

minimal subset of interface residues. Two complementary metrics for judging the relative 

importance of different residues are ΔΔG and ΔSASA. ΔΔG refers to the change in binding 

energy upon mutation of a residue to alanine (Figure 2) and may be found by modeling or 

expressing point mutants of the protein of interest; generally, mutating important interface 

residues to alanine abrogates binding and results in high positive ΔΔG [41, 42]. ΔSASA, in 

contrast, is a description of the change in solvent-accessible surface area upon binding and 

may easily be decomposed on a per-residue basis. While ΔSASA is more straightforward to 

compute and requires fewer subjective choices of parameters and algorithms, its relationship 

to a corresponding Kd or IC50 is more distant; in contrast, ΔΔG is more difficult to compute 
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but bears an immediate relationship to Kd Identifying hotspot residues (ΔΔG greater than 

some threshold, often 1–2 kcal/mol) and anchor residues (ΔSASA greater than 100 Å2) is a 

first step towards limiting the search space for desired interface substructures. A selection of 

databases cataloguing protein-protein interactions, along with useful biophysical data, is 

presented in Table 1.

ΔΔG may be computed by using Rosetta or via MM/PBSA or MM/GBSA analysis of 

molecular dynamics trajectories [58, 59]. In situations where alanine scanning would either 

be laborious or prohibited by a structural feature that a specific computational package 

cannot model well, ΔΔG values may be computed indirectly by machine learning [60]. 

Evolutionary conservation, selecting the most often buried residues from a global docking 

study, or even feature analysis purely on the primary sequence can indicate important 

residues [61-65]. Influential interactions can also be identified and quantified by 

formalizations of traditional visual analysis. For example, buried hydrophobic surface area is 

worth about 2-2.5 kcal/mol per 100 Å2, lysine cation-pi interactions contribute around 

0.4-1.1 kcal/mol, and buried neutral hydrogen bonds are valued anywhere from 0.5-1.8 

kcal/mol [66-69]. Important substructures may also be identified by examining the target 

protein; viable binding pockets may be determined from apo structures [70]. In fact, while 

the receptor-centric notion of a hotspot for ligand binding lines up well with the native 

interaction-based notion of a hotspot residue, not all hotspot residues are bound in receptor 

hotspots, and thus not all hotspot residues can be used as handles for design [71].

Assessing the shape of inhibitory substructures can guide design efforts by defining the 

types of inhibitors that are typically appropriate. We have classified helical interfaces as 

“binding clefts” where the important residues are concentrated within a binding pocket and 

as “extended interfaces” where the critical residues are diffused over the surface (Figure 3). 

Interfaces with a binding cleft are likely more susceptible to small molecule inhibition than 

especially large interfaces [72]. However, extended interfaces cannot be addressed by 

simply employing the native interface peptide. First, the ordered conformation the peptide 

adopts in the protein context is unlikely to be substantially populated in aqueous buffer. 

Second, that peptide is likely to be proteolytically cleaved and incapable of entering the 

desired cell type. The reason that one might consider only an inhibitory substructure 

becomes particularly plain for Ras/Sos. While protein-protein interactions generally present 

a prohibitively large interface, typically around 1600±400□Å2, the Ras/Sos interaction is an 

extreme case [73, 74]. Sos is a 150 kDa protein; its interface with chain R contains over a 

hundred disconnected residues, wildly more than would be feasible for direct mimicry.

Substructures can indicate approaches to modulate specificity as much as affinity. In a 

seminal study, Milletti and Vulpetti screened pockets occupied by ATP and drug compounds 

against nearly two hundred thousand pockets between 300 and 4000 Å2 from other proteins 

in the Protein Databank [75]. Strikingly, E. coli phosphoenolpyruvate carboxykinase 

(PCKA) possesses an ATP-binding pocket similar to regions of a variety of proteins with 

entirely different folds, including the GTP-binding pocket of RAN and the catalytic domain 

of Ras-GDP; in contrast, applying the same procedure to pyridoxal kinase only returned 

alternative crystal structures of the same protein. Using this method, the pockets of a desired 

Watkins and Arora Page 4

Eur J Med Chem. Author manuscript; available in PMC 2016 April 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



partner protein can be evaluated for their intrinsic promiscuity and likelihood to produce off-

target effects; further design efforts can focus on a protein’s most unique interface regions.

