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Abstract Reports in recent years indicate that the
increasing emergence of resistance to drugs be using to TB
treatment. The resistance to them severely affects to
options for effective treatment. The emergence of multi-
drug-resistant tuberculosis has increased interest in under-
standing the mechanism of drug resistance in M.
tuberculosis and the development of new therapeutics,
diagnostics and vaccines. In this study, a label-free quan-
titative proteomics approach has been used to analyze
proteome of multidrug-resistant and susceptible clinical
isolates of M. tuberculosis and identify differences in
protein abundance between the two groups. With this
approach, we were able to identify a total of 1,583 proteins.
The majority of identified proteins have predicted roles in
lipid metabolism, intermediary metabolism, cell wall and
cell processes. Comparative analysis revealed that 68
proteins identified by at least two peptides showed signif-
icant differences of at least twofolds in relative abundance
between two groups. In all protein differences, the increase
of some considering proteins such as NADH dehydroge-
nase, probable aldehyde dehydrogenase, cyclopropane
mycolic acid synthase 3, probable arabinosyltransferase A,
putative lipoprotein, uncharacterized oxidoreductase and
six membrane proteins in resistant isolates might be
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involved in the drug resistance and to be potential diag-
nostic protein targets. The decrease in abundance of pro-
teins related to secretion system and immunogenicity
(ESAT-6-like proteins, ESX-1 secretion system associated
proteins, O-antigen export system and MPT63) in the
multidrug-resistant strains can be a defensive mechanism
undertaken by the resistant cell.

Keywords Tuberculosis (TB) - Mycobacterium
tuberculosis - Multidrug-resistance - Label-free
quantitation - Liquid chromatography mass spectrometry

Introduction

Tuberculosis (TB) is a serious infectious disease caused by
Mycobacterium tuberculosis and remains one of the lead-
ing causes of infectious disease-related morbidity and
mortality worldwide, particularly in developing countries.
Infection of M. tuberculosis leads to 8.6 million people fell
ill every year [1]. Multidrug-resistant TB (MDR-TB) is
caused by a mycobacterium that is resistant to at least
isoniazid (INH) and rifampicin (RIF), the two most pow-
erful first-line TB drugs to treat persons with TB disease.
Multidrug-resistant TB is increasing and about 3.6 % of
new TB patients in the world have multidrug-resistant
strains. The WHO reported that MDR-TB was present in
virtually all countries surveyed and there were 480,000
new MDR-TB cases in the world in 2013 [2].

The mechanism of resistance to various anti-TB drugs is
attributed primarily to specific mutations in target genes
[3-6]. However, a proportion of drug resistant clinical M.
tuberculosis isolates has not been found to have mutations
[7]. Furthermore, several evidences demonstrated that
antibacterial drugs can target multiple proteins/enzymes in
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M. tuberculosis [8, 9]. Therefore, it is possible that other
mechanisms could contribute to drug resistance. Some
discussed mechanisms such as the production of drug-
modifying and -inactivating enzymes, low cell wall per-
meability (restricted influx of drugs) and efflux-related
mechanisms [10-12] could be considered as alternative
ways for drug resistance in mycobacteria.

Proteomics is a powerful tool for the large-scale protein
identification of complex biological samples. Investiga-
tions of protein expression profiles of M. tuberculosis by
proteomics approach under various growth conditions,
geographic distribution, genetic backgrounds, subcellular
fraction have been performed [13-29]. Especially, recent
researches on comparative analysis of monodrug-resistant
and susceptible M. tuberculosis by 2-DE combined with
MS have been reported to reveal proteins associated with
resistance [30-32]. The global study of the protein profile
of multidrug-resistant and susceptible strains by proteomic
approach could help in further revealing of resistance
mechanisms and determining multidrug resistance-associ-
ated biomarkers. The obtained findings support to develop
newer drugs, development of vaccine and probably a rapid
diagnosis tool for multidrug-resistance tuberculosis.

In the present study, a combination of orbitrap mass
spectrometry and relative protein expression abundance
calculations was performed to compare the proteome of
multidrug-resistant and susceptible M. tuberculosis strains.
The aim of this study was to identify multidrug-resistant
associated proteins to support further understanding of drug
resistance in M. tuberculosis and provide potential protein
biomarkers for development of novel diagnostic tools and
vaccines against MDR-TB as well.

