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Summary

Assessing gene-gene interactions (GxG) at the gene level can permit examination of epistasis at 

biologically functional units with amplified interaction signals from marker-marker pairs. Current 

gene-based GxG methods tend to be designed for studying interactions among two or a few genes. 

For complex traits, it is often common to have a list of many candidate genes to explore GxG. In 

this work, we propose a pathway-guided approach based on penalized regression for detecting 

interactions among genes. Specifically, we apply the principal component analysis to summarize 

the multi-SNP genotypes and SNP-SNP interaction between a gene pair, and to identify important 

main and interaction effects using an L1 penalty, which incorporates adaptive weights based on 

biological guidance and trait supervision. Our approach aims to combine the advantages of 

biological guidance and data adaptiveness, and yields credible findings that have both biological 

and statistical support and may be likely to shed insights in order to formulate biological 

hypotheses for further cellular and molecular studies. The proposed approach can be used to 

explore the gene-gene interactions with a list of many candidate genes and is applicable even 

when sample size is smaller than the number of predictors studied. We evaluate the utility of the 

pathway-guided penalized GxG regression using simulation and real data analysis. The numerical 

studies suggest improved performance over methods not utilizing pathway and trait guidance.
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Introduction

The focus of genetic association studies for complex diseases has been gradually shifting 

from assessing the main genetic effect to assessing interaction effects among genes (Cordell, 

2009). Complex diseases, such as hypertension, cancer, diabetes, and psychiatric disorders 

are believed to have a polygenic basis and gene-gene interaction (GxG) may play significant 

roles in disease etiology (Lin et al., 2013; Pillai et al., 2013; Koh-Tan et al., 2013; Howson 

et al., 2012; Ziyab et al., 2013). Understanding GxG may also help to uncover missing 
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heritability (Marchini et al., 2005; Evans et al., 2006) and to explain inconsistent findings 

from main-effect analyses (Hirschhorn et al., 2002).

GxG can be defined from a biological view or a statistical view. The biological GxG refers 

to the physical interactions between biomolecules such as DNA, RNA or protein at the 

cellular level (Cordell, 2002). The statistical GxG refers to a deviation from additive main 

effects of genes on a relevant scale. Although there were debates about the relationship 

between the two, evidence has shown that the statistical GxG and the biological GxG can 

converge to the same scientific process (Bush et al., 2009). Differences in biological 

epistasis among individuals give rise to statistical epistasis, and hence statistical analyses 

can be used to infer the presence of gene-gene interactions (Moore & Williams, 2005). For 

example, Bridges (1919) used a statistical model to identify genes with interaction effects on 

Drosophila eye color (Bridges, 1919), and the corresponding biological mechanism that 

depicts how these genes influence biological pathways was understood many years later 

(Lloyd et al., 1998). In this work, we propose a pathway-guided and trait-supervised 

procedure to further facilitate the detection of statistical GxG, and hope it can eventually 

lead to better understanding of biological epistasis and disease etiology.

Many methods have been proposed to detect GxG, such as logic regression (Kooperberg et 

al., 2001), classification/regression tress (CART), multivariate adaptive regression splines 

(MARS) (Cook et al., 2004), and methods building upon principals of multifactor 

dimensionality reduction (MDR) (Ritchie et al., 2003; Lou et al., 2007; Lou et al., 2008; 

Jestinah et al., 2011; Gui et al., 2013). These methods have shown promising performances 

in detecting the interaction effects important to complex diseases or traits. (Ritchie, 2011; 

Steen, 2012; Dennis et al., 2011; Mackay, 2014). However, most of these methods 

considered interactions among SNPs instead of interactions among genes. There are several 

advantages to assessing GxG at the gene level instead of at the SNP level. First, genes are 

the basic units in the biological mechanism and SNPs within a gene tend to work together 

(Lehne et al., 2010; Kostem, et al. 2011). Hence gene-level results can be more biologically 

insightful, easier to interpret, and more informative in revealing underlying mechanisms. 

Second, modeling multi-SNP information also incorporates linkage disequilibrium (LD) 

among SNPs in any downstream analysis such as association tests (He et al., 2011). Third, 

the polygenic nature of complex diseases suggests moderate effect sizes for individual 

variants. Aggregating SNP effects at the gene level can amplify the signals and make them 

more detectable; it can also overcome etiological heterogeneity across individuals where the 

increased risk of different individuals is caused by different variants of the same gene. 

Finally, by using appropriate dimension reduction to summarize multi-SNP information, 

gene-level GxG methods are able to use fewer degrees of freedom, which further helps to 

improve power over SNP-level analyses. For these reasons, several gene-level methods for 

GxG have been proposed, such as the Turkey 1-df method (Chatterjee et al., 2006), principal 

component (PC) analysis and the partial least square (PLS) based model (Wang et al., 2009), 

kernel-based regressions (Larson & Schaid, 2013), and the nonparametric test based method 

(Aschard et al., 2013). These studies suggested that gene-level methods have higher power 

in detecting GxG than traditional SNP-SNP strategies, especially when the causal SNPs are 

not directly genotyped.
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Most of the methods available for studying GxG interactions are for two or a few genes. 

