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Slow brain rhythms are attributed to near-simultaneous (synchronous) changes in activity in neuron populations in the brain. Because
they are slow and widespread, synchronous rhythms have not been considered crucial for information processing in the waking state.
Here we adapted methods from turbulence physics to analyze 8-band (1-4 Hz) rhythms in local field potential (LFP) activity, in multi-
electrode recordings from cerebral cortex in anesthetized marmoset monkeys. We found that synchrony contributes only a small fraction
(less than one-fourth) to the local spatiotemporal structure of 8-band signals. Rather, 8-band activity is dominated by propagating plane
waves and spatiotemporal structures, which we call complex waves. Complex waves are manifest at submillimeter spatial scales, and
millisecond-range temporal scales. We show that complex waves can be characterized by their relation to phase singularities within local
nerve cell networks. We validate the biological relevance of complex waves by showing that nerve cell spike rates are higher in presence of
complex waves than in the presence of synchrony and that there are nonrandom patterns of evolution from one type of complex wave to
another. We conclude that slow brain rhythms predominantly indicate spatiotemporally organized activity in local nerve cell circuits, not

synchronous activity within and across brain regions.
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Introduction

Complex spatiotemporal patterns emerge from physical and bi-
ological systems, ranging from bacterial colonies to turbulent
fluids and the collective motion of fish or birds (Hussain, 1986;
Vicsek and Zaferis, 2012). These patterns emerge over a wide
range of spatial and temporal scales. The brain likewise shows
coherent activity at multiple spatial and temporal scales, and it is
customary to link the spatial and temporal scales of brain
rhythms (Buzsaki and Draguhn, 2004). For example, neurolo-
gists attribute slow-wave EEG signals to widespread synchro-
nized activity in the cerebral cortex (Binnie et al., 2003). By
contrast, cognitive events in conscious brains are linked to high-
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frequency brain oscillations in local nerve circuits (Buzsaki and
Draguhn, 2004). Brain activity can show local spatiotemporal
order as planar propagating or spiral waves (Rubino et al., 2006;
Huang et al., 20105 Sato et al., 2012), but the relevance of these
patterns remains unclear because we lack a methodological
framework that can quantify and compare them.

Here, we measured local field potentials (LFPs) in the visual
cortex of anesthetized marmoset monkeys. We adapt physical
theories of turbulence to quantify the complex wave patterns and
their dynamics. We show the brain displays a rich variety of
activity whereby synchrony and planar propagating waves are
interspersed by complex wave patterns that radiate from, con-
verge to, or spiral around phase singularities in the LEP field. The
complex waves influence spiking activity: high spike rates are
associated with complex waves rather than synchrony and plane
waves. The rich repertoire of wave patterns revealed by our ex-
periments may enable the brain to coordinate distributed neural
activity in a flexible and dynamic way.

Materials and Methods

Recordings were made from the middle temporal (MT) area of three
adult male marmosets (Callithrix jacchus). Procedures conformed to the
Australian National Health and Medical Research Council code of prac-
tice for the use and care of animals and were approved by institutional
committee at the University of Sydney. Details of preparation are given
previously (McDonald et al., 2014). Anesthesia and analgesia were main-
tained by intravenous sufentanil infusion (6-30 ug kg ' h ') and in-
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spired 70:30 mix of N,O and carbogen. The
animal viewed a uniform gray field presented
on a cathode-ray-tube monitor (Sony G500,
refreshed at 100 Hz, viewing distance 45 c¢m,
mean luminance 45-55 c¢d/m?). Data were re-
corded using multielectrode arrays (10 X 10
electrodes, 1.5 mm length, electrode spacing
400 pm, Blackrock Microsystems). Recording
surface insertion depth was targeted to 1 mm.
Recording duration ranged from 5 to 25 min;
in total, 52 min of recording were analyzed.
The LFP sample frequency was 1024 Hz; spike
sample frequency was 24 kHz. 8-Band of LFP
(1-4 Hz) was extracted by applying an eighth-
order Butterworth filter forwards and back-
wards in time to prevent phase distortion. The
Hilbert transform was applied to this filtered
signal for each (x, y) channel to extract instan-
taneous amplitude A(x, y, t) and phase ¢(x, y,
t) (Le Van Quyen et al., 2001). Single-cell and
multicell activity was classified offline using
commercial (Plexon) and in-house software
written in MATLAB (MathWorks), as de-
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scribed previously (Solomon et al., 2014). Ac-
tivity of 71 single cells (mean spike rate 2.0 Hz)
was analyzed.

