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Abstract

In dose-finding trials of chemotherapeutic agents, the goal of identifying the maximum tolerated 

dose is usually determined by considering information on toxicity only, with the assumption that 

the highest safe dose also provides the most promising outlook for efficacy. Trials of molecularly 

targeted agents challenge accepted dose-finding methods because minimal toxicity may arise over 

all doses under consideration and higher doses may not result in greater response. In this article, 

we propose a new early-phase method for trials investigating targeted agents. We provide 

simulation results illustrating the operating characteristics of our design.
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1 Introduction

1.1 Background

In general, the primary objective of Phase I clinical trials is to identify the maximum 

tolerated dose (MTD) of the agent or agents being investigated. In a subsequent Phase II 

trial, the agent is evaluated for efficacy at the recommended dose (MTD). In oncology trials 

of chemotherapeutic agents, identification of the MTD is usually determined by considering 

dose-limiting toxicity (DLT) information only, with the assumption that the MTD is the 

highest dose that satisfies some safety requirement, so that it provides the most promising 

outlook for efficacy. Numerous Phase I designs have been proposed for identifying the 

MTD from a discrete set of doses in which toxicity is described as a binary outcome (Storer, 

1989; O’Quigley, Pepe, and Fisher, 1990; Ji, et al., 2010; among many others) or an ordinal 

outcome (Yuan, Chappell, Bailey, 2007; Van Meter, Garrett-Mayer, and Bandyopadhyay, 

2011; Iasonos, Zohar, and O’Quigley, 2011; among others). Usually, Phase I and Phase II 

trials are performed independently, without formally sharing information across the separate 

phases. There has been a recent shift in the paradigm of drug development in oncology to 

integrate Phase I and Phase II trials so that drug development process may be accelerated, 

while potentially reducing costs (Yin, 2012). To this end, several published Phase I/II 

methods have extended dose-finding methodology to allow for the modeling of both toxicity 
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and efficacy (O’Quigley, Hughes, and Fenton, 2001; Braun, 2002; Thall and Cook, 2004; 

Yin, Li and Ji, 2006; among others). Each of these designs, as well as the one we propose in 

this current work, is referred to by Federov and Leonov (2013) as a “best intention” (BI) 

design, meaning that it aims to allocate patients in the current trial to the “best” treatment 

based on the current knowledge available. We distinguish these designs from “optimal” 

designs in the area of dose-finding that seek to maximize global information about dose-

response curves in order optimize doses for future patients. In addition to the detailed 

discussion provided by Federov and Leonov (2013), we refer any reader interested in this 

type of design to Dragalin and Federov (2006) and Whitehead et al. (2006), among many 

others.

In general, the design of Phase I trials is driven by the assumption of monotone increasing 

dose-toxicity and dose-efficacy relationships. By contrast, many molecularly targeted agents 

(MTA’s) are essentially considered safe and higher doses do not necessarily produce greater 

efficacious response. Dose-efficacy relationships may exhibit non-monotone patterns, such 

as increasing at low doses and either decreasing or plateauing at higher levels, as displayed 

in Figure 1. Therefore, the goal of the trial shifts to identifying the optimal biological dose 

(OBD), which is defined as the dose with acceptable toxicity that maximizes efficacious 

response. Despite the emergence of molecularly targeted agents in oncology drug 

development, there are relatively few statistical methods for designing Phase I trials of these 

agents (Mandrekar, Qin, and Sargent, 2010). Assuming minimal toxicity over the 

therapeutic dose range, Hunsberger et al. (2005) described two practical Phase I designs for 

identifying the OBD for molecularly targeted agents. Zhang, Sargent and Mandrekar (2006) 

introduced a trinomial continual reassessment method (TriCRM) that utilizes a continuation 

ratio to model toxicity and efficacy simultaneously. Mandrekar, Cui, and Sargent (2007) 

extended this method to account for combinations for two agents. Polley and Cheung (2008) 

outlined a two-stage design for finding the OBD that implements a futility interim analysis. 

Recently, Hoering, LeBlanc, and Crowley (2011) and Hoering et al. (2013) proposed 

methods for early phase trials of targeted agents that uses a traditional dose-finding method 

to find the MTD in Phase I, and then subsequently allocates patients in Phase II to the MTD 

(Hoering et al., 2011) or a small set of doses at and around the MTD (Hoering et al., 2013) 

based on a randomization scheme.