However, for complex traits, it is often common to have a list of many candidate genes in 

order to explore GxG. Even with a moderate size gene set, there can be a huge number of 

GxG terms even at the gene level; e.g., a set of 10 genes would lead to 45 pairwise GxG 

interaction terms. Directly modeling all GxG interactions would be inefficient due to 

computational challenge and lack of power. The solution is to reduce the search space of 

GxG by filtering out potentially unimportant genes (Ritchie, 2011). In current practice, the 

GxG search space is reduced either in a trait-supervised fashion or by using prior biological 

information.

To reduce the GxG search space supervised by the trait information, one would first apply 

main-effect association tests on each gene/SNP to remove unimportant ones and then model 

interactions among the remaining ones (Wu et al., 2010). Two interaction mechanisms for 

Amyotrophic Lateral Sclerosis (ALS) have been identified by this method (Sha et al., 2009). 

However, filtering out genes/SNPs through main-effect screening would have low power if 

the causal genes only have strong interaction effects but no main effects. To improve on this 

method, several non-parametric methods were proposed to perform more effective filtering, 

such as the ReliefF (Robnik-Sikonja & Kononenko, 2003) and Tuned ReliefF (TuRF) 

methods (Moore & White, 2007), which use the nearest neighbors method to find the 

important genes. The nearest neighbor of an individual is the one which has the highest 

genetic similarity with the target individual at the focused genes. If the gene is important to 

the trait, the nearest neighbor pair tends to have similar traits. ReliefF sums up all the 

weighted trait differences to test whether one gene is important to the trait. These methods 

can successfully reduce the search space by eliminating unimportant genes/SNPs and 

retaining important ones that may be missed by main-effect screening (Cordell, 2009).

Another way to reduce GxG search space is to use biological knowledge or prior knowledge 

as a filter (Ritchie, 2011), such as Biofilter (Bush et al., 2009). Biofilter builds the list of 

important genes based on databases such as the Kyoto Encyclopedia of Genes and Genomes 

(KEGG), Protein interaction database (PID) and Biocarta (http://www.biocarta.com). Its 

underlying rationale is that if the interactions among a group of genes are supported by more 

biological evidence, the corresponding statistical finding for GxG is more credible. Biofilter 

uses an implication index, which is the number of databases supporting a focused GxG, to 

quantify the strength of biological support. If no database provides support to the focused 

GxG, it would be removed from the search space. Recent studies have shown that Biofilter 

can effectively reduce the GxG search space and result in biologically meaningful GxG 

findings (Pendergrass et al., 2013; Turner et al., 2011; Bush et al., 2011).

Statistical analyses coupled with biological guidance can lead to credible findings that have 

both biological and statistical support and that may be more likely to shed insight on the 

formation of follow-up biological hypotheses for further cellular and molecular studies. 

However, directly filtering out genes without incorporating trait information can be too 

arbitrary, especially when the prior knowledge is not trait-specific. In this paper, we propose 

a penalized method that incorporates biological guidance and trait supervision to detect GxG 

at the gene level. Specifically, we apply PC analysis to summarize the multi-SNP genotypes 

and SNP-SNP interaction between a gene pair, and to identify important main and 
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interaction effects using an L1 penalty, which incorporates adaptive weights based on 

association strength and trait-specific pathway supports. We demonstrate the utility of 

pathway-guided penalized regression for GxG identification using simulation and real data 

analysis.

Methods

For individual i, let Yi be the trait value and Gm,i be the multi-marker genotype vector of the 

lm markers in gene m. Given the genotypes of genes s and t, s ≠ t, the interaction design 

vector between the two genes is denoted by Hst,i = Gs,i ⊗ Gt,i, where ⊗ is the Kronecker 

product. Also define genotype design matrix Gm = [Gm,1, ··· Gm,N]T, interaction design 

vector Hst = [Hst,1, ··· Hst,N]T and trait vector Y = [Y1, ··· YN]T, where N is the sample size. 

Finally assume that there are M genes, and the total number of GxG among these genes is q 

= M(M − 1)/2.

Obtaining gene-level genetic information

We first summarize the multi-SNP information at gene level for the main-effect design 

matrix and the interaction-effect design matrix by a PC analysis. To fix the idea, we only use 

the first PC, but the model can be straightforwardly extended to include multiple PCs. The 

PCs are obtained by standardizing the design matrix of all individuals. We use X1,m to 

denote the first PC obtained from genotype design matrix Gm and use X2,st to denote the PC 

obtained from the interaction design matrix Hst. Note that one can summarize the 

information of gene-gene interaction using X1,s · X1,t. Doing so can bypass the need to 

compute and decompose the large matrix Hst. However, we found that X1,s · X1,t may not be 

able to capture much of the variability of Hst (Table 1) because X1,s and X1,t are obtained by 

maximizing the information captured in the main effect Gs and Gt, respectively. Obtaining 

PCs from the interaction design matrix Hst helps to capture a higher proportion of variability 

(Table 1). More details are given under the result section of Simulation II.