Phase velocity field (PVF). Previous Hilbert
phase-based methods for LFP analysis were re-
stricted to analyzing spatial phase gradients at
single time points (Rubino et al., 2006; Muller
et al., 2014). Here, we introduce the PVF,

which simultaneously characterizes spatial and
temporal change. The PVF was calculated by
adapting optical flow techniques (Horn and
Schunck, 1981). We assume that contours of
phase move continuously between frames, giv-
ing a phase constancy restraint as follows:
Phase

Ar maps
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where u and v denote the x- and y-components ~ Figure1.
of phase velocity, At (~1 ms) is the sampling
period, and subscripts denote partial deriva-
tives. Velocity components u and v were calcu-
lated by minimizing errors in €, and the
departure from smoothness €; (Horn and Sc-
hunck, 1981) where:
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Extraction of PVFs from LFP recordings. A, Representation of marmoset eye and brain showing approximate position
of MT area and position of electrode array. Magnified view of electrode array at right shows estimated border of MT and electrode
spacing. Three recording sites are indicated. B, Normalized time-power spectrum of LFP recorded from site 33 over 2 s. Warmer
colors represent higher root-mean-squared power. ¢, Bandpass (1- 4 Hz) filtered LFP amplitude recorded over 15 from the three
sitesshown inA. Thin gray line indicates raw trace for site 33. D, Instantaneous phase of the filtered LFP for the three indicated sites.
Symbol positions represent how discontinuities at = 77 occur at minima in the LFP signal; zeros occur at maxima. Thin gray line
indicates raw trace for site 33. E, Single-channel phase signals are combined to give 2D phase maps at each recorded time step.

Phase maps are bilinearly interpolated over reference (n = 4) and inactive channels (n = 3). F, PVFs are calculated between
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The total error is given by the following:

€ = [[(a-oy€) + apler))dxdy (3)

where « is a weighting factor and og and o, are penalizer functions. We
used o = 20 as the weighting factor and the Charbonnier penalty,
o5(x?) = op(x*) = 2x* + B> with B = 0.01, as a penalizer function.
Phase velocity components 1 and v that minimize Equation 3 were found
by minimizing the corresponding Euler-Lagrange equations (Bruhn et
al., 2005). Partial derivatives were calculated using circular statistics
(Batschelet, 1981). Derivatives at array edges and near reference channels
(n = 4) and inactive electrodes (n < 4) were interpolated using centered
or forward difference approximations.

consecutive phase maps. PVFs are typically calculated between maps separated by 1 ms; more temporally separated maps are
presented here for display purposes.

Identification of plane waves and synchrony. We defined synchronous
activity as the time (seconds) where the average magnitude of the PVF
was 1 SD or more below the mean across the recording epoch. Plane
waves were detected using the order parameter defined as average nor-
malized phase velocityv_‘P (Vicsek and Zaferis, 2012):

1

Nvo(t) EV(p(x,y, 1)

Xy

, (4)

v (t) =

where N is the number of vectors in the PVF (here N = 100), v, is the
average velocity magnitude over all units, and v, is the phase velocity
vo(x, 9, 1) = (u(x, y, 1), v(x, y, t)). Normalized phase velocity v, ranges
from 0 to 1, with v, — 1 as velocity vectors align to a single direction.
Threshold v, = 0.85 was chosen to identify plane waves; variation of
this value from 0.8 to 0.9 did not substantially change the results.
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Examples of complex waves. Color maps show successive frames of instantaneous phase maps. Quiver plots show PVFs at a single time step within the patterns. Filled circles represent

critical points. A, Phase expands from a source point. B, Phase contracts toward a sink point. €, Phase rotates around a central singularity in a spiral wave. D, Phase moves toward a central point (from
bottom-left and top-right) and away from the central point (to top-left and bottom-right) in a saddle pattern. These stable (blue, solid) and unstable (red, dashed) directions are shown as lines on the PVF.