In this article, we outline a method for identifying the OBD that combines features of the 

continual reassessment method (CRM; O’Quigley et al., 1990) and order restricted inference 

(Robertson, Wright, and Dykstra, 1988). The existing methods in this area take a fixed set of 

admissible doses from the Phase I portion into the Phase II portion of the study in order to 

assess efficacy. For instance, the design of Hoering et al. (2013) uses a 3+3 design in the 

Phase I portion to locate the MTD. However, if the OBD is not close to the MTD, a design 

that targets the MTD may fail to accurately locate the most efficacious dose. Moreover, the 

statistical limitations of the 3+3 design have been discussed at length in the literature 

(Garrett-Mayer, 2006; Iasonos et al., 2008; Ji and Wang, 2013; among others). We contrast 

this approach with the one we propose here in that, throughout the duration of the trial, we 

continuously monitor safety data in order to adaptively update our set of acceptable doses 

with which to make allocation decisions based on efficacy. The rest of the paper is 
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organized as follows. We finish this section by outlining our overall strategy and providing a 

motivating example for this work. In Section 2, we outline the statistical models and 

inference used in the proposed design. In Section 3, we describe the dose-finding algorithm 

and in Section 4 we report simulation findings illustrating the operating characteristics of the 

design. Finally, we conclude with some discussion.

1.2 Locating the OBD

As previously noted, the assumption of monotonicity with regards to dose-toxicity 

relationships is usually appropriate for MTA’s, yet this assumption for dose-efficacy curves 

may fail. For these types of therapies, dose-efficacy curves could follow a non-monotone 

pattern, such as a unimodal or plateau relationship. In general, suppose a trial is 

investigating a set,  = {d1, …, dI}, of I doses and that the probability of efficacious 

response at dose di is denoted πE(di). In the presence of unimodal (including monotone 

increasing and monotone decreasing) or plateau dose-efficacy relationships, the primary 

objective of the trial is to find the optimal dose, dν ∈ , defined such that

(1)

In other words, πE(dν) corresponds to the dose dν where the peak of the unimodal 

relationship occurs, or where the dose-efficacy curve begins to plateau. Using the 

terminology of Hwang and Peddada (1994), πE(dν) is said to be a nodal parameter (or a 

node) in that it is known that πE(dν) ≥ πE(di) for all i ≠ ν. Order restriction (1) is referred to 

as an umbrella ordering with the node of the umbrella occurring at dν. For instance, if the 

node occurs at the highest dose, we have a monotone increasing dose-efficacy relationship. 

In actuality, we do not know where in the dose range this node occurs and we must account 

for this uncertainty. The node could occur at any of the I available dose levels, with non-

decreasing efficacy probabilities for doses before the node and non-increasing efficacy 

probabilities for doses after the node. The strategy we propose is to use this information to 

formulate a set of possible dose-efficacy relationships and make progress by appealing to 

Bayesian model choice, in order to account for the uncertainty surrounding the shape of the 

true dose-efficacy curve.

In locating the OBD, accepted early-phase designs are challenged by the use of non-

traditional endpoints that accompany cytostatic agents. The potential growth of targeted 

therapies will be driven by the need to define suitable measures of biologic effect and 

finding ways to incorporate them into early-phase designs. Although the relationship 

between clinical outcome and biologic activity may not be clear, it is generally assumed that 

the absence of targeted effect will accompany a lack of clinical efficacy. Before a targeted 

agent can be taken into large-scale trials to test for clinical efficacy, early-phase trials are 

needed to establish that the therapy can produce a biologic activity with the potential to 

translate to clinical benefit. Protocol-specific endpoints give the investigator a measure of 

targeted effect that serves as a driving factor in early-phase trial design.

Parulekar and Eisenhauer (2004) and Korn (2004) provide a discussion of the challenges 

presented by non-toxicity endpoints in Phase I trial design of targeted agents. Unlike 
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cytotoxic agents, the effects of these agents will likely be cytostatic, which will require 

measures of anti-tumor activity other than those used as traditional endpoints, such as tumor 

shrinkage. Surrogate markers of efficacy, such as measurement of target inhibition or 

pharmacokentic endpoints, will be necessary. Incorporation of these endpoints can be 

challenging due to the fact that (1) it may be difficult to define the desired biological effect, 

and (2) once defined, these endpoints may lack reliable, validated assays, making them 

practically difficult to measure. For the methods proposed in this article, we make the 

assumption that a surrogate efficacy endpoint is defined and able to be measured in order to 

find the OBD.