Variable selection guided by pathway supports

We use the following generalized linear model (GLM) to assess the main and interaction 

effects of genes:

where g(·) is the link function, μ =E(Y|X) is the conditional mean trait value given covariates 

X1 and X2 with X1 = [X1,1, ···, X1,M] being the PCs of M genes and X2 = [X2,1, ··· X2,q] being 

the PCs of q = M(M − 1)]/2 GxG terms. Parameter γ is the main effect vector with γ = [γ1, 

···, γM]T, and β is the interaction effect vector with β = [β1, ··· βq]T. For quantitative traits, we 

set g(μ) = μ, i.e., the identify link function. For binary traits, we set g(μ) = log(μ/(1−μ)), i.e., 

the logit link function, which is commonly used in practice.

To detect important terms, we estimate γ and β by minimizing the following penalized log-

likelihood
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(1)

where L(γ,β; Y, X1, X2) is the likelihood function of γ and β; ω1,m’s and ω2,ℓ’s are the 

weights for main effects and interaction effects, respectively; λ1 and λ2 are the tuning 

parameters of main effects and interaction effects, respectively. The weights (either the 

weight for main effect ω1 or interaction effect ω2) are constructed based on three 

components: weights based on gene size (denoted by ωsize), weights based on pathway 

supports (denoted by ωpath) and weights based on effect size on the trait (denoted by ωeffect). 

That is, the overall weight is ωm = ωsize,m · ωpath,m · ωeffect,m.

Weights for gene size ωsize—In gene-set association analysis, it has been noted that 

larger genes (i.e., genes with more SNPs) are more likely to be chosen as significant (Wang 

et al., 2010). Although here we summarized the gene information into the first PC, our 

results indicated that large genes tended to be selected if no penalty was imposed on large 

genes (e.g., we obtained higher false positive rates (FPR) for larger genes when ω size =1, as 

can be seen in Fig. 1). This is probably related to the observation that the variation captured 

by the first PC decreases as the gene size increases (e.g., Table 1). On the other hand, 

incorporating gene size in the penalty weights can make false positives (FPs) less 

concentrated in the category of pairs of large genes. We note that while conventionally, gene 

size refers to the number of SNPs in a gene, in our work, gene size refers to the number of 

columns in the corresponding design matrix, e.g., Gm or Hℓ. Specifically, we set ωsize,m = 1+

(sm − min{si})/(max{si}− min{si}), where for main effect, sm is the number of columns of 

Gm and for interaction effect, sm is the number of columns of Hm. To coordinate ωsize with 

other weights (i.e., ωpath and ωeffect) and to avoid ωsize dominating other weights, we 

consider the rescaled sm − min{si} and divide it by max{si} − min{si} so that ωsize is 

between 1 (no size weight) and 2 (maximum size weight). In other words, the maximum 

penalty from gene size is bounded at 2 times the minimum penalty.

Weights for pathway support ωpath—We use weight ωpath to incorporate the strength 

of pathway support. We focus only on biological evidence relevant to the trait of interest 

(e.g., via PubMed search) and quantify the support strength by the number of pathways that 

support the interaction among certain gene pairs. Define Npath as the total number of 

pathways related to the trait and nℓ is the number of sources supporting the ℓth gene-gene 

pair. We set ωpath,ℓ = 1 − nℓ/(2Npath)so that a gene pair with greater pathway support 

receives less penalty. Because our focus is on GxG effects, we set ωpath,m =1 for main effect 

terms. The value of ωpath is between 0.5 and 1 to avoid the dominance of one weight over 

the other.

Weight for effect size ωeffect—Weight ωeffect is the adaptive weight (Zou, 2006) that 

inversely weighs each effect term by an initial estimate of the effect size, i.e., 

 for the main effect terms and  for interaction terms. As a 

result, important terms receive a smaller penalty and tend to be retained in the selecting 

process while unimportant terms receive a larger penalty and are more likely to be 

eliminated. We use the iterative L1 penalty method (i.e., the multi-step adaptive lasso of 
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Buhlmann and Meier (2008)) to obtain the initial estimates  and . Specifically,  and 

 are obtained by minimizing:

(2)

where  and  are the estimate for the m-th main effect and ℓ-th interaction effect in the 

t-th iterative. The difference between Equations (1) and (2) is that in Equation (2), the 

adaptive weights of the current iteration are the estimates from the previous iteration. The 

iteration continues until γm and βℓ converge for all m and ℓ. Using a penalized estimator 

method allows us to obtain the initial estimates even when the sample size is smaller than 

the total number of variables, and the iterative procedure yields more accurate estimates (Li 

& Sillanpaa, 2012). The estimates for some (potentially unimportant) variables can be 0 with 

the L1 penalty. When that occurs, we set  and use similar 

treatment for  as well.

Computing tuning parameters—For a given value of (λ1, λ2), we compute the L1-

reguralized estimates of γm and βℓ, and calculate the Bayesian information criterion (BIC) = 

− 2 log L(γ̂, β̂; Y, X1, X2) + k log N for the corresponding model, where k is the number of 

terms retained in the model. The (λ1, λ2) that gives the smallest BIC is used to obtain the 

final model. We use BIC to tune λ1 and λ2 because our goal is to select the true model 

structure and BIC has the consistency property in model selection (French et al., 2006; Guo 

& Lin, 2009; Hastie et al., 2009; Lake et al., 2003).