2.4. From Inhibitory Substructure to Inhibitor Design

Many specific scaffolds are available to mimic interface secondary structure elements. The 

rational design of such native-inspired scaffolds provides a complementary approach to 

screening methods. Because the structures of native complexes are unlikely to describe the 

entire space of possible binders, screening can provide hits that structural design would be 

unable to predict. For example, interfaces that lack high-affinity secondary structure 

elements may nonetheless contain a number of medium-affinity pockets and thus be good 

candidates for fragment-based discovery methods. Small molecule drugs simply require a 

geometrically small interface with spatially dense hotspots. There are around 11,500 helical 

interfaces listed in HippDB that contain exactly two hotspots within one helical turn (i.e. i, i

+1 through i, i+4); such interfaces are amenable to small molecule inhibition. The rational 

design of secondary structure mimetics, however, provides a unique opportunity to combine 

the modularity of peptides with the desired biological properties of small molecules.

Broadly speaking, secondary structure mimetics may be described as either peptidic or 

nonpeptidic. The former class possesses a native backbone but contains essential alterations 

that affect its conformational equilibrium, while the latter mimics the residue presentation of 

the native ensemble despite a very different distribution of conformations, owing to 

nonpeptidic backbone. The decision to employ peptidic or nonpeptidic domain mimetics is 

determined by a balance of predicted efficacy and other desirable properties. A nonpeptidic 

mimetic may only be able to present a few side chains or may only be able to mimic one 

helix or strand face; on the other hand, it may possess superior metabolic stability [76, 77]. 

Furthermore, peptidomimetics are naturally subject to conformational considerations, even if 

the sequence-based trends differ from native peptides. Peptidic scaffolds are far more likely 

to exhibit similar conformational distributions to native peptides than are nonpeptidic 

scaffolds [78].

Only a subset of known and validated peptidomimetic scaffolds are compatible with 

common structural modeling packages. Generally speaking, molecular mechanics-based 

packages like Schrödinger’s MacroModel[79] are only affected if a scaffold employs an 

unfamiliar atom type, which is particularly uncommon. Thus, most scaffolds can be 

simulated using such packages, as though they were small molecule ligands, without further 

effort. Often, however, it is desirable to use a package that is endowed with particular 

information about inter-residue interactions and packing, or a force field that is known to 

reproduce specific conformations of the desired ligand; in particular, while many force fields 

may do an acceptable job on a relatively small peptidomimetic, one may seek a modeling 

methodology that also models the protein well. Rosetta is one such modeling suite; it is 

considerably powerful at both ab initio structural prediction and at protein design [80, 81] 

and it recently was extended with support for a variety of peptidomimetics, such as the 

hydrogen bond surrogate, oligooxopiperazines, and peptoids [82]. Where such integration is 

not already available, it can be developed; a non-native residue, such as the hydrocarbon 

staple, can be incorporated into a molecular dynamics force field like AMBER simply by 
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using high level geometry optimization (for example, using Gaussian) and providing the 

results to a restrained electrostatic potential charge-fitting service like the R.E.D. server [83, 

84]. In parallel to efforts to incorporate non-native scaffolds, parameter sets have been 

developed to incorporate non-canonical amino acid residues into both Rosetta and molecular 

dynamics forcefields like Amber [85, 86].