Materials and Methods
Mycobacterial Growth

Three resistant and sensitive (Isoniazid and Rifampicin) M.
tuberculosis clinical isolates were obtained from National
Institute of Hygiene and Epidemiology (NIHE). Bacteria
were grown in Middlebrook 7H9 broth (Difco) supple-
mented with 0.2 % glycerol, 0.05 % Tween 80, and 1x
OADC (0.5 % bovine serum albumin, 0.2 % Dextrose,
0.85 % NaCl, 0.0004 % catalase, 0.005 % oleic acid) at
37 °C for 4 weeks (10"-10° cfu/ml).

Protein Preparation of M. tuberculosis
Mycobacterial cell extract was prepared according to

modified protocol of [31]. Briefly, cells were washed three
times with phosphate saline buffer (1 x PBS buffer, pH 7.4)
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and then suspended in UT buffer containing 8 M urea, 2 M
thiourea. The cell suspension was broken by intermittent
sonication (15 s ON, 15 s OFF) for 4 min on ice at 80 %
energy using sonicator (Sonics & Materials Inc, USA).
Subsequently, the lysate was clarified by centrifugation at
16,000x g for 1 h at 4 °C. The supernatant was collected in
a new reaction tube and protein concentration of the
supernatant was determined using a Bradford assay kit
(Sigma-Aldrich, USA). Sample aliquots were stored at —
80 °C for later use.

Peptide Preparation for MS Analysis

Protein samples were proteolytically digested in solution as
the following procedure: 4 ng protein of each sample,
(three technical and two biological replicates per sample),
were reduced by incubation with a finial concentration of
25 mM DTT and alkylated with 100 mM iodoacetamide.
Proteolysis was carried out with trypsin (Promega) in the
ratio of 1:25 overnight (16 h) at 37 °C. The digestion was
quenched by the addition of acetic acid to a final concen-
tration of 1 %. The digested peptides were purified on
uCig-ZipTip columns (Merck Millipore).

Relative Quantitation of R and S Type Dependent
Differences by ESI-LC Tandem Mass Spectrometry

The purified peptides were separated on an Acclaim PepMap
100 reverse phase column with an EASY-nLC (Thermo
Electron) using a 86 min non-linear gradient ranging from 2
to 100 % ACN in 0.1 % acetic acid at a flow rate of 0.3 pL/
min before full MS data and data-dependent fragment ion
spectra were recorded with a LTQ-Orbitrap-Velos mass
spectrometer (Thermo Electron). Raw data were analyzed
with the Refiner software (GeneData) employing alignment
across all 12 MS runs with subsequent peak identification
and annotation. Identification of peptides and assignment to
proteins was performed via automated Mascot search (rel.
2.3, Matrix Science) against the Uniprot/Trembl reference
proteome database for M. fuberculosis with a peptide mass
tolerance of 10 ppm and 0.6 Da for fragment ions. Proteins
identified with at least two rank one peptides with an ion score
>20 were considered in relative quantitation based on
summed protein intensities.

The data were logl0 transformed to gain normal dis-
tributions and median normalized across all samples and
categories before mean values across the three technical
replicates were calculated.

Analysis of Identified Proteins

The physicochemical properties of all identified proteins of
interest were analyzed by using the following software.
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The theoretical molecular weight, pI value and GRAVY
scores were obtained from calculation in http:/www.
bioinformatics.org/sms2/. Protein transmembrane domains
(TMDs) were predicted TMHMM server v. 2.0 (http:/
www.cbs.dtu.dk/servicessTMHMM-2.0/), SOSUI (Batch)
engine ver. 1.10 (http://harrier.nagahama-i-bio.ac.jp/sosui/
sosuiG/sosuigsubmit.html), Phobius (http://phobius.sbc.su.
se/). Possible signal peptide and lipoprotein signal peptide
sequence prediction were predicted using the SignalP and
LipoP programs, respectively (http://www.cbs.dtu.dk/ser
vices/). Prediction of subcellular localization of the iden-
tified proteins was carried out using the PSORT v3.0
program available at http://www.psort.org/psortb/. Lipo-
proteins were identified by comparing the identified pro-
teins with the list of M. tuberculosis predicted lipoproteins
in [33]. Functional classifications of all proteins were
determined according to the TubercuList database [34].