Simulation

We use simulation to evaluate the performance of the proposed method and the impact of 

different choices of weights. We performed two sets of simulation. Simulation I was based 

on a well-controlled hypothetical dataset with the sample size much larger than the number 

of predictors. It aimed to determine the optimal forms of the weights and to enable us to 

understand the impact of different weight specifications. Simulation II was based on the 

Wellcome Trust Case-Control Consortium (2007) data for Crohn’s disease with the sample 

size smaller than the number of predictors. It aimed to evaluate the utility of the proposed 

approaches under realistic settings.

Simulation I

Design of Simulation I—In Simulation I, we generated 11 genes with different sizes 

(Table 2. The genes were labeled as gene A to gene K, and the number of SNPs in each gene 

was randomly determined from a uniform (1, 100) distribution. The minor allele frequency 

(MAF) of a SNP was randomly determined from a uniform (0.1, 0.5) distribution. The SNPs 

within each gene were sorted by their MAF and only the middle 50% were used as causal 

SNPs. In our simulation, genes with ≤30 SNPs were labeled as small (S), genes with ≥70 

SNPs were labeled as large (L), and genes with 30 ~ 70 SNPs (exclusively) were labeled as 
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medium-sized genes (M). We considered six categories of gene-gene pairs: SS, SM, SL, 

MM, ML and LL.

We generated trait value Yi from Model (3) below, where we assumed that gene F has the 

main causal effect and there exist causal interaction effects between genes A and B (i.e., two 

small genes), between genes C and D (i.e., a small gene and a large gene), and between 

genes I and J (i.e., two large genes):

(3)

where Gm,li is the genotype of SNP l in gene m for subject i and ei is generated from 

Normal(0,1). Coefficients ϕF, ζAB, ζCD and ζIJ are effect size; in the simulation, we used a 

common value for these coefficients and the common value was determined so that the 

partial R2 explained by interactions was around 30%. The partial R2 of the interaction effect 

is defined as , where  is the R-square value for Model (3) 

containing both main and interaction effects, and  is the R-square value for Model (3) 

containing only main effects (i.e., ζst =0 for all s and t). The total number of relevant 

pathways was 20. In each replication, we simulated 1500 individuals and performed 200 

replications per scenario.

To assess the impact of a weight type, we performed the analyses under two conditions: (a) 

setting the corresponding weight type as 1 (i.e., neutral weights) and (b) incorporating the 

proposed weight type. For example, to assess the impact of ωpath, we examine the 

performance of (a) using ωsize + ωeffect (a) vs. the performance of (b) using ωsize + ωpath + 

ωeffect. For each condition, we computed the true positive rate (TPR) of detecting the causal 

GxG gene pairs. We also computed the FPR among the non-causal gene pairs. Finally, we 

calculated the D statistic (Athanasiou, 2011), which is defined as D =log TPR − log FPR and 

is commonly used as an omnibus index to integrate TPR and FPR. Higher D indicates better 

performance of the method.

Results of Simulation I

Assessment of ωsize (Figure 1): When evaluating ωsize, we set the number of pathways 

supporting each interaction pairs as 20, 10, and 0 for A×B (MS gene pair), C×D (ML gene 

pair) and I×J (LL gene pair), respectively. We considered ωsize,m = 1 (i.e., no gene size 

weights) and ωsize,m = 1+(sm − min{si})/(max{si} − min{si}), where, sm is the number of 

columns in the design matrix. The results indicated that without penalizing the gene size, the 

FPRs for large genes were substantially larger than the FPRs for small genes, e.g., the FPRs 

of LL pairs were higher relative to MM pairs and to ML pairs. By setting ωsize as proposed, 

the FPRs became less clustered in the large gene pairs, i.e., the FPRs in LL, ML and MM 

pairs decreased, the FPRs for SL pairs remained similar, and the FPRs for gene pairs not 

involving large genes (e.g., SS and SM) increased slightly. For TPR, we observed that the 

TPR deceased as the gene size increased, which is because ζAB, ζCD and ζIJ were set to be 

the same and the number of pathway supports happen to decrease as gene size increases. By 

comparing the TPR with and without ωsize, we see that the TPR increased slightly for A×B 
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(MS pair), and decreased slightly for C×D (ML pair) and for I×J (LL pair). This is because 

ωsize encouraged the model to select smaller terms, although the differences were small. 

According to the D statistic, adding a size penalty always increases the overall performance.

Assessment of ωpath (Figure 2): Our proposed weight for pathway support has a general 

form of  for GxG term ℓ, and is ranged between  to 1. In other words, 

the maximum amount of penalty reduction from pathway support is set to be half. Note that 

ωpath actually encourages gene pairs with pathway support to be selected more frequently. 

When evaluating ωpath, we set the number of pathways supporting each interaction 

according to Table 3, where we considered three scenarios, i.e., all causal interactions with 

little, moderate, or strong pathway support. Figure 2 suggests that for the scenarios of 

moderate and strong support, incorporating wpath has little impact on FPR but can boost 

TPR. For the little support scenario, incorporating wpath (which relatively discourages the 

selection of gene pairs with little support) did not cause too much reduction in TPR. 

However, there is a slight increase in FPR in the little and moderate support scenarios 

compared to using the null pathway weight. This is likely because under those two 

scenarios, the majority of the pathway supports are assigned to the null GxG gene pairs (i.e., 

the last column of Table 3). Overall, it is worth incorporating the pathway weights --- the 

gain in the D statistic caused by ωpath in moderate and strong supports is substantially more 

than the loss in little supports, and the scenario of little support might occur less frequently 

in reality.