3. Targeting the Ras/Sos and Ras/Raf interactions

To illustrate the prior summary of computational methods, we discuss computational 

approaches to targeting the Ras pathway, to illustrate decision points encountered in the 

rational design of synthetic ligands for protein-protein interactions. We identify two key 

protein-protein interactions that may modulate the downstream effects of the Ras pathway, 

find complexes that serve as viable structural models of those interactions, isolate minimal 

regions of those complexes that may be amenable to mimicry, and propose inhibitor 

candidates based on those substructures.

3.1. Network analysis

Ras is a small GTPase strongly implicated in cell proliferation in cancer [87-89]. Ras is a 

high-connectivity target, and its downstream effectors include a kinase cascade that affects 

nearly a hundred different targets.[90] Figure 4 depicts an annotated map of the interaction 

network surrounding HRas, produced using string-db.org.[91]

For the purpose of this investigation, we will consider modulating this signaling pathway via 

the inhibition of either of two interactions: Ras-Sos and Ras-Raf. Ras signaling is activated 

upon the conversion of GDP-bound Ras to GTP-bound Ras, a process catalyzed by the Ras-

specific guanine nucleotide exchange factor Sos. Subsequently, GTP-Ras binds Raf, the 

entry point into the MAP/ERK pathway (Figure 5). Broadly, Ras signaling has been targeted 

by preventing receptor tyrosine kinase activation, Ras membrane localization, Ras/Sos 

complex formation, and activation of downstream kinases.[92] Small molecule inhibitors 

that bind allosteric sites on Ras and disrupt Ras-Sos complexation have been developed 

using SAR by NMR and fragment based drug design using thiol tethering [11, 93, 94]. In 

contrast, inhibition of the Ras-Raf complex has not been investigated as intensely. 

Successful inhibitors of this interaction include sulindac sulfide and MCP compounds 

discovered in yeast two-hybrid screens [95, 96].

3.2. Structure identification

In the Ras-Sos case (Figure 6a), there exist four high-quality crystal structures of Ras in 

complex with Sos (PDB: 1NVU, 1NVV, 1NVW, 1NVX) [97]. The primary biological 

assembly and the asymmetric unit in all four cases contains two Ras molecules (chains Q 

and R) and one Sos molecule (chain S), but they differ in crucial ways. While chain R is 

wild-type in each case, only in 1NVW is chain Q wild-type; 1NVU and 1NVX contain 

A59G Ras, a mutation that is not at the SOS interface, and 1NVV contains Y62A Ras, a 

mutation close to the interface with SOS. Moreover, the chain Q Ras unit in 1NVW is bound 

to GNP, as desired, while chain Q in 1NVX is bound to GTP. 1NVW and 1NVV are clearly 

the most attractive structures for our purposes; for this narrative we will continue with 
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1NVV, keeping in mind the Y62A point mutation, simply because its resolution is 

somewhat better than that of 1NVW. For a full study, it would be instructive to perform the 

same procedure on all structures available and compare the results. We employed Rosetta’s 

“relax” protocol for structural refinement to optimize hydrogen placement and side-chain 

rotamer packing; we generated 200 decoys and used the lowest-energy resulting structure.

For Ras-Raf, there exist four crystal structures that may be employed (Figure 6b). One is 

wild-type (PDB: 4G0N); one includes a mutant Ras (PDB: 4G3X); one examines a mutant 

Raf (PDB: 3KUD); finally, one employs in place of Raf a homologous kinase found in S. 

pombe, Byr2 (PDB: 1K8R). For this review, we utilized the Byr2 complex, which has been 

available since 2001 and has provided a foundation for past Ras/Raf inhibitor designs.