Identification of complex wave patterns. Complex waves are organized
around points with zero velocity (critical points, phase singularity points) in
the PVF (Perry and Chong, 1987). Critical points were identified as intersec-
tions of the two bilinearly interpolated null clines of the PVF (i.e., curves of
zero velocity in the x- or y-direction). Each critical point was classified using
the eigenvalues of the Jacobian matrix estimated at the corners of the four-
electrode cell containing the critical point as follows:

Ju Ju

| 9x ay
J= v av |’ )

dx dy

Eigenvalues were bilinearly interpolated to estimate the Jacobian at the
critical point (Perry and Chong, 1987). Each critical point was classified,
based on the trace (7) and determinant (A) of the Jacobian, as a node
(A > 0 and 72 > 4A), focus (A > 0 and 7> < 4A), or saddle (A < 0).
Patterns were further classified as stable (7 < 0) or unstable (7> 0).

To estimate the size of complex waves, the winding number (Poincaré
index) was calculated for 2 X 2 and 4 X 4 squares of electrodes centered
on the critical point. Spiral and node patterns have winding numbers of

1; saddles have —1 for all squares. Spiral-in and spiral-out patterns were
required to show coherent positive or negative curl (MATLAB curl func-
tion) within at least two recording sites of the critical point. Nodes occu-
pied an equivalent region of positive or negative divergence (MATLAB
divergence function). Critical points within two recording sites of record-
ing area boundary were rejected.

The centers of complex waves were identified by critical points that per-
sisted for at least 10 ms. A critical point at v,(x;, ;, ) was considered to have
persisted if there was another critical point at v (x,, y,, t + At) of the same
type, where At = 5 msand the distance between (x,,y;) and (x,, y,) was <1
grid space (400 wm).

Determining motif dynamic in pattern evolution. Each recording was
classified into a symbolic array indicating the dominant wave type (or
lack of any classified structure) at each time step (see Fig. 3B). Unclassi-
fied sequences <70 ms duration were discarded, and consecutive sym-
bols were reduced to a single instance. A motif-tracking algorithm
(Wilson et al., 2008) was used to count the number of occurrences of
single transitions (motifs with a length of 2) and longer sequences (length
3-20). Motifs containing an unclassified state were discarded. For single
transitions, expected probabilities were calculated by the following:
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where Pi(p, — p,) is the expected probability
of transitioning from pattern 1 to pattern 2 and
f; is the observed frequency of pattern i. For
longer motifs, the expected frequencies were
calculated by the following: MY147-53 689-691 s 0%s
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frequency of the motif consisting of patterns p, SP l I I
to p,,and Po(p; — p;) is the observed probabil- SA I
ity of transition from p; to p;. Significance of

motifs was qualitatively measured using the
Z-score (Milo et al., 2002) defined as follows: C

Z score = (Fo — Fp)/SD(Fg),  (8)

o
o
®

Xp
where F, is the observed frequency and SD —_
denotes standard deviation.