Assessment of ωeffect (Figure 3): When evaluating ω effect, we set the number of pathways 

supporting each interaction pair as 20, 10, and 0 for A×B, C×D and I×J, respectively. We 

compared the performance of four different ways to obtain the adaptive weights: (1) using 

the effect estimates from the iterative L1 penalty (L1), (2) using ωeffect =1 (null weights), (3) 

using the effect estimates from linear regression (LR), and (4) using the effect estimates 

from penalized L2 regression (L2). The other two weights, i.e., wpath and wsize, were 

specified using the proposed form. Figure 3 suggests that a null weight can lead to high TPR 

and high FPR and can result in a low D value. All three estimating methods yielded similar 

TPRs but different FPRs. The iterative L1 penalty method had the smallest FPR and was the 

best choice among the methods. In contrast, the linear regression had the worst performance, 

and it is infeasible when the number of variables exceeds the number of samples. The L2 

penalty method had an FPR slightly smaller than that of the linear regression method.

Simulation II

Design of Simulation II—In Simulation II, we used the data for Crohn’s disease from the 

Wellcome Trust Case-Control Consortium (WTCCC) (2007) to simulate genotypes. Wang 

et al. (2010) reported two important pathways for Crohn’s disease: (1) the IL-12 and STAT4 

pathway which contains 12 genes, and (2) the T cell receptor pathway which contains 67 

genes. In total there are 76 genes under considerations: three genes in both pathways, nine 

genes only in the IL-12 and STAT4 pathway, and 64 genes only in the T cell receptor 

pathway. We computed the number of pathway supports for gene pair ℓ, nℓ, which is the 
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number of pathways that contain the gene pair. Among the  gene pairs, there 

are  gene pairs that have 2 pathway support (i.e., nℓ=2); 9×64=576 gene pairs has 0 

pathway supports (i.e., nℓ=0); and the remaining 2850−3−576=2271 gene pairs with 1 

pathway support. Different from Biofilter, we kept those gene pairs with 0 pathway supports 

in the model but with higher penalty; thus the selection procedure is more likely to drop 

them unless the data support their importance.

We simulated 200 replicated datasets with 1500 subjects per replications. We assigned two 

genes as causal main-effect genes and another 10 gene pairs (different from the causal main-

effect genes) with causal interaction effects. We sorted the SNPs within a causal gene by 

their MAFs and used the middle 50% SNPs as causal. To generate phenotype, we set

(4)

where Gm,li∈{0,1,2} is the genotype of the causal SNP l in gene m. For quantitative trait, we 

set g(μi)= μi and generated Yi from N(μi,1)with α=0 and the values of ϕ’s and ζ’s such that 

the partial R2 contributed from the interaction effects was around 30%. For binary trait we 

set  and generated Yi from Bernoulli(μi). Parameter α was set to make 

the prevalence around 7%. Similar to quantitative traits, the values of ϕ’s and ζ’s were 

determined so that the partial R2 from the interaction effects was around 30%. For binary 

traits, we used Nagelkerke R2 (Nagelkerke, 1991) which is defined as 

, where L12 is the log-likelihood of the logistic 

regressions containing both main and interaction effects, and L1 is that of the logistic 

regression containing only main effects. For each replication, we oversampled cases so as to 

obtain a balanced case-control sample (i.e., 750 cases and 750 controls).

We considered three scenarios as listed in Table 4 by carefully selecting 10 interactive gene 

pairs to evaluate the performance of the proposed procedure. Its performance was 

benchmarked against the penalized regression with only gene-size weight. In the “no 

support” scenario, most of the causal gene pairs were with 0 pathway support. In “random 

support” scenario, we randomly selected 10 gene pairs as causals. In the “strong support” 

scenario, which was the opposite of the “no support” scenario, the 10 causal gene pairs were 

selected from those with strong pathway support. For each scenario, we computed the TPR 

across the 10 gene pairs, the FPR across the non-causal gene pairs, and the D statistics.

Results of Simulation II—With the real data based Simulation II, we first examined the 

performance of different weighting schemes for quantitative traits (Figure 4) and binary 

traits (Figure 5). We also evaluated the performance of different PC strategies for 
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summarizing the interaction information of a gene pair (Figure 6 and Table 1). Finally, we 

explored the possible reasons of high FDRs for large genes (Table1).

Evaluating different weighting schemes: Figures 4 (for quantitative traits) and 5 (for 

binary traits) show the results of using different weights (i.e., ωsize + ωeffect + ωpath, ωsize + 

ωpath, ωsize + ωeffect, and ωsize) under different scenarios of pathway supports. In both 

figures, we see that the values of TPR and D from ωsize + ωeffect + ωpath were much larger 

than the baseline TPR/D that used ωsize only. Across different scenarios, the effect weights 

played a relatively substantial role under the scenarios of no support and random support 

(i.e., the pathway support is randomly given to 10 gene pairs). That is, for the TPR and D 

statistics under the panels of no support and random support, there is a big gap between 

Column 1 (ωsize + ωeffect + ωpath) and Column 2 (ωsize + ωpath), while the gap is small 

between Column 1 and Column 3 (ωsize + ωeffect). On the other hand, when the pathway 

support is strong (strong support), the gap between Column 1 and Column 2 becomes much 

smaller than the gap between Column 1 and Column 3, indicating a strong role from the 

pathway weight when pathway support exists.