3.3. Finding an inhibitory substructure

We extended the investigations into Ras/Raf and Ras/Sos by conducting Rosetta’s alanine 

scanning protocol using the online server Robetta [98]. We used this data to evaluate the 

interactions of both the orthosteric (chain R) and allosteric (chain Q) Ras units with the Sos 

molecule, and similarly for the Ras (chain A)/Raf (chain B) complex. Both Ras/Sos 

interfaces contain a number of residues with sizable ΔΔG values (reported as Rosetta energy 

units, or REU, which are approximately 1 kcal/mol in magnitude). In each case, substantial 

ΔΔG is present across a wide range of primary sequence and Cartesian space. In the Ras/Sos 

complex, residues in the low 800s contribute 5 REU and residues in the low 1000s 

contribute almost 2 REU, while in Ras/Raf, residues in the upper 600s contribute over 11 

REU while residues in the upper 900s contribute about 3 REU. Unquestionably, only a 

fraction of all the residues with inhibitory potential might be mimicked.

3.3.1. The Ras–Sos complex—Ras–Sos interfaces present attractive starting points for 

Sos mimicry and thus Ras inhibition. Range 683-695, at the S-Q interface, and range 

929-944, at the R-Q interface, are both alpha helices, which is an encouraging result due to 

the wide variety of α-helix mimetics available (Figure 7). We chose to corroborate our 

results using the PocketQuery server, imagining that similar indications of promising 

regions for mimicry would be strong evidence for our two high-affinity residue ranges. 

Using PocketQuery on 1NVV provides a list of many different combinations of residues 

that, taken together, make for strong inhibitor design candidates. Most are two or three 

residues in all, and top candidates include His911+Thr935+Lys939 and Arg694+Trp729. 

These results might be particularly instructive to explore from a fragment-based or small-

molecule-screening approach.

3.3.2. Ras–Raf complex—In contrast to the Ras–Sos complex, residues to mimic either 

from Ras or Raf are fewer and further between. Ras’s highest-affinity single hotspot residue 

is isolated, and 5 REU of ΔΔG is available in the 36-40 range. The same goes for Raf, with 

residues 81-86 similarly representing a limited amount of ΔΔG, though any strategy capable 

of mimicking 72 and 74 as well might have more use. The Ras/Raf interface presents few 

attractive handles for inhibitor design in the native structure; no connected segment presents 

a large amount of total ΔΔG. In each case, the secondary structure present is a beta strand. 

Furthermore, the residue sets present on each protein are part of pairs of antiparallel strands, 
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which could be mimicked well by beta hairpins. Particularly due to the low-affinity results 

of this analysis, we explored the 1K8R structure using PocketQuery. The best-scoring 

pockets on chain B include some number of residues from the 81B-86B range as well as 

Lys101. The best-scoring pockets on Chain A include a subset of residues from the 

36A-40A range. These results are relatively encouraging, as they suggest that secondary 

structure mimetics may be near-optimal approaches to inhibiting this interface (Figure 8). 

The analysis also suggests an improvement to the native secondary structure by finding a 

way to incorporate a pendant cation to mimic the interaction of Raf’s Lys101 with Ras.

3.4. From substructure to inhibitor design

3.4.1. A stabilized helix mimic as an inhibitor of the Ras/Sos interaction—
Analysis of the SOS αH helix supports the experimental observation that four residues 

(F929, T235, E942, and N944) are essential for binding, with residues F929 and N944 

making critical contacts with Ras. However, these two critical residues are located on the N- 

and C-termini of the helix, spanning 16 residues. The length of the helix and the positioning 

of these residues suggest that a stabilized α-helix rather than small molecule mimics may 

provide a better starting point for inhibitor design.[99] Based on this consideration, we 

described a stabilized helix mimic of the Sos αH sequence 929FFGIYLTNILKTEEGN944, 

with hot spot residues shown in bold) to inhibit association of Ras with Sos in cell free and 

cellular contexts (Figure 9) [100]. The Sos mimic was constructed using the hydrogen bond 

surrogate (HBS) constraint. The HBS constraint reduces conformational entropy by 

covalently locking the characteristic i to i+4 hydrogen bond and nucleates a stable α-helical 

conformation in the attached peptide [101]. The Sos HBS helix derived from the former 

peptide (Figure 9a) proved to be the first orthosteric inhibitor of the Ras/Sos interaction 

[100]. The Ras-binding site for the mimic was evaluated using 1H-15N HSQC NMR titration 

experiments with the Sos HBS and uniformly 15N-labeled recombinant Ras. The Sos HBS 

reduced Ras activation and Ras signaling, as demonstrated by downregulation of ERK 

phosphorylation, in cells.