Comparison with spiking activity. Local rela-
tion of LFP phase to single-cell spiking activity
was calculated by taking the instantaneous
phase at each electrode position for each spike,

pooled across electrodes and animals. Global

o
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*
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Transition probability

relation was calculated as average phase across
the recording area. As control, the analysis was
repeated with spikes randomly shuffled in
time. Firing rates were calculated by averaging ~ E
the instantaneous spike rate with a 50 ms slid-
ing window. Spike rates were Z-scored within
each channel then averaged across channels.
Spike rate variability. Fano factor (F,,) for
time window W was calculated from single-
unit spiking activity using the following:
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where Sy, is the number of spikes in window W.
Average Fano factor across a recording was ob-
tained by averaging F,, over all nonoverlap-
ping windows Woflength z,,. Fano factors were
averaged over cells and recordings to give the
average for window sizes t,, logarithmically
spaced from 10 ms to 1 s as follows:

Figure 3.
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(lassification of complex waves. A, Fluctuation of order parameter (thin black line) and average velocity magnitude
(red) of PVF over 2 s. Dashed lines indicate order parameter and velocity thresholds. B, Raster plot of classified patterns over the
same time period as in A. C, Expected (red lines) and observed probability (black bars) of transitions between simple (S) waves
(plane waves, synchrony) and complex waves (C). D, Representation of most significant temporal motifs. Circles represent struc-

ture types. Arrows indicate temporal transitions. Star symbols indicate first transition. Z-score indicates deviation from expected
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To calculate Fano factor during the activity of individual patterns, time
steps where the target pattern was not active were deleted. Differences
were quantified with a two-sample Kolmogorov—Smirnov (KS) test on
the sets of F,, across windows.

Surrogate data. We generated surrogate LEP data as follows. The phase
values for each frequency component f of the discrete Fourier trans-
formed signal were shifted by adding a random value (f) chosen uni-
formly in the range 0—2r. The same random value ¢s(f) was applied at all
electrodes. Phase at each f was then shifted by an additional random
variable 6,(f), which is normally distributed (mean 0, SD 7/4) and cal-
culated independently for each electrode i. Inverse Fourier transform was
then applied. Surrogate data produced in this way preserve autocorrela-
tions but reduce the cross-correlation structure by, on average, 50%
between electrodes (Prichard and Theiler, 1994).

transition probability. E, Average 8-band signal amplitude (arbitrary units) during different pattern types. Error bars indicate SEM
between recordings. PW, Plane wave; SY, synchrony; ND, node (source, sink); SP, spiral (spiral-in, spiral-out); SA, saddle.

Results

We recorded spiking activity and LEPs from MT with a 10 X 10
array of electrodes while the animal viewed a spatially uniform
screen (Fig. 1A). As expected, LFP power spectra showed domi-
nance of slow rhythms, with mean frequency between 1 and 2 Hz
(Fig. 1B). We bandpass filtered the 6-band (1-4 Hz) signal (Fig.
1C, red curve) and computed instantaneous d-phase at each elec-
trode using the Hilbert transform (Le Van Quyen et al., 2001)
(Fig. 1D). Phase measurements were collated across electrodes to
create spatial phase maps (Fig. 1E). The maps evolved in a com-
plex way over time and space, alternating between coherent and
seemingly chaotic activity. We analyzed the dynamics of these
maps using the PVF (see Materials and Methods), which enables
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matically using these combined criteria
(Fig. 3B). The EEG frequency range we
analyzed (6-band) is customarily de-
scribed as “synchronized EEG,” yet we
found less than one-fourth of the classified
time series comprised synchronous activity

(19.4%). Rather, plane waves were the dom-
inant pattern (60.0%), with complex waves

. making up the remaining classified time

(20.6%). Moreover, complex waves are

Time (ms) O 50

3
o
—

1

likely more common than our analysis sug-
gests: inspection of the unclassified parts of
the time series showed that they usually con-
tained more than one complex wave.

To ensure that the complex brain waves
are not simply induced by our analysis
methods, we generated surrogate datasets

o

Number of
spikes x10
=

n

Shuffled

Z-score)
o

Global ~= 0.1

Normalized spike
rate

-0.2

that preserve autocorrelation in the original
signals but reduce the cross-correlation
structure (see Materials and Methods). The
duration, fraction, and frequency of com-
plex brain waves were significantly reduced

SY PWND SA SP

0 0
- m - m

Figure 4.

objective analysis of the patterns visible to naked eye inspection of
the raw data (Fig. 1D-F).