We see that under the scenarios of random support and strong support, adding ωpath into the 

model helps to boost TPR and D (i.e., TPR/D of ωsize + ωpath are higher than those of ωsize). 

However, under the scenario of no support, adding ωpath reduces the TPR and D statistics. 

Nevertheless, we see that such loss can be avoided by incorporating ωeffect. Across all 

scenarios, we see adding ωeffect always helps to boost TPR and D (i.e., TPR/D from ωsize + 

ωeffect are greater than those from ωsize only). For binary traits (Fig. 5), the results are similar 

to the quantitative traits. While FPRs were also retained around 0.002~0.003, the TPRs were 

smaller, at about 70% of the TPRs for the quantitative traits. This is not unexpected because 

binary trait values contained less information than quantitative trait values.

Evaluating different PC strategies for summarizing interaction information: Under the 

setting of Figure 4 (i.e., Simulation II, quantitative traits), we evaluated the performance of 

using the first PC (referred to as PC1) and using the top few PCs that explained 80% of 

variation (referred to as PC80). Because there are multiple PCs for a gene pair in PC80, we 

use group lasso (Yang and Zou, 2014) to select important gene pairs by setting a group as a 

gene pair. The results are shown in Figure 6. We observe that PC80 had higher TPR than 

PC1; yet it also had higher FPR than PC1. The resulting D statistics are lower for PC80 than 

that of PC1. The results are not unexpected: although PC80 captured more information than 

PC1, the number of variables in PC80 also increased dramatically. On average, the number 

of interaction terms increased from ~3K for PC1 to ~35K for PC80. The relative 

performance of PC1 and PC80 seems to reflect a tradeoff between the degrees of freedom 

spent and the information captured with a moderate sample size (N =1500).

By focusing on the random support scenario, we compared the proportion of interaction 

information captured by PCs from the interaction design matrix (referred to as PC1SNP×SNP) 

to that captured by the product of PCs that summarize the information of each gene (referred 

to as PC1geneS×PC1geneT). The proportion of variations in the interaction design matrix, Hst, 

captured by its first PC is . The proportion of variations in Hst captured by 
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the PC product is . The results are summarized in Table 1, from which 

we see that PC1SNP×SNP captured higher amount of variation than PC1geneS×PC1geneT, and 

the difference increases as gene size increases. We also observed that the FPRs of 

PC1SNP×SNP were smaller than those of PC1geneS×PC1geneT, which is not unexpected 

because when the amount of information retained in the PCs became less, it became harder 

for the proposed algorithm to separate the noise from the signals.

Evaluating FDRs of different gene-pair sizes: Using the scenario of random support in 

Figure 4, we further examined the FPRs of different gene sizes when using the size weight 

(i.e., setting ωsize as proposed) and when not using the size weight (i.e., setting ωsize =1). 

The genes are classified into small size (1~33 SNPs), medium size (34~67 SNPs) and large 

size (68~102 SNPs), hence there are six size-categories for the gene pairs: SS, SM, SL, MM, 

ML and LL. From Table 1, we see that when setting ωsize =1, the FPR increased as the gene 

size increased, which again is probably due to the fact that the variation captured by the first 

PC decreases as the gene size increases. When the amount of variations captured by the PCs 

became smaller, the information content that can be used to detect GxG signals became less 

and may result in higher FPRs for large genes. When setting ωsize as proposed, the FDRs for 

gene pairs with non-large sizes stayed similar, but the FDRs for gene pairs involving large 

genes were reduced.

Real Data Analysis

Crohn’s disease, also known as Crohn syndrome and regional enteritis, is a type of 

inflammatory bowel disease that may affect any parts of the gastrointestinal tract from 

mouth to anus, causing a wide variety of symptoms. Crohn’s disease is a complex genetic 

disease and many studies have been carried out to find the genetic factors responsible 

(Holmans et al., 2009).

We applied our approach to the WTCCC genome-wide association dataset for Crohn’s 

disease (CD) (Wellcome Trust Case-Control Consortium, 2007). The data contains 2005 

cases and 3004 controls, and each individual had 469,557 SNPs genotyped by Affymetrix. 

We focused our analysis on the two important pathways to Crohn’s disease (Wang et al., 

2010), the IL-12 and STAT4 pathway and the T cell receptor pathway. As mentioned in the 

design of Simulation II, there were 76 genes from the two pathways with three genes 

involved in both pathways, nine genes only in the IL-12 and STAT4 pathway, and 64 genes 

only in the T cell receptor pathway. We extracted the SNPs of the 76 genes and removed 

SNPs with MAF smaller than 1%. We performed the analysis using the proposed method 

(i.e., incorporate all weights) and the benchmark method (only incorporate gene-size weight 

in the penalty). The significant genes and gene pairs are listed in Table 5. For GxG effects, 

we also listed the number of supporting pathways. For the proposed method, many 

significant gene pairs identified contain the GRB2 gene. GRB2 has been found to be 

significant in Crohn’s disease (Lee et al., 2011, Vaughan et al., 2013); it encodes the protein 

GRB2, which is an adaptor protein involved in signal transduction and cell communication. 