Results

Identification of the M. fuberculosis Proteins by ESI-LC
Tandem Mass Spectrometry

The resulting MS/MS spectra were searched using auto-
mated Mascot search against the Uniprot/Trembl reference
proteome database for M. tuberculosis. Applying the fil-
tering criteria described in method section, a total of 6,110
peptide sequences were obtained. The complete list of
peptides identified in our study is provided in Supple-
mentary Table S1. LC-ESI-LTQ ORBITRAP-VelosMS
analysis resulted in identification of a total of 1,583
mycobacterial proteins in both susceptible and multidrug-
resistant group (Supplementary Table S2). Of those, 448
proteins were identified with one peptide only and 1,135
proteins were identified with two and more peptides. Pep-
tide identification by MS was considered as evidence for
the existence of the gene products predicted by genome
annotation [35, 36].

Functional Classification of Identified Proteins

All identified proteins were grouped by functional category
as defined by [34]. Totally 1,583 identified proteins can be
classified into ten different functional categories (Fig. 1a).
The majority of identified proteins have predicted roles in
lipid metabolism (153—10 %), intermediary metabolism
(508—32 %), cell wall and cell processes (272—17 %). A
large list of conserved hypothetical proteins of unknown
function was also identified in this study (352—22 %).
This pattern of functional category is similar to previous
reports in proteomic analysis of the M. tuberculosis [23, 25,
29]. Functional classification of predicted membrane

proteins (Fig. 1b) showed that 175 (52 %) proteins are
associated with cell wall processes (group 4) and 59 (18 %)
proteins are related to intermediary metabolism. In addi-
tion, 10 % are conserved hypothetical proteins. This data
indicates that 90 % of identified membrane proteins had
known functions. This observation is coincidence with
[24].

Comparison of Susceptible and Multidrug-Resistant
M. tuberculosis Proteomes

Quantitative analysis of the proteins was done on the basis
of summed peptide intensities. Totally, 1,583 proteins were
considered for quantitative analysis. Of these, proteins with
a ratio of 2.0-fold and a technical g value <0.05 were
considered as displaying significant differences. These fil-
ter criteria identified 68 proteins with at least two peptides
including 28 and 40 proteins showing increased and
decreased amounts in resistant strains in comparison to the
susceptible strains, respectively (Table 1). The list of dif-
ferent abundant proteins identified with one peptide is
provided in Supplementary Table S3.

Functional classification of different abundant proteins
showed that proteins with lower abundance in the resistant
strains were assigned to five categories, whereas proteins
with higher abundance were assigned to seven categories
including virulence, detoxification, adaptation; lipid
metabolism; information pathways; cell wall and cell
processes; intermediary metabolism and respiration; regu-
latory proteins; and conserved hypotheticals.

Using the predicted protein sequences, a series of
parameters were calculated that included physiochemical
characteristics such as molecular mass, pl, hydrophobicity
(GRAVY), and predicted subcellular location. The theoret-
ical Mr distribution for the identified proteins ranged from
7.37 kDa (a probable cold shock protein A) to 326.3 kDa (a
probable fatty acid synthase). The majority of identified
proteins were 10-50 kDa in molecular weight, representing
approximately 77.9 % of all predicted in this range
(Fig. 2a). Similarly the theoretical pl values for the identi-
fied proteins ranged from 3.73 (ESX-1 secretion-associated
protein) to 12.32 (a possible membrane protein) and were
mainly distributed in the range 4.0-7.0 (Fig. 2b). It is
notably that a higher proportion of basic proteins (pI > 8.0)
were observed with higher abundant in multidrug-resistant
group in comparison with susceptible group. The GRAVY
score is calculated by the hydropathic indices of each amino
acid in the protein based on Kyte and Doolittle algorithms,
with a more positive score indicating higher hydrophobicity
[37]. In the present study, the majority of differential
abundant proteins were hydrophilic proteins and there were
only 10 % of proteins with GRAVY score >0.2 (Fig. 2c¢),
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Fig. 1 Functional assignment of proteins in M. tuberculosis identi-
fied by LC-MS/MS. Proteins were assigned to functional categories
based on the TubercuList database. The pie charts (a) and (b) rep-
resent the distribution of all identified M. tuberculosis proteins and