1.3 A motivating example

As an example, we describe the Phase I trial of Gerber et al. (2011) that assessed the safety 

and pharmacokinetcs of a vascular targeting agent, bavituximab, in patients with advanced 

solid tumors. The trial investigated four dose levels (0.1, 0.3, 1, 3 mg/kg) and the goal of the 

study was to dose escalate to the predicted biologically effective dose, rather than the MTD, 

because for monoclonal antibodies, the MTD may not correspond to optimal efficacy. Any 

of the four dose levels could be the node of the unimodal or plateau dose-efficacy curve, 

corresponding to the optimal dose. These four possible dose-efficacy relationships are 

provided in Table 1. There are other possibilities, in addition to those in Table 1, that could 

be considered for inclusion into this subset of possible relationships. For example, for a 

unimodal curve with node at d3, another possibility is given by πE(d1) ≤ πE(d4) ≤ πE(d2) ≤ 

πE(d3). This notion of formulating a subset of possible curves has been undertaken by other 

authors (Conaway, Dunbar, and Peddada, 2004; Wages, Conaway, and O’Quigley, 2011) 

within the context dose-finding in drug combinations. These papers assessed the possible 

loss of information in only using a subset of relationships and they found that, in general, 

using a subset did not drastically reduce the performance of their methods. An important 

idea to this approach is that we do not need to identify the “correct” relationship at every 

dose level. We just need one which is “close” to correct, in that it is correct in specifying the 

node (optimal dose) of the umbrella ordering.

2 Methods

Consider a trial investigating a set of I doses,  = {d1, …, dI}. Toxicity and efficacy are 

modeled as binary endpoints so that, for each subject j, we measure

The dose for the jth entered patient, Xj, j = 1, …, n can be thought of as random, taking 

values xj ∈ .

2.1 Modeling toxicity with CRM

The CRM was introduced as an alternative to the traditional escalation schemes reviewed by 

Storer (1989). The details of CRM are provided by O’Quigley et al. (1990), so we only 
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briefly recall them here. In its original form the CRM is a Bayesian method that uses 

sequential updating of dose-toxicity information to estimate the dose level at which to treat 

the next available patient. The method begins by assuming a functional dose-toxicity curve, 

F(di, β), that is monotonic in both dose level, di, and the parameter, β, in order to model the 

DLT probabilities, πT(di), at each dose i; i = 1, …, I. For instance, the power model, 

, is common to CRM literature, where 0 < p1 < ··· < pI < 1 are the 

standardized units (skeleton) representing the discrete dose levels di. The pi are also referred 

to as a working model. After having included j subjects, we have toxicity data in the form Ωj 

= {(x1, y1), …, (xj, yj)}, and we can generate an estimate, β̂
j, based on the posterior mean of 

β. Using βĵ, we can obtain an estimate of the DLT probability at each dose level via π̂
T(di) = 

F(di, β̂
j), i = 1, …, I, from which the dose recommended for the (j + 1) th patient is 

determined. Specifically, for target DLT rate, ϕT, this dose is di = arg mini |F(di, β̂
j) − ϕT|. 

The MTD is the recommended dose after the inclusion of some predetermined sample size 

of N patients is exhausted or a stopping rule takes effect. In the bivariate extension of the 

CRM that we describe in this article, instead of using the DLT probability estimates, π̂
T(di), 

to determine the recommended dose for the next patient, we will use them in defining a set 

of acceptable doses with regards to safety. To this end, ϕT will be redefined from a target 

DLT probability to a maximum acceptable toxicity rate that will guide the definition of safe 

doses.

2.2 Models and inference for efficacy

Suppose now that, instead of utilizing a single working model as we did with toxicity, we 

make use of some class of working models and model selection techniques in order to allow 

for more flexibility in modeling the dose-efficacy relationship. This class of skeletons would 

correspond to various possible dose-toxicity relationships (Table 1). The models and 

inference for efficacy are based on specifying both a unimodal and plateau skeleton for each 

of the possible dose-efficacy relationships. For instance, if the node is located at d2, we 

identify a skeleton that (1) peaks at d2 and decreases after d2, and another that (2) begins to 

plateau at d2 and remains constant after d2. Using Table 1 as a guide, in general, we need to 

specify K = 2 × I − 1 working models; I unimodal skeletons, with nodes at each of the I 

doses, and I − 1 plateau skeletons, with nodes at each of the first I − 1 doses. The dose-

efficacy relationship does not plateau at dose level dI, so only one working model with node 

at dI is needed. For a particular skeleton, k; k = 1, …, K, we model πE(di), the true 

probability of efficacious response at di by

for a class of working dose-efficacy models, Gk(di, θ) and θ ∈ Θ. Like toxicity, for efficacy 

we appeal to the simple power model, which has shown itself to work well in practice. Here, 

