Skip to main content
. 2015 Mar 17;10(3):e0120066. doi: 10.1371/journal.pone.0120066

Table 3. Performance of SVM by employing distinct peptide properties during 10-fold cross validation using negative dataset from UniProt.

Training/Testing dataset (T200p+200n) Validation dataset (V20p+20n)
Properties Accuracy MCC ROC Accuracy MCC ROC
AAC 89.00 0.78 0.95 82.50 0.65 0.94
DPC 91.00 0.82 0.95 87.50 0.75 0.94
AAC+DPC 89.80 0.80 0.96 85.71 0.72 0.95
N5Bin 84.25 0.69 0.92 85.00 0.70 0.95
C5Bin 86.00 0.72 0.92 77.50 0.55 0.92
N5C5Bin 87.25 0.75 0.95 90.00 0.80 0.93
Physico 93.00 0.86 0.98 90.00 0.82 0.97
AAC+DPC+N5C5Bin 91.00 0.82 0.96 92.50 0.86 0.95
AAC+DPC+N5C5Bin+Physico 91.25 0.83 0.96 90.00 0.80 0.95

AAC, Amino Acid Composition; DPC, Di Peptide Composition; N5AAC, Amino Acid Composition of 5 N-terminal residues; C5AAC, Amino Acid Composition of 5 C-terminal residues; N5Bin, Binary pattern of 5 N-terminal residues; C5Bin, Binary pattern of 5 C-terminal residues; N5C5Bin, Binary pattern of 5 N and 5 C terminal residues; Physico, top 10 physicochemical properties; SVM, Support Vector Machine; MCC, Mathew’s correlation coefficient; AUC, Area Under the curve;