Compared to the proposed method, the benchmark methods found two more GxG pairs with 

0 pathway support and did not detect four of the GxG pairs with pathway support. Such 
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results agreed with the simulation study in the sense that the proposed method may 

discourage the detection of GxG with no pathway support when the data suggested so.

Discussion

In this work, we proposed a pathway-guided approach for detecting interactions among 

genes. We constructed a weighted L1 penalty to select the important gene effect and gene-

gene interactions; the weights were based on the number of pathways supportive of the 

effects as well as the estimated effect size. The numerical studies suggested an improved 

performance over the methods without using the guidance from pathway support and effect 

strength. The proposed approach can be used to explore gene-gene interactions with a list of 

candidate genes and is applicable even when sample size is smaller than the number of 

predictors studied. Although in theory the proposed method can handle an arbitrary number 

of genes, the number of GxG interactions increases exponentially with the number of genes. 

Therefore, our approach would be more suitable for studying GxG effects among a list of 

pre-selected genes, such as genes from certain relevant pathways, rather than for whole 

genome analysis.

Our approach aims to combine the advantages of biological guidance and trait supervision in 

association detections; we achieve this by formulating these two strategies that are 

commonly used for reducing the GxG search space as the prior weights so as to regularize 

the GxG detection (as opposed to using these criteria as “filters”). Our results suggested that 

both types of weights are necessary, i.e., both ωpath and ωeffect were necessary to obtain a 

robust D gain for the proposed method across different scenarios. Using ωpath would 

increase the TPR for the causal GxG interactions which have strong pathway support. 

However, it may also decrease the TPR for those GxG effects with little or no pathway 

support. For these scenarios, incorporating ωeffect gives the power to identify novel GxG 

effects even for those with no known biological supports, i.e., it minimizes the TPR 

reduction and sometimes even boosts the TPR because it encourages pairs with non-zero 

GxG effects to be selected in the model.

When constructing our algorithm, we intended to use biological knowledge to guide, instead 

of force, the detection of interactions. We used three strategies to assure this goal. First, we 

incorporated the biological knowledge as prior information instead of as a filter in the 

statistical inference. Second, we constrained the range of ωpath between 0.5 and 1 so that 

ωpath did not overwhelm other weights and yet could still encourage the algorithm to select 

the gene pair when the data are consistent with this prior information. Finally, we also used 

the data-adaptive weight based on the empirical effect size to safeguard the validity of the 

findings if inappropriate biological knowledge is used. The practice of using pathway 

knowledge to guide variable selection is based on the presumption that the pathway 

knowledge can reflect the underlying biological mechanisms. However, it is likely that the 

pathway structures depend on phenotypes and hence the “canonical” pathway information 

would only represent the status of healthy controls. From this point of view, treating the 

biological information as prior knowledge and performing data adaptive selection can 

provide robustness against vague information and can minimize false positive and false 

negative findings.
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In reality, different pathways often have substantial overlaps, and our method intends to 

make use of such overlapping. Specifically, we treat these overlapping pathways as separate 

pathways, and then for a given gene pair ℓ, we obtain nℓ, the number of pathways that 

contain gene pair ℓ. The rationale is that a gene pair that is involved in multiple pathways 

tends to be more biologically important and has a higher chance of interaction. On the other 

hand, such pathway support is only incorporated as prior information, which will encourage 

our algorithm to select the gene pair only if the data are consistent with it. In addition, we 

also incorporate the adaptive weight based on the empirical effect size to guide the variable 

selection, which provides another layer of safeguard. When calculating nℓ, one should use 

the pathway information from the same “level”. For example, in KEGG, pathways are 

labeled with different levels; the energy metabolism pathway is one of the pathways at the 

top level. The energy pathway contains several lower-level pathways, such as the carbon 

fixation pathway and the nitrogen metabolism pathway. Each of the lower level pathways 

contains pathways of even lower level. It would not be appropriate to treat pathways of 

different levels equally when counting nℓ because one pathway can merely be a subset of the 

other pathway.

Prior biological information (such as Biofilter) is often available at the gene or the higher 

pathway level. Hence one of the advantages to study interaction at gene level is that the prior 

knowledge and the effect assessment are aligned at the same level (genes). However, the 

corresponding findings are also limited at gene-level resolution. Therefore, a complete GxG 

study may require two steps; first performing a gene-level screening using the methods as 

proposed to identify interactive gene pairs, and then using those approaches that can provide 

the SNP×SNP level of resolution to follow up on the significant gene pairs and comprehend 

the sources of gene-level signals.

In our method, we summarize the information of gene-gene interaction using the PCs. 

Alternatively, Wang et al. (2009) apply PLS to summarize the gene information at gene 

level, which aims to maximize both the SNP-SNP correlation and the SNP-trait correlation. 