Θ = (−∞, ∞) and 0 < q1k < ··· < qIk < 1 is the skeleton of model k. Further, we may wish to 

take account of any prior information concerning the plausibility of each model and so 

introduce τ(k) = {τ(1), …, τ(K)}, where τ(k) ≥ 0 and where Σk τ(k) = 1. Even when there is 

no prior information available on the possible skeletons we can formally proceed in the 
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same way by specifying a discrete uniform for τ(k). After inclusion of the first j patients into 

the trial, we have efficacy data in the form of  = {(x1, z1), …, (xj, zj)}. Under working 

model k, we obtain an estimate, θ̂
jk, for the parameter θ. In the Bayesian framework, we 

assign a prior probability distribution h(θ) for the parameter θ of each model, and a prior 

probability τ(k) to each possible skeleton. For each model, we utilize a Normal prior with 

mean 0 and variance 1.34 on θ so that h(θ) = (0, 1.34) (O’Quigley and Shen, 1996). In 

order to establish running estimates of the probability of efficacy at the available doses, we 

need an expression for the likelihood for the parameter θ. After inclusion of the first j 

patients into the study, the likelihood under model k is given by

(2)

which, for each skeleton, can be used in order to generate a summary value, θĵk, for θ. Given 

the set  and the likelihood, the posterior density for θ is given by

This information can be used to establish posterior model probabilities given the data as

The prior model probabilities, τ(k), are updated by the efficacy response data, . It is 

expected that the more the data support model k, the greater its posterior probability will be. 

Thus, we appeal to sequential Bayesian model choice in order to guide allocation decisions. 

Each time a new patient is to be enrolled, we choose a single skeleton, k*, with the largest 

posterior probability such that

We then utilize Gk*(di, θ) to generate efficacy probability estimates at each dose. Beginning 

with the prior for θ and having included the jth subject, we can compute the posterior 

probability of a response for di so that
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The efficacy probability estimates, π̂
E(di), are used to make decisions regarding dose 

allocation as described in Section 3.

3 Dose-finding Algorithm

Overall, we are going to allocate each entered patient to the dose estimated to be the most 

efficacious, among those with acceptable toxicity. After obtaining the DLT probability 

estimates, π̂T(di), for each dose, we are going to first restrict our attention to those doses 

with estimated probabilities less than a maximum acceptable toxicity rate, ϕT. In general, 

after j entered patients, we define the set of “acceptable” doses as

We then allocate the next entered patient to a dose in  based upon estimated efficacy 

probabilities, π̂
E(di). By incorporating an acceptable set, , we exclude overly toxic doses. 

After each cohort inclusion the acceptable set is redefined based on the current DLT 

probability estimates, so it is possible, once more data has been observed, for  to include a 

dose that was previously excluded when a limited amount of data existed. The allocation 

algorithm depends upon the amount of data that has been observed so far in the trial. If a 

limited amount of data exists, we will rely on an adaptive randomization phase to allocate 

future patients to acceptable doses. In the latter portion of the trial, when a sufficient amount 

of data has been observed, we will utilize a maximization phase in which we allocate 

according to the most efficacious treatment among the set of acceptable doses.

3.1 Adaptive randomization (AR) phase

Early in the trial, there may not be enough data to rely entirely on maximization of estimated 

efficacy probabilities within  to accurately assign patients to the most efficacious dose with 

acceptable toxicity. There may be doses in  that have never been tried and information on 

these can only ever be obtained through experimentation. Added randomization allows for 

information to be obtained on competing doses and prevents the method from getting 

“stuck” on a dose that has been tried early in the trial. Therefore, we do not rely entirely on 

the maximization of estimated efficacy probabilities for guidance as to the most appropriate 

treatment but rather implement adaptive randomization (AR) to obtain information more 

broadly. Based on the estimated efficacy probabilities, π̂
E(di), for doses in , calculate a 

randomization probability Ri,

and randomize the next patient or cohort of patients to dose di with probability Ri. We are 

going to rely on this randomization algorithm for a subset of nR patients in order to allow 

information to accumulate on untried doses, before switching to a phase in which we simply 

allocate according to the maximum estimated efficacy probability among the acceptable 
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doses. The number of patients on which to implement the AR phase may vary from trial to 

trial. In some cases, clinician/statistician teams may choose to set nR according to their 

personal preference. Some may favor randomization for the entirety of the study, while 

others may choose not to randomize any patients and treat according to which dose the data 