which hints to hydrophobicity. Subcellular localizations of
these proteins were predicted by loading their protein
sequences to the pSORTD v3.0.2 program. The subcellular
localization information for the identified proteins is dis-
played in Fig. 2d, showing that the majority of identified
proteins were determined as cytoplasmic proteins.
Approximately 16 % proteins were predicted as cytoplas-
mic membrane proteins. There were also a large proportion
of identified proteins (31 %) with unknown localization.
The obtained data was also searched for membrane and
membrane-associated proteins by using the TMHMM v2.0
algorithm. Nine proteins were predicted to have at least one
transmembrane helix (TMH) regions for integration into
the cytoplasmic membrane in which six proteins were
observed with higher abundance and only three proteins
were observed with lower abundance in the resistant
strains. The predicted TMH numbers of these proteins
ranged from 1 to 13. Remarkably, an important enzyme for
the biosynthesis of the mycobacterial cell wall (probable
arabinosyltransferase A) was predicted to have 13 TMHs
and observed increased in the resistant strains. Further-
more, another interesting group of proteins that are asso-
ciated with the membrane is lipoproteins. Mycobacterial
lipoproteins have been illustrated in forming a functionally
diverse class of membrane-anchored or associated proteins
[33, 38, 39] and are predicted to be involved in host-
pathogen interactions [40]. In the present study, five pro-
teins in which two proteins with higher abundance and
three proteins with lower abundance in the resistant isolates
were predicted by LipoP program as lipoproteins or con-
taining lipoprotein signal peptide that predicts that these
proteins could be lipidated during the process of export
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B Lipid metabolism (153, 24)

i Information pathways (135,3)

B Cellwall and Cell Processes (272, 175)

B Insertionsequencesand Phage (4, 0)

Intermediary metabolism and respiration

Unknown (2, 0)

Regulatory proteins (78, 19)

Conserved hypotheticals (352, 34)

B Virulence, Dextoxification, Adaptation b

predicted membrane proteins respectively according to functional
categories in percentage. Numbers in parenthesis indicate the number
of proteins among total and membrane proteins respectively in each
category

[41]. In addition, two proteins with lower abundance and
one protein with higher abundance in the resistant isolates
were also predicted by SignalP program to have a cleavable
signal peptide for export across the cytoplasmic membrane.

Discussion

The emergence of multidrug-resistant TB (resistance with
at least the first-line drugs isoniazid and rifampicin [42]) is
a major concern in the control of TB at all countries in the
world. As mentioned above, resistance to various anti-TB
drugs has been reported to be associated with specific
mutations in structural or regulatory regions of target genes
[3-6]. However, the minireview [7] reported that the
approximately 30 % of clinical INH-resistant, and 5 % of
RIF-resistant M. tuberculosis isolates respectively do not
have mutations in any of the known genes. Furthermore,
anti-TB drugs have been shown to be targeting several
different protein/enzymes in M. tuberculosis [8, 9]. There
were evidences to indicate that resistance can be explained
by other mechanisms such as the upregulation of drug—
disabling enzymes, the improvement of cell wall integrity
(lower influx and higher efflux of drugs) and overexpres-
sion of drug sensitive target proteins [10-12, 43].

The aim of this study was to analyze the changes in
protein abundance between multidrug-resistant and suscep-
tible clinical isolates by free gel approach for exploring
multidrug-resistant associated proteins. The study included
whole cell lysate proteins which will cover all proteins
present in the cells. A total of 1,583 proteins were identified
by free-gel approach that much higher than the number of



Indian J Microbiol (Apr-June 2015) 55(2):219-230

223

Table 1 List of proteins with different abundance in multidrug-resistant and susceptible M. tuberculosis isolates (q value for all was <0.05)