Performance of GxG tests using leading components from PLS was shown to be superior to 

using PCs from PCA (Wang et al., 2009). However, because PLS components were formed 

by maximizing their correlations with trait values, the corresponding GxG terms tend to stay 

significant even with no true interaction effects. Besides using PCA vs. PLS, our method 

also differs from Wang et al. (2009) in two other aspects. First, Wang et al. (2009) capture 

the GxG effect of a gene pair by the product of the leading PLS components, while our work 

captures the GxG effect by the PCs of the interaction design matrix. Second, Wang et al 

(2009) performed hypothesis testing to select important gene pairs, while we use penalized 

likelihood estimation with biological weights from pathway support and adaptive weights 

from effect sizes.

In this paper, we only used the pathway membership in the variable selection process. There 

exist other types of information, such as pathway structure, the regulation relationship 

between genes, protein interaction, RNA networking or metabolite information, which can 

provide valuable guidance in the exploration of gene-gene interaction in a large search 

space. Further study will be required to appropriately formulate biological knowledge from 
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multiple resources into the most appropriate statistical model in order to lead to efficient 

variable selection.
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Figure 1. 
The true positive rate (TPR), false positive rate (FPR) and D statistic (D = log TPR − log 

FPR) for detecting GxG gene pairs in Simulation I with two types of ωsize: (1) ωsize,m = 1 

(i.e., no size weights), represented by the light gray bar, and (2) 

where sm is the gene size, represented by the dark gray bar. The x-axis represents the gene 

labels in the TPR plot and represents the gene sizes in the FPR plot, i.e., S/M/L for small/

medium/large genes.
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Figure 2. 
The true positive rate (TPR), false positive rate (FPR) and D statistic (D=log TPR − log 

FPR) for detecting GxG gene pairs in Simulation I under three different scenarios, i.e., 

causal gene pairs with little, moderate and strong pathway supports (as detailed in Table 3). 

In each scenario, the dark gray bars represent the results of incorporating pathway support 

(i.e., setting ωpath as proposed) and the light gray bars represent the results of no pathway 

support (i.e., setting ωpath =1).
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Figure 3. 
The true positive rate (TPR), false positive rate (FPR) and D statistic (D =log TPR − log 

FPR) for detecting GxG gene pairs in Simulation I using ωeffect calculated by different 

methods: (from left to right) iterative L1 penalty regression (L1); ωeffect =1 (no effect 

weight); linear regression (LR); and L2 penalty regression (L2).
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Figure 4. 
Results of different weighting schemes for Simulation II based on Crohn’s disease with 

quantitative phenotypes. True positive rate (TPR), false positive rate (FPR) and the D 

statistic (D = log TPR − log FPR) for detecting GxG gene pairs were obtained from three 

different scenarios as defined in Table 4, i.e., the causal gene pairs do not have much 

pathway support (no support), have strong pathway support (strong support), and the causal 

gene pairs that are randomly selected (random support). Given a certain scenario, the bars 

(from left to right) represent the results of using all weights (i.e., size-effect-and-pathway), 

size-and-pathway, size-and-effect, and size only.
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Figure 5. 
Results of different weighting schemes for Simulation II based on Crohn’s disease with 

binary phenotypes. True positive rate (TPR), false positive rate (FPR) and the D statistic (D 

= log TPR − log FPR) for detecting GxG gene pairs were obtained from under three 

different scenarios as defined in Table 4, i.e., the causal gene pairs do not have much 

pathway support (no support), have strong pathway support (strong support), and the causal 

gene pairs that are randomly selected (random support). Given a certain scenario, the bars 

(from left to right) represent the results of using all weights (i.e., size-effect-and-pathway), 

size-and-pathway, size-and-effect, and size only.
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Figure 6. 
Results of PC80 vs. PC1 based on Simulation II with quantitative phenotypes. The setting is 

the same as Figure 4 except that all weights (i.e., size-effect-and-pathway) are used in PC80 

and PC1. True positive rate (TPR), false positive rate (FPR) and the D statistic (D = log TPR 

− log FPR) for detecting GxG gene pairs were obtained from under three different scenarios 

as defined in Table 4, i.e., the causal gene pairs do not have much pathway support (no 

support), have strong pathway support (strong support), and the causal gene pairs that are 

randomly selected (random support).
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Table 4

Different level of biological supports among the 10 gene pairs considered in Simulation II. No Support: the 

causal gene pairs do not have much pathway support; Random: the causal gene pairs that are randomly 

selected; Strong support: the causal gene pairs have strong pathway support.

# of supporting pathways
2 Pathways 1 Pathway 0 Pathway

Scenario

 1. No Support 0 2 8

 2. Random Support 1 7 2

 3. Strong Support 3 6 1
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Table 5

List of significant main-effect genes and GxG gene pairs identified by the proposed method and the 

benchmark method. (“--” means not found by the corresponding method.)

Gene Names
# of pathways supporting the gene/gene pair

ωpath + ωeffect + ωsize ωsize

Main effect

GRB2 1 1

IL12B 1 1

PPP3CA 1 --

GxG effect

AKT3&GRB2 1 1

CD247&IL12B 1 1

CD4&FYN 1 1

CHP&GRB2 1 1

FYN&IKBKB 1 --

GRB2&GSK3B 1 --

GRB2&MAP3K14 1 --

GRB2&NCK2 1 --

ETV5&PPP3CA 0 0

CHP&IL12B -- 0

IL18R1&RASGRP1 -- 0
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