indicates is the most efficacious. We found that the method exhibits good performance, in 

terms of choosing desirable doses, when at least some randomization is employed. It is 

difficult to make a definitive recommendation for nR, since it is not feasible to determine at 

what exact value that performance is optimized across a broad range of situations. Optimal 

performance may depend upon many factors, including the number of dose levels, the true 

dose-toxicity/efficacy curves, and the maximum sample size N. In the simulations below, we 

explore performance of our method under various values of nR. The results will demonstrate 

that our method, across a wide range of scenarios, is fairly robust to this choice. The size of 

the AR phase can be expanded or contracted according to the desire of the clinician/

statistician team and operating characteristics will be relatively unaffected. As a general rule 

of thumb, adaptively randomizing for half of the maximum sample size seems to work well 

in a wide variety of scenarios.

3.2 Maximization phase

Upon completion of the AR phase, the trial design switches to a maximization phase in 

which maximized efficacy probability estimates guide allocation. Among the doses 

contained in , we allocate the (j + 1)th patient cohort to the dose xj+1 according to the 

estimated efficacy probabilities, π̂
E(di), such that

Continuing in this way, the OBD is the recommended dose di = xN+1 for the hypothetical (N 

+ 1)th patient after the inclusion of the maximum sample size of N patients or some stopping 

rule takes effect.

3.3 Starting the trial

In order to get the trial underway, we will choose the efficacy skeleton with the largest prior 

probability, τ(k), among the working models being considered. If several, or all, of the 

working models have the same maximum prior probability, then we will choose at random 

from these skeletons. Given the starting skeleton, k*, for efficacy, the starting dose, x1 ∈ , 

is then chosen. Specifically, based on the toxicity skeleton, pi, we define the acceptable set, 

a priori, to be

Based on the efficacy skeleton, qik*, for doses in , we calculate the randomization 

probability Ri,
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and randomize the first patient or cohort of patients to dose x1 = di with probability Ri.

3.4 Ending the trial

Safety—Investigators will want some measure by which to stop the trial in the presence of 

undesirable toxicity. At any point in the trial, we can calculate an exact binomial confidence 

interval for toxicity ( ) at the lowest dose, d1. The value of  provides a 

lower bound for the probability of toxicity at d1, above which we are 95% confident that the 

true toxicity probability for d1 falls. We want to compare this lower bound to our maximum 

acceptable toxicity rate, ϕT. If our lower bound exceeds this threshold, we can be confident 

that the new treatment has too high of a DLT rate to warrant continuing the trial. Therefore, 

if , stop the trial for safety and no treatment is identified as the OBD.

Futility—If the new treatment is no better than the current standard of care, we would also 

like for the trial to be terminated. After j inclusions, we calculate an exact binomial 

confidence interval for efficacy ( ) at the current dose, xj. The value of 

 provides an upper bound for the probability of efficacy at the current treatment, 

below which we are 95% confident that the true efficacy probability for that dose falls. We 

want to compare this upper bound to some futility threshold, ϕE, that represents the efficacy 

response rate for some current standard of care. If our upper bound fails to reach this 

threshold, we can be confident that the new treatment does not have a sufficient enough 

response rate to warrant continuing the trial. Therefore, if , stop the trial for 

futility and no treatment is identified as the OBD. This stopping rule will only be assessed in 

the maximization phase, not the AR phase, so that here j ≥ nR. The reason for this is that the 

upper bound will be calculated on the current treatment, which is based on the maximum 

estimated efficacy probability. We can be confident that if the maximum of the estimated 

probabilities did not reach the futility threshold, then none of the other acceptable toxicity 

doses would reach it, since they are presumed to have lower efficacy than the selected 

treatment. In the AR phase, when we randomize, there may exist a more efficacious 

treatment in the set  that was not selected purely because of randomization. Consequently, 

another treatment may have reached the futility threshold had it been selected, so we would 

not want to stop the trial in this case.