Rv number Proteins description Gene name Functional Fold
categories® difference

Higher abundance in resistant isolates

Rv1398c Putative antitoxin vapB10 0 2.7
Rv3648c Probable cold shock protein A cspA 0 2.8
Rv0470c Cyclopropane mycolic acid synthase 3 pcaA 1 4.3
Rv2187 Long-chain-fatty-acid—CoA ligase fadD15 1 4.5
Rv1912c Possible oxidoreductase fadB5 1 5.9
Rv2831 Enoyl-CoA hydratase/isomerase family protein echA16 1 6.2
Rv1080c Transcription elongation factor greA 2 2.0
Rv1234 Probable transmembrane protein 3 2.1
Rv3690 Probable conserved membrane protein 3 2.1
Rv1249c Possible membrane protein 3 2.6
Rv3794 Probable arabinosyltransferase A embA 3 2.9
Rv2873 Cell surface lipoprotein mpt83 3 3.7
Rv2945¢ Putative lipoprotein IppX 3 4.2
Rv1899c Uncharacterized protein 3 4.7
Rv0341 Isoniazid-induced protein iniB 3 4.8
Rv3841 Ferritin bfrB 7 2.1
Rv2344c Deoxyguanosinetriphosphate triphosphohydrolase-like protein dgt 7 2.2
Rv2971 Uncharacterized oxidoreductase 7 29
Rv2713 Probable soluble pyridine nucleotide transhydrogenase sthA 7 2.9
Rv2858c Probable aldehyde dehydrogenase aldC 7 3.5
Rv0392¢c NADH dehydrogenase ndh-1 7 9.0
Rv2259 S-nitrosomycothiol reductase mscR 7 536
Rv3133c Transcriptional regulatory protein devR 9 2.6
Rv0566¢ UPF0234 protein 10 2.2
Rv1156 Conserved protein 10 2.6
Rv1770 Conserved protein 10 3.0
Rv0577 27 kDa antigen cfp30B 10 3.0
Rv2337c Uncharacterized protein 10 33
Lower abundance in resistant isolates

Rv0456¢ Enoyl-CoA hydratase echA2 1 134
Rv0672 Acyl-CoA dehydrogenase, putative fadE8 1 3.1
Rv2524c Probable fatty acid synthase fas 1 2.1
Rv1708 Uncharacterized protein 3 11.8
Rv0347 Probable conserved membrane protein 3 4.5
Rv3868 ESX-1 secretion system protein eccAl 3 34
Rv1038c Putative ESAT-6-like protein 3 33
Rv3620c Putative ESAT-6-like protein 10 3 33
Rv3781 O-antigen export system rfbE 3 2.9
Rv1197 Putative ESAT-6-like protein 3 29
Rv2347c Putative ESAT-6-like protein 7 3 29
Rv1793 ESAT-6-like protein esxN 3 2.6
Rv0932¢c Phosphate-binding protein pstS2 3 2.5
Rv2462c Trigger factor tig 3 2.4
Rv2155¢c UDP-n-acetylmuramoylalanine—p-glutamate ligase murD 3 24
Rv2691 CeoB ceoB 3 2.3
Rv1368 Putative lipoprotein IprF 3 2.2
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Table 1 continued

Rv number Proteins description Gene name Functional Fold
categories” difference

Rv1926¢ Immunogenic protein mpt63 3 2.0
Rv3614c ESX-1 secretion-associated protein espD 3 2.0
Rv2964 Formyltetrahydrofolate deformylase purU 7 439
Rv2280 Uncharacterized FAD-linked oxidoreductase 7 13.6
Rv2161c Conserved protein 7 13.5
Rv2952 Phthiotriol/phenolphthiotriol dimycocerosates methyltransferase 7 11.4
Rv3086 Putative alcohol dehydrogenase D adhD 7 9.1
Rv2391 Sulfite reductase [ferredoxin] sir 7 54
Rv2682¢c 1-deoxy-p-xylulose-5-phosphate synthase dxs 7 4.8
Rv3710 2-isopropylmalate synthase leuA 7 4.5
Rv1895 Probable zinc-binding alcohol dehydrogenase 7 4.1
Rv3257c Phosphomannomutase manB-1 7 35
Rv2363 Putative amidase amiA2 7 23
Rv0814c Conserved protein sseCl 7 2.2
Rv3118 Uncharacterized protein sseCl 7 2.2
Rv3324c Cyclic pyranopterin monophosphate synthase accessory protein 3 moaC3 7 2.1
Rv0844c Probable transcriptional regulatory protein narL 9 43.6
Rv2159¢c Conserved protein 10 14.3
Rv0825¢c Conserved protein 10 10.2
Rv3168 Putative aminoglycoside phosphotransferase 10 4.1
Rv1444c Uncharacterized protein 10 2.5
Rv2623 Universal stress protein 10 2.5
Rv3169 Conserved protein 10 2.1

? Functional categories 0—virulence, detoxification, adaptation; 1—lipid metabolism; 2—information pathways; 3—cell wall and cell pro-
cesses; 7—intermediary metabolism and respiration; 9—regulatory proteins; 10—conserved hypotheticals

proteins identified by 2-DE approach so far. Relative
quantitation of resistant and susceptible type dependent
differences based on summed protein intensities has
revealed a total of 68 proteins with more than twofold dif-
ference. The majority of different abundant proteins were
assigned to the categories of lipid metabolism, cell wall and
cell processes, intermediary metabolism and respiration. The
genome of M. tuberculosis although was well-characterized
[35], the understanding of the function of mycobacterial
proteins is still missing. Therefore, some identified proteins
of interest will be discussed further below.