The PVF readily identifies the synchronous activity and trav-
eling plane waves identified in previous work (Fig. 1 E,F), and
additionally reveals a repertoire of more complex spatiotemporal
patterns (Fig. 2). We use the term complex waves to refer to these
patterns (see Materials and Methods). Complex waves are organized
around an apex point in the phase map, which in other physical
systems is referred to as a phase singularity or “critical point” (Perry
and Chong, 1987). Four variants of complex waves are distin-
guished. In the first type (source), phase diverges from a critical point
and propagates radially outward (Fig. 2A). In the second type (sink),
phase converges to a critical point (Fig. 2B). In the third and fourth
types, phase rotates toward (spiral-in) or away from (spiral-out) the
critical point, creating pinwheel patterns in the phase map (Fig. 2C).
Saddle structures were also observed where the phase map curves
down in one direction and up in another (Fig. 2D). In each case, the
critical point typically drifted around (or out of) the recording area
over the course of tens to hundreds of milliseconds.

Isolated descriptions of spiral waves, sources, and sinks were
previously made in anesthetized (Huang et al., 2010) and waking
animals (Freeman and Barrie, 2000; Mohajerani et al., 2013;
Muller et al., 2014), but lack of methodological framework has
prevented quantitative analysis and obscured their prevalence.
Here, we applied the PVF to classify complex brain waves, by
adapting critical point theory from turbulence physics (see Ma-
terials and Methods). The PVF also allows objective identifica-
tion of plane waves and synchrony by defining velocity and order
parameters (Fig. 3A; see Materials and Methods). Approximately
half (44%) of the phase map time series could be classified auto-

Relation of coherent structures to spiking activity. 4, Snapshots of phase maps and corresponding (multiunit) spiking
activity. Spikes (black circles) are common near phase 7 and rare near phase 0. B, Histograms of phase values during (single-unit)
spikes for phase obtained at the same electrode as a spike (Local), for average phase across the recording array (Global), and for
local phase with spikes shuffled in time (Shuffled). €, Average normalized (Z-scored) firing rate of single cells in classified coherent
structures. PW, Plane wave; SY, synchrony; ND, node (source/sink); SP, spiral (in/out); SA, saddle. Error bars indicate SEM.

in these surrogate data (p < 0.01, KS test;
p <0.05, post hoc Wilcoxon rank sum com-
parisons). These results rule out the possi-
bility that complex waves are artifacts of the
analyses.

Are complex brain waves isolated
events, or are they linked to each other?
We reasoned that, if complex brain waves
occur randomly, the transition probabil-
ity from one complex wave to another
should follow their overall frequency of
occurrence. Instead, we found that transitions between simple waves
(synchrony and plane waves) occur less frequently than expected,
and transitions from simple waves to complex waves (nodes, spirals,
and saddles) occur more frequently than expected (Fig. 3C). All dif-
ferences were significant (p < 0.01, KS test; p < 0.05, post hoc
Wilcoxon rank sum comparisons). To understand better these tran-
sitions, we created symbolic arrays from the classified wave patterns
and interrogated the array for 3-pattern temporal motifs (see Mate-
rials and Methods). This analysis revealed that complex waves typi-
cally intersperse simple plane waves (Fig. 3D), as predicted by
physical modeling studies (van Hecke et al., 1999). Intuitively, for
example, transition from a plane wave traveling in one direction to a
plane wave traveling in a different direction will involve a pattern
with a phase singularity.

We next asked how complex waves are related to the amplitude of
the 8-band LFP signal. This analysis (Fig. 3E) shows that synchrony
is associated with high 8-band amplitude (averaged across the re-
cording array), whereas complex waves are associated with low av-
erage 6-band amplitude. This result reconciles our findings with the
conventional view that high amplitude 8-band EEG signal is caused
by synchronized cortical activity. The new insight gained by our
analysis is that low amplitude 6-band EEG signal does not signify
incoherence or quiescence of cortical activity. Rather, low-
amplitude 8-EEG signifies complex waves in local cortical circuits.