4 Numerical results

4.1 Simulation setting

For the first set of simulated results contained in this section, we compare the performance 

of the proposed approach with that of Hoering et al. (2013) for identifying the OBD in a trial 

investigating I = 6 dose levels. Throughout the simulation results, we denote the method of 

Hoering et al. (2013) as HMLC, and our proposed method as WT. The comparison assesses 
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the performance of each method over the twelve true toxicity/efficacy scenarios contained in 

their paper, which are provided in Figure 2. True toxicity probabilities are denoted T1 

through T4, while true efficacy probabilities are denoted R1 through R3. In each set of 1000 

simulated trials, the maximum sample size was set to N = 64. The Phase II portion of 

Hoering et al. (2013) randomized n2 = 48 patients to three doses levels (arms); (1) the 

recommended dose (RD) from Phase I, (2) the dose level immediately above the RD (RD

+1), and (3) the dose level immediately below the RD (RD−1). For response, the authors test 

competing hypotheses H0 : p = 0.05 vs. H1 : p = 0.30. The Phase I sample sizes for the 

Hoering et al. (2013) method are reported in Table 1 of Hoering et al. (2011), with a 

minimum sample size of n1 = 16. Therefore, we thought a justifiable total sample size for 

comparison was N = 16 + 48 = 64. For our proposed method, the size of the AR phase was 

set equal to one quarter the total sample size so that nR = 16. In a subsequent section, we 

investigated the impact of various sizes, nR, of the AR phase on operating characteristics.

The proposed design embodies characteristics of the CRM so we can utilize these features in 

specifying design parameters. The toxicity probabilities were modeled via the power model 

given in Section 2.1 with skeleton values pi = {0.01, 0.08, 0.15, 0.22, 0.29, 0.36}. It has 

been shown (O’Quigley and Zohar, 2010) that CRM designs are robust and efficient with 

the implementation of “reasonable” skeletons. Simply defined, a reasonable skeleton is one 

in which there is adequate spacing between adjacent values. This skeleton also reflects the 

idea that, for MTA’s, it is often assumed that there is minimal toxicity over the dose range. 

For efficacy, probabilities were modeled via the class of power models in Section 2.2, using 

K = 2 × I − 1 = 11 skeletons that correspond to the possible dose-efficacy relationship. The 

six sets of values used for the unimodal relationships were:

1 qi1 = {0.60, 0.50, 0.40, 0.30, 0.20, 0.10}

2 qi2 = {0.50, 0.60, 0.50, 0.40, 0.30, 0.20}

3 qi3 = {0.40, 0.50, 0.60, 0.50, 0.40, 0.30}

4 qi4 = {0.30, 0.40, 0.50, 0.60, 0.50, 0.40}

5 qi5 = {0.20, 0.30, 0.40, 0.50, 0.60, 0.50}

6 qi6 = {0.10, 0.20, 0.30, 0.40, 0.50, 0.60}.

The five sets of values for the plateau relationships were:

7 qi7 = {0.20, 0.30, 0.40, 0.50, 0.60, 0.60}

8 qi8 = {0.30, 0.40, 0.50, 0.60, 0.60, 0.60}

9 qi9 = {0.40, 0.50, 0.60, 0.60, 0.60, 0.60}

10 qi,10 = {0.50, 0.60, 0.60, 0.60, 0.60, 0.60}

11 qi,11 = {0.60, 0.60, 0.60, 0.60, 0.60, 0.60}

We assumed, a priori, that each of these eleven models was equally likely and set τ(k) = 

1/11.
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Another design parameter that must addressed is the association between toxicity and 

efficacy responses. The models and inference presented in Section 2 estimate toxicity and 

efficacy probabilities independently, ignoring an association parameter, ψ. In order to 

provide a justifiable comparison to Hoering et al. (2013), as well as to illustrate our 

method’s robustness to the misspecification of an association parameter, we generated 

correlated binary outcomes using the function ranBin2 in R package binarySimCLF (R Core 

Team). The log odds ratio specification used to generate the data was set to ψ = 4.6 to match 

that used by Hoering et al. In each set of 1000 simulations, in order to define the acceptable 

set , the maximum acceptable toxicity rate was specified to be ϕT = 0.33 and the minimum 

efficacy threshold to be ϕE = 0.05. Again, these values were chosen in order to present 

results in a setting mimicking that of Hoering et al. (2013). For each scenario, using the 

definitions of Hoering et al., the best dose is defined as the level that maximizes efficacy 

while assuring safety, and a good dose is defined as a level where efficacy is above 

predefined boundary while maintaining safety. In Figure 2, the best doses are indicated with 

gray shading, while good doses are indicated with a □.