3.4.2. Potential β-hairpins as inhibitors of the Ras/Raf interaction—Similar 

design considerations would predominate in proposing a Ras/Raf inhibitor. The hairpins on 

either side of the interface are prominent options for mimicry; in particular, several 

approaches to develop β-hairpin mimics have been described [102-107]. It is important to 

note the orientation of the two interface hairpins in this complex: they are making edge-on-

edge interactions, mediated by hydrogen bond formation, thus forming an inter-chain β-

sheet [57]. This geometry indicates that nonpeptidic peptidomimetics that do not preserve 

hydrogen bond donors and acceptors will be greatly disadvantaged. A possible Raf hairpin 

mimetic to bind to Ras is depicted in Figure 6b.

Four of the six residues on the non-contact strand strand do not directly interact with the 

partner protein, permitting mutations to optimize solubility. The contact strand contains two 

hotspots and two moderate-affinity residues. Likely mutations to evaluate would include 

Val85 to a charged residue, particularly lysine or arginine because of the nearby chain B 

residues Asp33 and Asp38, or Ala84 to a larger aliphatic residue, such as methionine or 

norleucine.
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5. Conclusion

Protein-protein interactions have emerged as attractive drug targets but offer a substantial 

challenge in biomolecular recognition. Analysis of forces that guide protein-protein complex 

formation can lead to rational design of interaction inhibitors. Such inhibitor discovery 

approaches are greatly aided by novel computational strategies. Herein we outline a 

workflow for peptidomimetic inhibitor design to demonstrate the breadth of computational 

options available for analyzing PPIs. New methods for interaction network analysis permit 

the precise identification of the most valuable, and most easily targeted, components of a 

signaling cascade. Increasingly powerful machine learning algorithms and more accurate 

scoring functions permit the rapid evaluation of structural models and their analysis. Finally, 

methods for docking, design, and refinement are expanding their scope to include 

peptidomimetic scaffolds and streamline inhibitor design.
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Highlights

• Protein-protein interactions are fertile and challenging targets for inhibition

• Protein-protein interaction analysis and classification aids in inhibitor selection

• Mimicry of critical protein domains offers an attractive strategy for inhibitor 

design

• Computational tools support every phase of inhibitor design
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Figure 1. 
Analysis of a diseased signaling network gives rise to specific protein complexes of interest, 

after which that complex is analyzed to identify minimal units of structure relevant for 

mimicry. Finally, a specific inhibitor molecule is designed based on that sub-structure.
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Figure 2. 
Alanine scanning mutagenesis of interfacial residues reveals the importance of each residue 

to complex formation. The example depicts mutation of a key tryptophan from the p53 

(yellow ribbon) activation helix in complex with Mdm2 (blue).
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Figure 3. 
Helical interfaces can be divided between those that feature clefts for binding and those with 

extended interfaces. The cleft interfaces feature a high density of important contacts in a 

small region. The p53/MDM2 (left: p53 in green, MDM2 in grey; PDB code: 1YCR) and 

cyclin-dependent kinase6/D-type viral cyclin (right: cdk6 in green, D-type viral cyclin in 

grey; PDB code: 1G3N) complexes are representative examples of binding cleft and 

extended interfaces, respectively.
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Figure 4. 
Ras is a highly connected protein important to cancer proliferation circuits. Depicted are 

string-db.org functional associations of binding (blue), post-translational modification 

(magenta), reaction (black), and catalysis (purple). Links of unclear nature are shown in 

grey.
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Figure 5. 
Ras/Sos and Ras/Raf are implicated in the MAP/ERK signaling pathway. Ras interacts with 

Sos only when a receptor tyrosine kinase binds its substrate and recruits Sos to the 

membrane. Following the Ras/Raf association depicted, Raf phosphorylates Mek, which 

phosphorylates MAPK, which modulates the activity of many downstream effectors.