Proteins with Higher Abundance in Multidrug-Resistant
Strains Associated with NADH

It had long been known that oxidation of INH in the pre-
sence of NADH led to covalent INH-NADH adducts—
powerful inhibitors of InhA and other cellular processes.
InhA is an enoyl acyl carrier protein reductase involved in
the synthesis of mycolic acids—an important component of
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mycobacterial cell wall. Therefore, the capture of these
INH adducts by proteins could be a way to resist INH in
mycobacteria.

Rv2971 is an oxidoreductase of the aldo/keto reductase
family and probably involved in cellular metabolism [34].
rv2971 gene has been demonstrated as an essential gene for
growth and survival in M. tuberculosis [44] and seem to be
playing a potential role in the detoxification of toxic
metabolites [45, 46]. This protein was identified by MS in
the membrane fraction, Triton X-114 extracts of M.
tuberculosis H37Rv [19, 23, 26, 29] and was also consid-
ered as a membrane-associated protein [19]. Previous study
also found that this protein was different in the pl and
molecular weight between BCG and H37Rv [47], and was
also considered as a candidate antigen for development of
novel vaccine [48, 49]. Interestingly, this protein has also
been reported to be higher abundant in isoniazid (INH)-
monoresistant strains in comparison with susceptible
strains [30] and in streptomycin resistant strain of M.
tuberculosis [31]. Proteome-wide profiling approach for
isoniazid targets in M. tuberculosis has shown that Rv2971
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Fig. 2 Characteristics of proteins with different abundances (higher and lower abundant proteins) in susceptible and resistant M. tuberculosis
isolates. These physiochemical properties of identified proteins were determined based on databases as mentioned in the text

was one of the targets of INH adducts [9]. Recently, the
crystal structure of Rv2971 in its unliganded form has been
successfully determined and revealed the complex of this
protein with the INH-NADH adduct [50]. Therefore, it is
possible that the up-regulation of this protein in multidrug-
resistant strains observed in the present study is necessary
for resistance by binding and neutralizing the drug.
Rv0392c is a membrane-bound NADH dehydrogenase
(NdhA) with one predicted transmembrane domain. This
enzyme participates in energy metabolism by transferring
electrons from NADH to the respiratory chain. By
sequencing, a single nucleotide substitution of G to C located
44 bp upstream of the coding region of ndhA (Rv0392c) was
identified in mutants resistant to 2-mercapto-quinazolinone.
This mutation resulted in a significant expression of ndhA
gene by 40- to 80-fold compared to standard strain H37Rv
[51]. It is interesting to note that the NADH dehydrogenase
uses pyridine nucleotides as cofactor and therefore this
enzyme can easily bind to INH adducts. In the present study

this protein was found with higher abundance in multidrug-
resistant strains. It could be hypothesized that the increase of
this protein could cause resistance by binding and seques-
tering the compound. This hypothesis is supported by
observation in [8]. Furthermore, it is also possible that drug
(such as INH adducts) acts by inhibiting NADH-dependent
targets [9] and therefore the overexpression of NdhA is
necessary to overcome this deficiency.

Similarly, aldehyde dehydrogenase AIdC (Rv2858c),
probable soluble pyridine nucleotide transhydrogenase
(Rv2713), and S-nitrosomycothiol reductase (Rv2259)
observed in higher abundance in multidrug-resistant strains in
this study are enzymes using pyridine nucleotides as cofactor
[52] and therefore they can bind to INH adducts. Interestingly,
the experimental evidence showed that aldehyde dehydroge-
nase AldC bind INH adducts with high affinity [9]. It is likely
that the mechanism for drug resistance of these proteins is
similar to that of two proteins mentioned above. Further
studies need to be conducted to address this hypothesis.
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Proteins with Higher Abundance in Multidrug-Resistant
Strains Involved in the Construction of the Cell
Envelope of M. tuberculosis

The prevention of influx of drugs by improving the integ-
rity of the cell wall or the active export of drugs out of the
cells could be regarded as the main physiological mecha-
nisms of intrinsic resistance. Therefore the development of
this intrinsic resistance could be also considered as an
effective and useful resolution for multidrug-resistant M.
tuberculosis against toxic compounds. Mycobacterial cell
wall was known as the primary permeability barrier
responsible for resistance to antibiotics [53]. The higher
thickness of the cell wall was observed in multidrug-
resistant M. tuberculosis [54] and therefore some proteins
involved in the construction of the cell envelope of M.
tuberculosis will be discussed below.