4.2 Operating characteristics

The results of the comparison are summarized in Table 2 and Figure 3, with each bar in the 

figure representing the proportion of simulated trials that each method selected a good dose 

[Figure 3(a)] and the best dose [Figure 3(b)]. Overall, the results indicate a superior 

performance for the proposed method over that of Hoering et al. (2013). The left column of 

Figure 2 and the first four rows of Table 2 represent cases in which the dose-efficacy curves 

have monotone increasing probabilities. In the first three of these scenarios (R1T1, R1T2, 

and R1T3), d4 is the only good and best dose. WT outperforms HMLC in these scenarios by 

selection percentages of 40%, 34% and 8%, respectively. In R1T4, the toxicity probabilities 

plateau at a value of 0.05 across the dose range, so the highest dose, d6, is considered the 

best dose. The HMLC method selects the best dose as the OBD in 63% of simulated trials, 

compared to 57% by the WT method. The next four rows of Table 2 and the middle colum 

of Figure 2 illustrate situations in which the dose-efficacy curves increase until dose d4 and 

remain constant after d4 (plateau). Again, in terms of selecting both good and best doses, 

WT improves upon the selection percentages of HMLC in most cases (R2T1, R2T2, R2T4), 

by as much as 30 to 40% in some scenarios. HMLC performs slightly better in selecting a 

good dose in R2T3, doing so in 71% of trials compared to 67% by WT. Finally, in the last 

four rows of Table 2 and the right column of Figure 2, most of the doses are considered to 

be best/good doses, so, as expected, both methods produce high selection percentages in 

these cases. The WT method does perform slightly better in these last four scenarios, 

yielding selection percentages that range from 3% to 10% higher than those produced by 

HMLC.

We feel that this improved performance by the WT across the 12 scenarios considered here 

can mostly be attributed to the HMLC’s use of a Phase I portion to identify an MTD. This 

may not be appropriate for MTA’s, due to the uncertainty surrounding the shape of the dose-

efficacy curve. If the MTD-based Phase I portion does not identify doses around the OBD, 

then the Phase II portion could possibly be randomizing to incorrect doses. In contrast, 

throughout the duration of the trial, our method continuously monitors toxicity and efficacy 
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data to identify a set of safe doses, within which we allocate to a dose with high efficacy. 

This allows for the adaptive updating of the doses being considered after each patient 

inclusion, rather than restricting attention to two or three doses after a Phase I component 

designed to find the MTD. Overall, the strong showing of our method against published 

work in the area in extensive simulation studies makes us feel confident in recommending it 

as a viable alternative in Phase I/II trials of MTA’s.

4.3 Sensitivity analysis

In this set of simulations, we investigated the sensitivity of our proposed method to the 

design specifications over a class of five true (toxicity, efficacy) scenarios. The analysis 

assesses the effect of changing (1) the number of dose levels, (2) the true value of the 

association parameter ψ, (3) the size of the AR phase nR, and (4) the maximum sample size 

N. We also investigated the sensitivity of the proposed methods to the choice of both 

toxicity and efficacy skeletons, but we exclude these results for the sake of brevity. As 

expected, since our method leans upon the CRM, it is robust to skeleton choice, so long as 

“reasonable” skeletons are chosen (O’Quigley and Zohar, 2010). We are happy to share 

these results with any interested reader.

We ran simulations using outcomes generated from the three fixed values of ψ; ψ = {−2, 0, 

−2}. The maximum sample size for each simulated trial was set to N = 48, and we varied the 

size of the AR phase; i.e. nR = {12, 24, 36, 48}. The toxicity probabilities were modeled via 

the power model given in Section 2.1 with skeleton values pi = {0.01, 0.08, 0.15, 0.22, 

0.29}. For efficacy, probabilities were modeled via the class of power models in Section 2.2, 

using K = 2 × I − 1 = 9 skeletons. The nine sets of values used were: qi1 = {0.30, 0.40, 0.50, 

0.60, 0.70}, qi2 = {0.40, 0.50, 0.60, 0.70, 0.60}, qi3 = {0.50, 0.60, 0.70, 0.60, 0.50}, qi4 = 

{0.60, 0.70, 0.60, 0.50, 0.40}, qi5 = [0.70, 0.60, 0.50, 0.40, 0.30}, qi6 = {0.70, 0.70, 0.70, 

0.70, 0.70}, qi7 = {0.60, 0.70, 0.70, 0.70, 0.70}, qi8 = {0.50, 0.60, 0.70, 0.70, 0.70} and qi9 = 

{0.40, 0.50, 0.60, 0.70, 0.70}. We assumed, a priori, that each of these nine skeletons is 

equally likley and set τ(k) = 1/9.