Watkins and Arora Page 20

Eur J Med Chem. Author manuscript; available in PMC 2016 April 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
a. Catalytic or orthosteric Ras (chain R, cyan) and allosteric RAS (chain Q, green) in 

complex with Sos (chain S, magenta), from PDB code 1NVV. b. Ras (chain A, green) and 

the Raf analogue Byr2 (chain B, cyan), from PDB code 1K8R.
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Figure 7. 
a. The substructure from Sos’s interface with the orthosteric Ras molecule (chain R), 

residues 683S-695S. b. The substructure from Sos’s interface with the allosteric Ras 

molecule (chain Q), residues 929S-944S.
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Figure 8. 
a. The substructure from Raf’s interface with Ras, residues 36A-40A. b. The substructure 

from Ras’s interface with Raf, residues 81B-86B.
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Figure 9. 
a. The Sos HBS helix developed as the first orthosteric Ras/Sos inhibitor. b. The Raf beta 

strands are natively organized in an antiparallel fashion, suggesting a hairpin mimetic 

(whose linker would appear at the dashed line). Residues highlighted in red may be 

especially well suited to further sequence design and optimization because they do not make 

optimal contacts, while residues highlighted in blue are designed to mimic hotspot residues 

(ΔΔG > 1 REU).

Watkins and Arora Page 24

Eur J Med Chem. Author manuscript; available in PMC 2016 April 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Watkins and Arora Page 25

Table 1

Examples of protein-protein interaction databases

Database Name Description

ASEdb[43] Experimental alanine scanning values; no longer maintained,
though the raw data is still available

Relibase[44] Protein-ligand interfaces, tools for binding site alignment and
visual comparison

2P2Idb[16] PPIs with known orthosteric modulators where both the protein-
protein and protein-ligand complex are known

TIMBAL[45] PPIs, their small molecule inhibitors or stabilizers with
experimental affinities and assay descriptions

PrePPI[46] High-confidence predicted PPIs

ComSin[47] Analysis of differences between proteins in bound and unbound
states

PIFACE[48] Cluster of PPIs by their interface structures

Dr. PIAS[49] Predicts PPI druggability by similarity to known druggable PPIs

PINT[50, 51] Experimental thermodynamic parameters (e.g. Kd, the
corresponding ΔG, and the temperature and pH of the
experiment)

SKEMPI[50, 51] Binding kinetics; unification of PINT and ASEdb data

PepCyber:P~PEP[52] Phosphoprotein binding domains (like SH2, WW)

3D-interologs[53, 54] Scores novel interactions via homology to Uniprot

PocketQuery[55] Clusters of residues with favorable ΔSASA

HippDB. SippDB[56, 57] Identification of PPIs by secondary structure elements, alanine
scanning
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Table 2

Sos segments that may serve as plausible starting points for inhibitor design.1

Residue Range Interface With Secondary Structure? Total ΔΔG

825-829 R Yes 4.85

880-884 R No 2.58

908-912 R No 4.48

929-944 R Yes 14.1

1007-1010 R Yes 1.88

683-695 Q Yes 10.47

729-739 Q Yes 5.79

750-755 Q No 3.05

973-974 Q Yes 3.02
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Table 3

Ras possesses one (β-strand sequence and one lone residue that may serve as plausible starting points for 

inhibitor design, while Raf possesses two low-affinity sequences.

Residue Range Interface With Secondary Structure? Total ΔΔG

36A-40A B Yes 5.68

54A B No 3.68

72B-74B A Yes 2.25

81B-86B A Yes 5.02
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