Rv0470c-cyclopropane mycolic acid synthase 3 (mycolic
acid methyltransferase) participates in lipid metabolism by
catalyzing the transfer of a methylene group from S-adeno-
syl-L-methionine to form a cyclopropane ring at the proximal
position of a fatty acid. Several different fatty acids can be
used as substrates for this enzyme such as cis, cis 11,14-
eicosadienoic acid and linoelaidic acid. This enzyme was
shown to be required for the synthesis of mycolic acid
cyclopropane ring in the cell wall of both M. bovis BCG and
M. tuberculosis [55]. Cyclopropanated mycolic acids are
important factors involved in cell wall permeability and a
previous study demonstrated that inactivation of multiple
mycolic acid methyltransferase activity resulted in loss of
mycolic acid cyclopropanation, loss of acid fastness, and
concomitantly cell death when exposed to antibiotics [10].

Rv3794 (probable arabinosyltransferase A) is an integral
membrane protein with 13 predicted transmembrane domains
[26, 29]. Arabinosyl transferase is responsible for of the
attachment of arabinose molecules to the arabinan of arabi-
nogalactan. Mycolic acids are then covalently linked to the 5'-
hydroxyl groups of p-arabinose residues of arabinogalactan
and form mycolyl-arabinogalactan-peptidoglycan complex in
the cell wall of M. tuberculosis [5, 55]. Therefore this enzyme
plays an important role in the biosynthesis of the mycobac-
terial cell wall. Previous study also indicated that this enzyme
was the drug target of ethambutol (Emb)—an antimycobac-
terial drug usually used in combination with rifampicin and
isoniazid for tuberculosis treatment and its overexpression in
mycobacteria leaded to Emb resistance [43].

Rv2945c¢ (putative lipoprotein LppX) is a lipoprotein
required for the translocation of the phthiocerol dimyco-
cerosates (DIM)—a complex lipid to the outer membrane of
M. tuberculosis [56]. As a component of the cell wall, DIM
has been shown to be involved in the cell wall permeability
barrier and thus play important roles in the resistance of M.
tuberculosis to reactive nitrogen intermediates (possibly
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derived from INH [57]) [58]. Interestingly, a recent study
demonstrated that DIM deficient mutant of Mycobacterium
marinum was an increase in cell wall permeability and more
sensitive to rifampicin [59].

A functional category of proteins that was significantly
altered in abundance was related to the lipid metabolism.
They were long-chain-fatty-acid-CoA ligase FadD15
(Rv2187), possible oxidoreductase FadBS5 (Rv1912) and
enoyl-CoA hydratase/isomerase family protein (Rv2831).
Rv2187 catalyzes the activation of long-chain fatty acids as
acyl-coenzyme A (acyl-CoA), which are then transferred to
the multifunctional polyketide synthase (PKS) type III for
further chain extension [60]. Previous study indicated that
Rv1912 was significantly induced by treatment with the
analogs of isoniazid [61]. Although, no evidence indicated
that there was direct interaction between these enzymes
and INH, rifampicin and other drugs. However, it is pos-
sible that these enzymes might play role in drug resistance
by improving the integrity of mycobacterial cell wall
through lipid metabolism.

The increase in abundance of a group of membrane pro-
teins including Rv3690, Rv1234 and 1249c with 1, 2, 3
predicted transmembrane domains respectively, and Rv1899
(possible lipoprotein LppD) was observed in resistant group.
The function of these proteins are unknown so far [34] and
the role of these proteins in drug resistance need to be
investigated in further works. However, it has been shown
that the membrane proteins of M. tuberculosis play critical
roles in vital cell processes including nutrient transport,
energy metabolism, signal transduction and especially cell-
wall synthesis [62, 63]. Furthermore, mycobacterial mem-
brane proteins can stimulate immune responses [64] there-
fore identification of multidrug-resistant associated
membrane proteins might be valuable for development of
novel vaccines and diagnostics against multidrug-resistant
M. tuberculosis strains.