The previous set of true scenarios (Figure 2) investigated monotone increasing (R1) and 

plateau (R2, R3) dose-efficacy curves. The set of true scenarios for the sensitivity analysis 

assess performance for unimodal relationships. Table 3 reports the percentage of trials in 

which each dose was selected as the optimal dose at the end of each trial, and the average 

trial size for each of the Scenarios 1–4. The true (toxicity, efficacy) probabilities for each 

dose are given next to the number of the scenario. In Scenario 1, all doses are safe and the 

peak of the unimodal curve occurs at dose d3. In Scenario 2, all but the highest dose are safe, 

and the OBD occurs at d2. In Scenario 3, again all but d6 are safe and the OBD occurs at 

dose d5. Finally, in Scenario 4, all doses are safe and there exists a monotone decreasing 

dose-efficacy curve with the OBD at d1. In each set of 1000 simulations, the maximum 

acceptable toxicity rate was specified to be ϕT = 0.33 and the efficacy threshold ϕE = 0.20.

Examination of Table 3 reveals strong performance for our method in these scenarios, 

recommending the OBD in a large percentage of trials (≈ 50 – 70%) after N = 48 patients. 

The results in Table 3 also demonstrate the robustness of our method to the association 

between efficacy and toxicity. The performance of WT is practically unchanged for all 
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values of ψ, given that nR remains unchanged. Therefore, even in the presence of correlated 

binary outcomes, the fact that our method ignores any association between toxicity and 

efficacy in estimating probabilities does not affect its operating characteristics. In general, 

the selection percentages remain fairly consistent for nR = 12, 24, 36, and 48. All 

percentages in each scenario are within 10% of one another, so the chosen size of the AR 

phase does not drastically alter performance. These simulations represent only a small set of 

situations. More study, under a broader range of scenarios, may provide more insight into 

the general behavior of nR.

5 Discussion

In this article, we have outlined a new Phase I/II design that accounts for the both toxicity 

and efficacy of molecularly targeted agents. The simulation results demonstrated the 

method’s ability to effectively recommend the OBD, defined by acceptable toxicity and high 

efficacy, in a high percentage of trials with manageable sample sizes. The method we 

propose in this work is a bivariate extension of the CRM, leaning upon properties of order 

restricted inference utilized in the partial order CRM (POCRM; Wages et al., 2011). This 

approach falls into a broader class of extended model-based designs that utilize multiple 

non-monotonic skeletons, which increases the ability of CRM designs to handle more 

complex dose-finding problems (O’Quigley and Conaway, 2011). This class of design is 

developed within the framework of CRM, with the added step of Bayesian model choice to 

account for the multiple models. Therefore, many of the features associated with CRM 

design specifications, such as one-parameter models and “reasonable skeletons” (O’Quigley 

and Zohar, 2010), can be employed in these extended designs.

The proposed design is most appropriate when both binary toxicity and binary efficacy 

endpoints can be observed in a reasonably similar time-frame. In some practical situations, 

this may not be possible due to the fact that efficacy may occur much later than toxicity. 

This would create a situation where we would be estimating DLT probabilities based on 

more patient observations than efficacy probabilities. Since we are ignoring their association 

in modeling these responses, we can fit the likelihood for each response based on different 

amounts of data, and simply utilize the efficacy data we have available, even though it may 

be less than that of the toxicity data. This idea requires further study and we are exploring 

modifications to the proposed methodology to handle such practical issues. Along these 

same lines, incorporating time-to-event outcomes may be an effective extension of the 

method as a means of handling delayed response.
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Figure 1. 
Possible dose-toxicity and dose-efficacy relationships for molecularly targetd agents.
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Figure 2. 
A set of twelve true (toxicity, efficacy) scenarios. True toxicity probabilities are denoted T1 

through T4, while true efficacy probabilities are denoted R1 through R3. The good doses are 

indicated with a □, while the best doses are shaded in gray.
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Figure 3. 
Operating characteristics of the proposed design and Hoering et al. (2013). Each bar 

represents the proportion of times that each method recommended (a) good doses and (b) 

best doses as the OBD at the conclusion of a simulated Phase I/II trial with a maximum 

sample size of N = 64 patients.
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Table 1

Possible dose-efficacy relationships for I = 4 dose levels.

Shape of relationship Location of node Possible Dose-efficacy relationship

Unimodal or plateau d1 πE(d4) ≤ πE(d3) ≤ πE(d2) ≤ πE(d1)

Unimodal or plateau d2 πE(d1) ≤ πE(d3) ≤ πE(d4) ≤ πE(d2)

Unimodal or plateau d3 πE(d1) ≤ πE(d2) ≤ πE(d4) ≤ πE(d3)

Unimodal d4 πE(d1) ≤ πE(d2) ≤ πE(d3) ≤ πE(d4)
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