Do complex waves influence neural spike activity? We related
the classified wave patterns to simultaneously recorded spike ac-
tivity at each recording point (Fig. 4A). As expected (Destexhe et
al., 1999), spikes were weakly entrained to the phase of 8-band
LFP signals at the recording site, with spike probability highest
where the local phase was close to =7 (blue/green in color maps
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of Figs. 1, 2, and 4). Entrainment was diminished if phase was
averaged across the recording area and obliterated if spikes were
compared with surrogate data (Fig. 4B; see Materials and Meth-
ods). Crucially, spike rates were highest near the position and
time of spirals and saddles (p < 0.05, Wilcoxon rank sum com-
parisons) and lowest in the presence of synchrony (Fig. 4C; p <
0.05, Wilcoxon rank sum comparisons). In complex patterns,
spike rates were weakly (r = —0.02), but significantly (p < 0.01)
correlated with distance from the critical point (MATLAB cor-
rcoef function), indicating that the effect of complex patterns is
distributed across the spatial extent of the pattern. The presence
of complex waves in 8-band activity explains a small but signifi-
cant proportion of total variance in average firing rate (w> = 2%,
ANOVA with symbolic pattern array) in the frequency range we
analyzed. Similar structures in higher frequency bands are ex-
pected to bring additional explanatory power, given the known
influences of high-frequency LFPs on brain spiking activity (Buz-
sdki and Draguhn, 2004; Einevoll et al., 2013). We conclude that
switches between complex waves and synchrony influence the
temporal structure of cortical spiking activity.

Complex waves show preferential switching and temporal
motifs Fig. 3C,D); this switching might contribute to the high
variability in resting spike rate in cortical neurons (Churchland et
al., 2010). We estimated variability using the Fano factor (vari-
ance/mean of spike counts; see Materials and Methods) for indi-
vidual neurons. The Fano factor averaged across the entire
recording epoch (i.e., across many switches between synchrony
and complex wave patterns) was significantly higher than the
Fano factor calculated during individual patterns (3.1 = 0.10 vs
1.88 £ 0.03, mean = SEM; n = 100, p < 0.01, KS test). Further-
more, the Fano factor calculated within 100 ms of pattern transi-
tion points was higher than during individual patterns (2.04 =
0.03, p < 0.05, KS test). Together, these results suggest that com-
plex waves are an important part of the relationship between
LFPs and the spiking activity of cortical neurons.

Discussion

Our results show that spontaneous slow rhythms in LFP activity
in an anesthetized brain form a continuum from simple to complex
wave patterns. Simple wave structures (plane waves and synchrony)
are usually separated by complex waves that form around phase
singularities (spiral waves, sources, sinks, and saddles). The temporal
evolution of simple and complex waves echoes the previously de-
scribed motif organization in cortical circuits, whereby spontaneous
cortical activity recapitulates previous stimulus-evoked activity
(Mohajerani et al., 2013) and represents a potential mechanism for
the brain to process information in a distributed and dynamic way
(Gong and van Leeuwen, 2009).

A fundamental question in neuroscience concerns the relation
between the spiking of individual nerve cells and the synaptic
activity that dominates LFPs (Einevoll et al., 2013). Our analysis
showed that spikes are weakly phase locked to 8-band oscillations
in LFPs and that the complex waves differentially influence nerve
cell activity: spike rates were highest in the presence of spirals and
saddles and lowest in the presence of synchrony (Fig. 4). Further,
we found that high resting state variability, a prominent feature of
cortical nerve cells (Churchland et al., 2010), is influenced by
switches between simple and complex wave patterns.

We conclude that, to gain improved understanding of the rela-
tion of nerve cell spikes to LFPs, the fine spatiotemporal dynamics of
the LFP should be taken into consideration. Our turbulence-based
approach allows the required objective analysis and can be easily
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applied to study how other LFP frequency bands influence cortical
spike rates. It will also be of interest to relate complex wave activity to
the phenomena of “up” and “down” states, and to apply our method
to other neural signals in waking as well as anesthetized brains.
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