Rv0341 (isoniazid-induced protein iniB) is encoded by
iniB gene in the iniBAC operon containing three genes of
iniB, iniA and iniC. This protein is very Gly-, Ala- rich and
predicted similar to cell wall proteins [34]. Its function was
unknown however the transcription of this operon was
specifically induced by a broad range of antibiotics that
inhibit the synthesis of peptidoglycan (ampicillin), arabi-
nogalactan (ethambutol), mycolic acids (isoniazid, ethi-
onamide) and fatty acids (5-chloropyrazinamide) [69-71].
Furthermore, iniBAC operon was shown to be essential for
activity of an efflux pump [72]. The observation suggests
that these proteins might participate in the regulation of
cell wall biosynthesis and confer resistance to antibiotics.

Rv2873 (MPTS3) is a cell wall-associated lipo-glyco-
protein of M. tuberculosis and whose function is unknown.
However, this protein was identified as a seroreactive antigen
of M. tuberculosis [65, 66]. Previous studies also
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demonstrated that rMPT83 stimulated strong T cell respon-
ses (IFN-y T cell and antigen-specific T cell responses) [67,
68] and significant levels of protection in lungs and spleens
during experimental murine M. tuberculosis infection [68].
Thus MPT83 should be considered as a candidate for TB
subunit vaccines in future. It is an interesting case because
we found that this protein with higher abundance in multi-
drug-resistant than in susceptible strains. The success in
development of this subunit vaccine will strongly worth for
prevention of infection of resistant M. tuberculosis.

Rv1080c is a putative gre factor (transcription elonga-
tion factor GreA) in the genome of M. tuberculosis. This
proteins was demonstrated to enhance the efficiency of
promoter clearance and also rescue arrested and paused
elongation complexes [73]. Decrease in level of GreA
reduced the bacterial survival therefore this protein plays a
vital role in mycobacteria. As described in [73], Gre factors
can modify the properties of the RNA polymerase (RNAP)
by projecting its N-terminal coiled-coil domain into the
active center of RNAP through the secondary channel.
With this function, it is possible that GreA protein can help
to recover the rifampicin-inhibited activity of RNAP
(RpoB), leading to rifampicin resistance. A recombinant M.
tuberculosis overexpressing GreA should be conducted to
further confirm this mechanism.

In the present study, a set of proteins was also found
with lower abundance in multidrug-resistant strains. They
were classified into five functional categories including
lipid metabolism, intermediary metabolism and respiration,
cell wall and cell processes, and regulatory proteins. In
which majority of identified proteins was belong to two
functional categories of number 2, 3.

It has been described that M. tuberculosis exports vir-
ulence factors such as EsxA (Esat-6), EsxB (CFP-10), and
EspB, through the ESX-1 (ESAT-6 system 1) type 7 pro-
tein secretion system [74]. The gene cluster of espA-espC-
espD (rv3616c-rv3615c-rv3614c) is also essential for ESX-
1-dependent protein secretion and virulence of M. tuber-
culosis [74, 75]. In the present study, a group of five pro-
teins with significant homology in amino acid composition
(putative ESAT-6-like proteins) was found to be lower
abundance in the multidrug-resistant strains. It is known
that these proteins are highly abundant and regarded as
virulence factors in M. tuberculosis [76]. These proteins
were also found decreased in the hypervirulent strain
compared to a hypovirulent strain [25]. Furthermore, our
data also showed that the decrease in abundance of EspD
and EccAl protein (a functional component of ESX-1
system), O-antigen export system and immunogenic pro-
tein MTP63 was observed in the multidrug-resistant
strains. Drug resistance and immune escape mechanism
(reduced virulence) has been illustrated to co-evolve in
Staphylococcus aureus [77]. Thus, the reduction in the

presence of ESAT-6-like proteins, MPT63 and ESX-1
secretion system associated proteins in the multidrug-
resistant strains indicated that changes in the repertoire of
highly immunogenic proteins can be a defensive mecha-
nism undertaken by resistant cells.

Conclusions

We used a label-free quantitative approach to identify pro-
teins and compare protein abundance in multidrug-resistant
and susceptible clinical isolates of M. tuberculosis. This
study is being considered as the first report applying free-gel
approach for comparative analysis of multidrug-resistant and
susceptible M. tuberculosis. The differentially expressed
proteins from multidrug-resistant M. tuberculosis might be
considered as potential markers of multidrug-resistance and
novel drug targets for drug-resistant tuberculosis. Further-
more, the proteins identified may provide additional useful
information for more understanding the mechanism of drug
resistance in M. tuberculosis.
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